Научная статья на тему 'Особенности применения электронно-микроскопических методов в историческом металловедении'

Особенности применения электронно-микроскопических методов в историческом металловедении Текст научной статьи по специальности «Биологические науки»

CC BY
130
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МЕТАЛЛИЧЕСКИЙ АРТЕФАКТ / ПРОСВЕЧИВАЮЩАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ / РАСТРОВАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ / КОМПЛЕКСНОЕ ИССЛЕДОВАНИЕ / METAL ARTIFACT / TRANSMISSION ELECTRON MICROSCOPY / SCANNING ELECTRON MICROSCOPY / COMPLEX RESEARCH

Аннотация научной статьи по биологическим наукам, автор научной работы — Преснякова Наталья Николаевна, Васильев Александр Леонидович, Терещенко Елена Юрьевна, Яцишина Екатерина Борисовна

Представлен методологический подход к комплексным электронно-микроскопическим исследованиям металлических объектов культурного наследия, разработанный в процессе изучения различных экспонатов из ведущих музеев России. Применение предложенного методологического подхода позволило как историкам, так и археологам получать углубленную детальную информацию, в значительной мере дополнившую данные, имеющиеся на сегодняшний день.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биологическим наукам , автор научной работы — Преснякова Наталья Николаевна, Васильев Александр Леонидович, Терещенко Елена Юрьевна, Яцишина Екатерина Борисовна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Electron-microscopic methods in historical metallurgy: features of the use

A methodological approach to integrated electron microscopic studies of metal objects of cultural heritage, developed in studying various exhibits from leading museums of Russia, has been presented. The application of the proposed approach allowed both historians and archaeologists to obtain in-depth, detailed information, which greatly supplemented the data currently available.

Текст научной работы на тему «Особенности применения электронно-микроскопических методов в историческом металловедении»

DOI: 10.18721/JPM/12307 УДК 538.911+902/904

ELECTRON-MICROSCOPIC METHODS IN HISTORICAL METALLURGY: FEATURES OF THE USE

N.N. Presniakova', A.L. Vasiliev'2, E.Yu. Tereschenko'2, E.B. Yatsishina'

1 National Research Centre "Kurchatov Institute", Moscow, Russian Federation;

2 Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation

A methodological approach to integrated electron microscopic studies of metal objects of cultural heritage, developed in studying various exhibits from leading museums of Russia, has been presented. The application of the proposed approach allowed both historians and archaeologists to obtain in-depth, detailed information, which greatly supplemented the data currently available.

Keywords: metal artifact, transmission electron microscopy, scanning electron microscopy, complex research

Citation: Presniakova N.N., Vasiliev A.L., Tereschenko E.Yu., Yatsishina E.B., Electron-microscopic methods in historical metallurgy: features of the use, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 12 (3) (2019) ........ DOI: 10.18721/

JPM.12307

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКИХ МЕТОДОВ В ИСТОРИЧЕСКОМ МЕТАЛЛОВЕДЕНИИ

Н.Н. Преснякова', А.Л. Васильев12, Е.Ю. Терещенко1,2, Е.Б.Яцишина1

1 Национальный исследовательский центр «Курчатовский институт»,

Москва, Российская Федерация;

2 Институт кристаллографии им. А.В. Шубникова ФНИЦ

«Кристаллография и фотоника» РАН, Москва, Российская Федерация

Представлен методологический подход к комплексным электронно -микроскопическим исследованиям металлических объектов культурного наследия, разработанный в процессе изучения различных экспонатов из ведущих музеев России. Применение предложенного методологического подхода позволило как историкам, так и археологам получать углубленную детальную информацию, в значительной мере дополнившую данные, имеющиеся на сегодняшний день.

Ключевые слова: металлический артефакт, просвечивающая электронная микроскопия, растровая электронная микроскопия, комплексное исследование

Ссылка при цитировании: Преснякова Н.Н., Васильев А.Л., Терещенко Е.Ю., Яцишина Е.Б. Особенности применения электронно-микроскопических методов в историческом металловедении // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2019. Т. 12. № 3. С. ....... DOI: 10.18721/JPM.12307

Introduction

A wide range of approaches and methods are used in studies of ancient metal artifacts. The following physical methods are some of the most popular:

metallographic analysis [1];

optical emission spectroscopy [2, 3];

X-ray fluorescence spectrometry [4, 5];

electron microscopy (EM) with energy-dispersive X-ray spectroscopy (EDX) [6, 7].

Instrumentation for electron microscopy has been a rapidly growing field for the past 20 years, with new methods evolving for analysis of different materials. These methods have found wide application and are in great demand for studies of cultural heritage objects [7].

EM is traditionally divided into two main methods: scanning (SEM) [8, 9] and transmission (TEM) [10, 11] electron microscopy, although modern devices often incorporate both methods [12] using different detectors: light and dark-field, secondary and backscattered electrons, and high-performance detectors for EDX. Modern electron microscopes, particularly SEM, can operate in low or environmental vacuum, which largely eliminates the problem of electric charge accumulating on the non-conductive surface of the sample.

We have gained considerable experience in analysis of unique metal artifacts at the Kurchatov Institute. Comprehensive studies were carried out in collaboration with several organizations, in particular:

Institute of Archeology of the Russian Academy of Sciences (IA RAS);

State Historical Museum of Russia (SHM);

The Pushkin State Museum of Fine Arts;

V.I. Vernadsky Crimean Federal University (CFU).

We have developed an effective methodological approach based on modern integrated EM methods. This approach is described in this paper.

Procedure for analysis of objects

Studies of ancient metal artifacts typically comprise several stages.

I. Choosing a research strategy. The experimental techniques are chosen at this stage depending on the specific goals of the study and the current state of the given object. It is critical for further analysis to select a sample with a small volume (no more than 1 mm3) for detailed SEM or TEM studies. If this is

not possible, subsequent study has to rely solely on the methods that do not require sample preparation [13—15].

II. Sample preparation. Well-known traditional methods of preparation include making cuts and thin plates for subsequent microanal-ysis, electrochemical or ion etching [12]. Thin sections have to be prepared if there is a pronounced relief on the surface of the sample, which can induce significant errors in determining the elemental composition. Errors may occur both due to changes in the distribution of X-ray density as a function of depth and the energy distribution of backscattered electrons, and to differences in how different elements absorb characteristic X-rays in different regions (or points) of the sample because of geometric surface factors.

Notably, the software currently available for correcting the obtained EDX data assume the surface of the sample to be smooth and strictly perpendicular to the electron probe. In reality, the surface of archaeological sites often does not meet these requirements. Corrosive layers with a pronounced relief generally form on the surfaces of all metal artifacts. These layers can not only considerably distort the results of elemental analysis by the EDX method [16], but also yield incorrect data on surface morphology, although the results of corrosion studies may be useful, for example, for understanding the current state of the archeological artifact [17].

For this reason, it is preferable to prepare cuts or lamellae for studying metal artifacts, with minimal damage to the artifact itself. Focused ion beam using gallium ions or a plasma source with xenon ions is the most suitable method for preparing samples for this purpose [17—21]. This technique makes it possible to etch 1—50 ^m deep indentations with vertical walls, so that the entire depth of the cut can be analyzed taking into account the geometry of the experiment. Focused ion beams are also used for preparing thin (less than 100 nm) lamellae for TEM studies [12]. The error in EDX measurements in non-contact studies of surfaces with a pronounced relief should be calculated by modeling scattering of an electron beam in a solid by the Monte Carlo method, with complete surface morphology given.

IIa. Sample selection. If cultural heritage artifacts are non-transportable or have dimensions exceeding those of the SEM camera, microprobes should be selected for

EM studies with minimal damage to the exhibits.

III. Scanning electron microscopy. The

microscope should include a low vacuum mode for samples with low conducitivity. In case of metal artifacts, the lack of conductivity means that a corrosive layer, contamination or artificial organic coating (for example, restorative) is present on the surface. Using several accelerating voltages then makes it possible to separate the X-ray spectra from the surface layer (corrosion, etc.) and the metal base. Recording diffraction patterns of backscattered electrons allows to obtain data about the structure.

IV. Scanning transmission electron microscopy (STEM). The entire range of modern STEM and EDX methods, including high-resolution STEM and different methods of electron diffraction and microanalysis are used for objects of historical heritage, in particular, for samples made of metals and alloys. STEM studies are typically highly localized. This is especially important for determining the phase composition of coatings of metal samples consisting of different components. For these reason, complex objects should be studied by complementary methods.

Results of studies on metal artifacts

This section describes the studies of several metal artifacts analyzed using the proposed methodology.

Metal finds from the Levadki necropolis (CFU) [15]. The goal of the study was to determine the elemental composition of the alloys and the surface morphology of some metal artifacts from the Levadki necropolis. SEM/EDX methods were used for this purpose; sample preparation was not necessary as measurements were carried out at the same time as restoration works that included cleaning the surface of the artifacts. The results obtained revealed that there was no zinc in the alloys of the given objects. This means that Roman coins made of a copper—zinc alloy, which were a traditional source of copper, were not used to make the artifacts.

Bronze statues from the Pushkin Museum [20]. Bronze statues "John the Baptist" and "Dancing Cupid" from the collections of the Pushkin Museum, attributed to Donatello (circa 1386—1466), were analyzed by SEM/ EDX methods with the purpose of verifying authorship: in particular, the composition of the metal parts was studied. Both statues

were a lot larger than the SEM chamber, so microprobes were taken from several areas of the inner surface from the statue of John the Baptist, and from the cavity near the fastening pin in the foot from the statue of the Dancing Cupid. The microprobes were inserted in epoxy resin and ground. The statue of John the Baptist was found to be made of a copper alloy containing zinc (less than 23 at.%), tin (less than 4.3 at.%) and lead (less than 7.0 at.%), typical for Donatello's bronze sculptures from 1400—1430s (according to literature). The "Dancing Cupid" was made of the alloy most popular in this period, consisting of copper (less than 63 at.%), tin (less than 36 at.%) and lead (less than 1 at.%), which was why it was impossible to clarify its authorship.

Spearhead of Novosvobodnaya culture, dated 3000-2900 BC, from SHM [17]. The goal of the study was to determine the elemental composition and microstructure of the upper layer of the spearhead from the excavations of the barrow near the village of Tsarskaya (the modern name is the village of Novosvobodnaya), from the collection of the archaeological monuments department of the State Historical Museum. We used SEM/TEM to analyze the surface and sections of the base metal and the upper layer. It was found that the tip of the spear was made of a copper-arsenic alloy (copper 95.9 at.%; arsenic 4.1 at.%), and the top layer had a complex layered composition, additionally including sulfur, carbon and oxygen, with chalocite crystals untypical for corrosion of copper alloys found on the surface:

Cu-As / Cu-As-O-C /Cu-As-SO / CuS.

The artifact has this composition because it was buried in a soil with a high sulfur content, contributing to natural transformation of the corrosive copper layer into sulfide minerals.

Effect of cremation on a layer of amalgam gilding in copper artifacts from the 10th century (SHM) [21]. The study presents comparative analysis of morphology and composition of the surface region of different gilded copper artifacts from the 10th century. These were, firstly, artifacts from cremation burials and, secondly, from the cultural layer of the settlement. The first type included the idol from the Chernaya Mogila mound (excavated by D.Ya. Samokvasov in 1872— 1873 near Chernigov) and an openwork belt tip (excavated by V.A. Gorodtsov in 1901

EDX (VI np

2 f 1

/

20 ' _cj

-422 0

Fig. 1. Results of comprehensive EM studies of 12th century engolpion (IA RAS):

photograph (a) of artifact (cut 1 of cross end; black inlay 2 and base metal 3); SEM image (b) of cut made in encolpion obtained using BSE; integral distribution map (c) of chemical elements over cut (arrows indicate Sn-OP (1), Cu (2) and Pb (3) zones); dark-field STEM image (d) of cut made in the zone with black inlay with the given area and distribution maps of chemical elements; ED pattern (e) of black inlay zone (Cu2S in [102] projection)

near the village of Mikhailovskoye, Moscow Region). In the second case, a round fibula, i.e., a pin for fastening garments (excavated by V.V. Murasheva in 1995 in the Gnezdovo Archeological Site, Smolensk Region, Russia).

The artifacts had irregular shapes, so presumably they had been gilded by mercury amalgamation; however, surface studies carried out by different methods found no traces of mercury. It was hypothesized that mercury could be preserved between the base metal (copper) and the gilding layer. To prove this, the depth of the layer composed of the Cu-Au alloy was determined. Since the thickness of the gold layer was more than 50 ^m, mie crosamples were taken in the areas where the gilding was preserved best. Distribution maps of the elements obtained by SEM/EDX also did not reveal any traces of mercury in the artifacts from the cremation burial; however, an increase in porosity could be detected in the surface region containing gold. Similar studies of a sample from the cultural layer (in the fibula) found mercury in the entire gilding layer. Therefore, the absence of mercury in the layer with amalgam gilding was due

to secondary heating of the artifact during cremation, leading to complete evaporation of mercury.

Encolpion cross, 12th century. The artifact was decorated with black inlay. It was found in Suzdal Opol'e and preserved at IA RAS [19].

An encolpion is a pectoral cross worn around the neck, serving as a reliquary. Comprehensive studies of the artifact using SEM/EDX, TEM, STEM and electron diffraction aimed at determining the elemental composition of the base metal (Fig. 1,a, zones 1 and 3) and the black inlay (Fig. 1,a, zone 2), understanding the decorative technique and analyzing the effect of corrosion on the surface layers of the artifact. SEM/EDX data obtained from the surface without preliminary preparation of the sample were insufficient for accurately determining the composition of the black inlay and the corrosion layer, so analysis was carried out for thin plates prepared by a focused ion beam.

It was determined that the base material of the cross is lead-zinc-tin bronze, and the inlay is copper sulfide with lead inclusions. It was then assumed that the inlay was made by melting a copper sulfide powder to fill the grooves forming the image on the surface.

Conclusion

The studies we have carried out prove that the value of electron microscopy as applied to historical metallurgy lies in the potential these methods provide for obtaining detailed and diverse data about the given metal artifacts, allowing to draw new historical conclusions. A great advantage of electron microscopy is that it has minimal impact on exhibits.

Acknowledgment

We express our sincere gratitude to colleagues from the State Historical Museum, the Pushkin Museum of Fine Arts, the Institute of Archeology of the Russian Academy of Sciences and the V.I. Vernadsky Crimean Federal

University for the samples provided and fruitful discussions in the course of our studies, making it possible to optimize the methodological approaches used.

The studies were partially financed by the Russian Foundation for Basic Research (No. 17-29-04129 A), Russian Science Foundation (No. 17-18-01399 B and T), Thematic plan of the National Research Center "Kurcha-tov Institute" (A and E) and the Ministry of Science and Higher Education as part of the State Task of the Federal Research Center for Crystallography and Photonics of the Russian Academy of Sciences (development of the methodological approach).

REFERENCES

1. Ryndina N.V., O periodizatsii drevneyshego metalloobrabatyvayushchego proizvodstva Yugo-Vostochnoy Yevropy (neolit — eneolit) [On periodization of the most ancient metal-working production in the South-East Europe (neolith — eneolith)], Bulletin of Moscow University. 8 (6) (1992) 62-75

2. Selimkhanov I.R., Istoriko-khimicheskiye i analiticheskiye issledovaniya drevnikh predmetov iz mednykh splavov [Historical-chemical and analytical studies of ancient things made of copper alloys], Akad. nauk AzSSR. 93 (1960) 183-185.

3. Chernykh E.N., Drevnyaya metalloobrabotka na yugo-zapade SSSR [The ancient metal-working in the South-West of the USSR], Nauka, Moscow, 1976.

4. Saprykina I.A., Pelgunova L.A., Perspektivy issledovaniya arkheologicheskikh predmetov s pomoshchyu RFA-spektrometrii (na primere M4 Tornado,Bruker, Germaniya) [The prospects for research of archaerological objects using RF-spectrometry (Tornado, Bruker, Germany, as an example)], Fotography. Image. Document. (4 (4)) (2013) 80-87.

5. Hall E.T., Metcalf D.M., Methods of chemical and metallurgical investigations of ancient coinage, The Royal Numismatic Society. (8) (1972). 446.

6. Dill man P., Bellot-Gurlet L., Nenner I., Nanoscience and cultural heritage, Atlantis Press, France, 2016.

7. Vasilyev A.L., Kovalchuk M.V., Yatsishina E.B., Electron microscopy methods in studies of cultural heritage sites, Crystallography Reports. 61 (6) (2016) 845-885.

8. Giumlia-Mair A., Keall E., Stock S., Shugar A., Copper-based implements of a newly

identified culture in Yemen, Journal of Cultural Heritage. 1 (1) (2000) 37-43.

9. Kosolapov A.I., Yestestvennonauchnyye metody v ekspertize proizvedeniy iskusstva [Natural-scientific methods in the expertise of works of art], The State Hermitage Publishing, St. Petersburg, 2010.

10. Jose-Yacaman M., Rendon L., Arenas J., Maya blue paint: an ancient nanostructured material, Science. 273 (5272) (1996) 223 - 225.

11. Pompa P., Martiradonna L., Delia Torre A., et al., Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control, Nature Nanotechnology. 1 (2006) 126 -130.

12. Williams D.B., Carter C.B., Transmission electron microscopy. A textbook for materials science. US, Springer, 2009.

13. Loboda A.Yu., Antipenko A.V., Kolobylina N.N., et al., The technology of manufacturing details of horse equipment in the pre-Scythian time, Proc. of the Internat. Sci. Conf. "Bosporus Readings", Iss. 19, Ed. by Zinko V.N., Zinko E.A., Simferopol, Kerch (2018) 268-274.

14. Trifonov V.A., Shishlina N.I., Loboda A.Yu., et al., The production of thin-walled jointless gold beads from the Maikop culture megalithic tomb of the early bronze age at Tsarskaya in the North Caucasus: results of analytical and experimental research, Archaeometry. 61 (1) (2019) 117-130.

15. Antipenko A.V., Kolobylina N.N., Loboda A.U., et al., Investigations of the chemical composition of the metal finds from the Levadki necropolis, Crystallography Reports. 63 (4) (2018). 699-704.

16. Loboda A.Yu., Tereschenko E.Yu., Antipenko A.V., et al., Local and integral techniques in metal compositional analysis of archeological objects

with surface corrosion layers and small sample quantities, The Volga River Region Archaelogy. 2018.(4 (26)) (2018) 203-221.

17. Loboda A.Y., Kolobylina N.N., Veligzhanin A.A., et al., Complex study of the spearhead superficial crust from burial mound No. 1 near Novosvobodnaya village, Crystallography Reports. 63 (2) (2018) 295-301.

18. Kolobylina N.N., Greshnikov E.A., Vasilyev A.L., et al., Electron microscopy study of an Old Russian (XII century) encolpion cross with black inlay, Crystallography Reports. 62 (4) (2017) 529-536.

19. Greshnikov E.A., Tereschenko E.Yu., Zaytseva I.E., et al., Drevnerusskiy krest-telnik iz selishcha Syvorotskoye-1 v Suzdalskom Opoliye (opyt kompleksnogo tekhnologicheskogo issledovaniya) [Old Russian cross-vest from

Received 28.06.2019, accepted 09.07.2019.

Suvorotskoye-1 settlement in the Suzdal Opoliye (The experience of complex technological study), Transactions of the 5th (21) All-Russian Archeology Congress in Barnaul — Belokurikha. The collection of scientific papers in 3 volumes, Vol. 3 (2017) 23 -27.

20. Glazkov V.P., Kovalenko Ye.S., Murashev M.M., et al., Study of bronze statues "John the Baptist" and "Dancing Cupid" from the collections of the Pushkin State Museum, Crystallography Reports. 63 (4) (2018) 692-698.

21. Loboda A.Y., Kolobylina N.N., Tereshchenko E.Y., et al., Study of the Gilding Technology of the "Idol" from the 10th Century Mound "Chernaya Mogila" ("Black Grave"). Crystallography Reports. 63 (6) (2018) 10341042.

THE AUTHORS

PRESNIAKOVA Natalia N.

National Research Centre "Kurchatov Institute "

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1, Akademika Kurchatova Sq., Moscow, 123182, Russian Federation

kolobylina@gmail.com

VASILIEV Alexander L.

National Research Centre "Kurchatov Institute ",

Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences

1, Akademika Kurchatova Sq., Moscow, 123182, Russian Federation 59 Leninskiy Ave., Moscow, 119333, Russian Federation a.vasiliev56@gmail.com

TERESCHENKO Elena Yu.

National Research Centre "Kurchatov Institute ",

Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences

1 Akademika Kurchatova Sq., Moscow, 123182, Russian Federation 59 Leninskiy Pr., Moscow, 119333, Russian Federation elenatereschenko@yandex.ru

YATSISHINA Ekaterina B.

National Research Centre "Kurchatov Institute "

1, Akademika Kurchatova Sq., Moscow, 123182, Russian Federation

Yatsishina EB@nrcki.ru

СПИСОК ЛИТЕРАТУРЫ

1. Рындина Н.В. О периодизации древнейшего металлообрабатывающего производства Юго-Восточной Европы (неолит — энеолит) // Вестник Московского университета. 1992. T. 8. № 6. С. 62—75.

2. Селимханов И.Р. Историко-химические и аналитические исследования древних предметов из медных сплавов // Академия наук АзССР. 1960. № 93. С. 183-185.

3. Черных Е.Н. Древняя металлообработка на юго-западе СССР. М.: Наука, 304 .1976 с.

4. Сапрыкина И.А., Пельгунова Л.А. Перспективы исследования археологических предметов с помощью РФА-спектрометрии (на примере M4 Tornado, Bruker, Германия) // Фотография. Изображение. Документ. 2013. № 4 (4). С. 80-87.

5. Hall E.T., Metcalf D.M. Methods of chemical and metallurgical investigations of ancient coinage // The Royal Numismatic Society. 1972. No. 8. P. 446.

6. Dillman P., Bellot-Gurlet L., Nenner I. (Eds.) Nanoscience and cultural heritage. France: Atlantis Press, 2016. 321 p.

7. Васильев А.Л., Ковальчук М.В., Яцишина Е.Б. Исследование объектов культурного наследия методами электронной микроскопии // Кристаллография. 2016. Т. 61. № 6. С. 845 -857.

8. Giumlia-Mair A., Keall E., Stock S., Shugar

A. Copper-based implements of a newly identified culture in Yemen // Journal of Cultural Heritage. 2000. Vol. 1. No. 1. Pp. 37-43.

9. Косолапов А. И. Естественнонаучные методы в экспертизе произведений искусства. СПб.: Изд-во Государственного Эрмитажа, 2010. 170 с.

10. Jose-Yacaman М., Rendon L., Arenas J., Pushe M.C.S. Maya blue paint: an ancient nano-structured material // Science. 1996. Vol. 273. No. 5272. Pp. 223 -225.

11. Pompa P., Martiradonna L., Della Torre A., Della Sala F., Manna L., De Vittorio M., Cal-abi F., Cingolani R., Rinaldi R. Metal-enhanced fluorescence of colloidal nanocrystals with na-noscale control // Nature Nanotechnology. 2006. Vol. 1. Pp. 126 -130.

12. Williams D.B., Carter C.B. Transmission electron microscopy. A textbook for materials science. USA: Springer, 2009. 832 p.

13. Лобода А.Ю., Антипенко А.В., Колобылина Н.Н., Терещенко Е.Ю., Яцишина Е.Б. Технология изготовления деталей конского снаряжения в предскифское время //

Матер. Междунар. научн. конф. «Боспорские чтения». Вып. 19. Ред.-сост. Зинько В.Н., Зинько Е.А. Симферополь, Керчь, 2018. С. 268-274.

14. Trifonov V.A., Shishlina N.I., Loboda A.Yu., Kolobylina N.N., Tereschenko E.Yu., Yatsishina

E.B. The production of thin-walled jointless gold beads from the Maikop culture megalithic tomb of the early bronze age at Tsarskaya in the North Caucasus: results of analytical and experimental research //Archaeometry. 2019. Vol. 61. No. 1. Pp. 117 -130.

15. Антипенко А.В., Колобылина Н.Н., Лобода А.Ю., Терещенко Е.Ю., Мульд С.А., Смекалова Т.Н., Яцишина Е.Б. Исследование химического состава металлических изделий из могильника Левадки // Кристаллография. 2018. Т. 63. № 4. С. 677-682.

16. Лобода А.Ю., Терещенко Е.Ю., Антипенко А.В., Ретивов В.М., Пресняков М.Ю., Колобылина Н.Н., Кондратьев О.А., Шишлина Н.И., Яцишина Е.Б., Кашкаров П.К. Методы определения элементного состава металла археологических объектов при коррозионных наслоениях и в ограниченных условиях пробоотбора материала // Поволжская археология. 26) 4 № .2018). С. 221-203.

17. Лобода А.Ю., Колобылина Н.Н., Велигжанин А.А., Зубавичус Я.В., Терещенко Е.Ю., Шишлина Н.И., Яцишина Е.Б., Кашкаров П.К. Комплексное исследование слоя покрытия наконечника копья из кургана № 1 могильника у станицы Новосвободная // Кристаллография. 2018. Т. 63. № 2. С. 320327.

18. Колобылина Н.Н., Грешников Э.А., Васильев А.Л., Терещенко Е.Ю., Зайцева И.Е., Макаров Н.А., Кашкаров П.К., Яцишина Е.Б., Ковальчук М.В. Электронно-микроскопические исследования древнерусского декорированного чернью креста-энколпиона XII века // Кристаллография. 2017. T. 62. № 4. С. 543550.

19. Грешников Э.А., Терещенко Е.Ю., Зайцева И.Е., Велигжанин А.А., Дороватовский П.В., Демкив А.А., Шушунов М.Н., Колобылина Н.Н., Лобода А.Ю., Яцишина Е.Б. Древнерусский крест-тельник из селища Суворотское1- в Суздальском Ополье (опыт комплексного технологического исследования) // Труды V (XXI) Всероссийского археологического съезда в Барнауле - Белокурихе. Сборник научных статей в 3 тт. Барнаул: Изд-во Алт.

ун-та, 2017. Т. 3. С. 23 -27 .

20. Глазков В. П., Коваленко Е.С., Мурашев М.М., Подурец К.М., Велигжанин А.А., Колобылина Н.Н., Расторгуев В.А., Тулубенский М.Г., Терещенко Е.Ю., Кашо каров П.К., Яцишина Е.Б., Ковальчук М.В. Исследование бронзовых статуй «Иоанн Креститель» и «Танцующий Амур» из фондов ГМИИ им. А.С. Пушкина //

Кристаллография. 2018. Т. 63. № 4. С. 670 - 676.

21. Лобода А.Ю., Колобылина Н.Н., Терещенко Е.Ю., Мурашева В.В., Шевцов А.О., Васильев А.Л., Ретивов В.М., Кашкаров П.К., Яцишина Е.Б., Ковальчук М.В. Исследование технологии золочения «идола» из кургана «Черная могила» (Х век) // Кристаллография. 2018. Т. 63. № 6. С. 992-1000.

Статья поступила в редакцию 28.06.2019, принята к публикации 09.07.2019 .

СВЕДЕНИЯ ОБ АВТОРАХ

ПРЕСНЯКОВА Наталья Николаевна — инженер-исследователь Национального исследовательского центра (НИЦ) «Курчатовский институт».

123182, Российская Федерация, г. Москва, пл. Акад. Курчатова, 1 kolobylina@gmail.com

ВАСИЛЬЕВ Александр Леонидович — кандидат физико-математических наук, ведущий научный сотрудник НИЦ «Курчатовский институт», начальник лаборатории электронной микроскопии Института кристаллографии им. А.В. Шубникова (ФНИЦ «Кристаллография и фотоника» РАН).

123182, Российская Федерация, г. Москва, пл. Акад. Курчатова, 1; 119333, Российская Федерация, г. Москва, Ленинский проспект, 59 a.vasiliev56@gmail.com

ТЕРЕЩЕНКО Елена Юрьевна — кандидат физико-математических наук, заместитель начальника лаборатории естественнонаучных методов в гуманитарных науках НИЦ «Курчатовский институт», старший научный сотрудник Института кристаллографии им. А.В. Шубникова (ФНИЦ «Кристаллография и фотоника» РАН).

123182, Российская Федерация, г. Москва, пл. Акад. Курчатова, 1; 119333, Российская Федерация, г. Москва, Ленинский проспект, 59 elenatereschenko@yandex.ru

ЯЦИШИНА Екатерина Борисовна — кандидат философских наук, начальник лаборатории естественнонаучных методов в гуманитарных науках, заместитель директора по научной работе НИЦ «Курчатовский институт».

123182, Российская Федерация, г. Москва, пл. Акад. Курчатова, 1 Yatsishina EB@nrcki.ru

© Peter the Great St. Petersburg Polytechnic University, 2019

i Надоели баннеры? Вы всегда можете отключить рекламу.