Научная статья на тему 'Особенности формирования структуры термостойкого наплавленного металла на основе Ni3Al'

Особенности формирования структуры термостойкого наплавленного металла на основе Ni3Al Текст научной статьи по специальности «Технологии материалов»

CC BY
99
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НАПЛАВЛЕННЫЙ МЕТАЛЛ / СКОРОСТЬ НАПЛАВКИ / КОМПОЗИЦИОННАЯ ПРОВОЛОКА / ТЕРМИЧЕСКИЙ ЦИКЛ / ГРАДИЕНТ ТЕМПЕРАТУРЫ / ФРОНТ КРИСТАЛЛИЗАЦИИ / СТРУКТУРА / МЕЖДЕНТРИТНОЕ РАССТОЯНИЕ / ТЕРМОСТОЙКОСТЬ / ЖАРОСТОЙКОСТЬ / WELD METAL / WELDING SPEED / COMPOSITE WIRE / HEAT CYCLE / TEMPERATURE GRADIENT / SOLIDIFICATION FRONT / STRUCTURE / INDERDENDRITIC DISTANCE / HEAT RESISTANCE / SCALING / RESISTANCE

Аннотация научной статьи по технологиям материалов, автор научной работы — Зорин И.В., Соколов Г.Н., Лысак В.И., Дубцов Ю.Н., Денисевич Д.С.

Исследованы особенности формирования структуры металла на основе легированного алюминида Ni3Al, наплавленного при использовании различных скоростей дуговой наплавки композиционной проволокой. Экспериментально установлено, что качественное формирование наплавленного металла в условиях термического цикла процесса дуговой наплавки обеспечивается в диапазоне значений ее погонной энергии q = 8,5…33 кДж/см. Энергетическая составляющая величины q ограничена диапазоном сварочного тока 280-300 А и напряжения на дуге 25-27 В, что обеспечивает близкое к однородному плавление компонентов наполнителя КП, содержащих в своем составе легкои тугоплавкие элементы и имеющих наибольшие значения коэффициентов их перехода в наплавленный металл. Показано, что в условиях термического цикла наплавки ее скорость следует ограничивать в пределах 16-18 м/ч с целью предотвращения образования избыточных тпу-фаз. Формирующаяся в этом случае структура наплавленного металла характеризуется достаточно высокой дисперсностью двух основных ее составляющих (γ + γ')-твердых растворов, образующихся с участием эвтектической и перитектической реакций. Установлено, что повышенная термостойкость легированного ультрадисперсными частицами карбида WC наплавленного металла достигается вследствие меньшей его склонности к огрублению и укрупнению частиц γ'э-фазы. Выполненная оценка показателя жаростойкости K (соотношение массы образца после испытания и исходной массы образца) показала, что исследуемый тип наплавленного металла более эффективно сопротивляется химическому разрушению поверхности при высокотемпературных нагревах по сравнению со сплавами, содержащими в своем химическом составе хром в большом количестве (20 и более мас. %).

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Зорин И.В., Соколов Г.Н., Лысак В.И., Дубцов Ю.Н., Денисевич Д.С.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Features of structure formation of heat-resistant weld metal based on Ni3Al

Features of structure formation of heat-resistant weld metal based on Ni3Al, deposited with different arc welding speeds with composite wire, were investigated. It was deduced from experiments, that the high-quality formation of weld metal under the condition of arc surfacing heat cycle is provided with range of its rate of energy input q = 8,5-33 kJ/cm. The energy component of value q is limited by the range of welding current I = 280-300 A and arc voltage U = 25-27 V, which provides close to the homogeneous melting of the components of composite wire contained the low-melting and refractory components and the largest values of their recovery effervesces in the weld metal. It was shown that under the conditions of surfacing heat cycle its speed should be limited to 16-18 m/h in order to prevent the formation of in excess t.d.p. phases. The weld metal structure is characterized by high enough dispersion of its two base components γ+γ' the solid solutions, forming with eutectic and peritectic reaction participation. It was identified that the enhanced heat resistance of weld metal alloyed by ultrafine particles of carbide WC is reached due to its less tendency to the particle coarsening of γ' eutectic phase. Estimation of the heat resistance index K (proportion between sample weight after test and original specimen weight) showed, that investigated weld metal type more efficiently resists to chemical destruction of the surface during high temperature heating compared with alloys containing large amount of chromium (20 and more % w.t).

Текст научной работы на тему «Особенности формирования структуры термостойкого наплавленного металла на основе Ni3Al»

Зорин И.В., Соколов Г.Н., Лысак В.И., Дубцов Ю.Н., Денисевич Д.С., Фастов С.А. Особенности формирования структуры термостойкого наплавленного металла на основе №3А1 // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. - 2019. - Т. 21, № 1. -С. 63-70. БО1: 10.15593/2224-9877/2019.1.09

Zorin I.V., Sokolov G.N., Lysak V.I., Dubcov U.N., Denisevich D.S., Fastov S.A. Features of structure formation of heat-resistant weld metal based on Ni3Al. Bulletin PNRPU. Mechanical engineering, materials science, 2019, vol. 21, no. 1, pp. 63-70. DOI: 10.15593/2224-9877/2019.1.09

ВЕСТНИК ПНИПУ. Машиностроение, материаловедение

Т. 21, № 1, 2019 Bulletin PNRPU. Mechanical engineering, materials science

http://vestnik.pstu.ru/mm/about/inf/

БО1: 10.15593/2224-9877/2019.1.09 УДК 621.791.92

И.В. Зорин, Г.Н. Соколов, В.И. Лысак, Ю.Н. Дубцов, Д.С. Денисевич, С.А. Фастов

Волгоградский государственный технический университет, Волгоград, Россия

ОСОБЕННОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ ТЕРМОСТОЙКОГО НАПЛАВЛЕННОГО МЕТАЛЛА НА ОСНОВЕ NiзAl

Исследованы особенности формирования структуры металла на основе легированного алюминида N^1, наплавленного при использовании различных скоростей дуговой наплавки композиционной проволокой. Экспериментально установлено, что качественное формирование наплавленного металла в условиях термического цикла процесса дуговой наплавки обеспечивается в диапазоне значений ее погонной энергии q = 8,5...33 кДж/см. Энергетическая составляющая величины q ограничена диапазоном сварочного тока 280-300 А и напряжения на дуге 25-27 В, что обеспечивает близкое к однородному плавление компонентов наполнителя КП, содержащих в своем составе легко- и тугоплавкие элементы и имеющих наибольшие значения коэффициентов их перехода в наплавленный металл. Показано, что в условиях термического цикла наплавки ее скорость следует ограничивать в пределах 16-18 м/ч с целью предотвращения образования избыточных ТПУ-фаз. Формирующаяся в этом случае структура наплавленного металла характеризуется достаточно высокой дисперсностью двух основных ее составляющих - (у + у')-твердых растворов, образующихся с участием эвтектической и перитектической реакций. Установлено, что повышенная термостойкость легированного ультрадисперсными частицами карбида WC наплавленного металла достигается вследствие меньшей его склонности к огрублению и укрупнению частиц у'э-фазы. Выполненная оценка показателя жаростойкости К (соотношение массы образца после испытания и исходной массы образца) показала, что исследуемый тип наплавленного металла более эффективно сопротивляется химическому разрушению поверхности при высокотемпературных нагревах по сравнению со сплавами, содержащими в своем химическом составе хром в большом количестве (20 и более мас. %).

Ключевые слова: наплавленный металл, скорость наплавки, композиционная проволока, термический цикл, градиент температуры, фронт кристаллизации, структура, междентритное расстояние, термостойкость, жаростойкость.

I.V. Zorin, G.N. Sokolov, V.I. Lysak, U.N. Dubcov, D.S. Denisevich, S.A. Fastov

Volgograd State Technical University, Volgograd, Russian Federation

FEATURES OF STRUCTURE FORMATION OF HEAT-RESISTANT WELD METAL BASED ON Ni3Al

Features of structure formation of heat-resistant weld metal based on Ni3Al, deposited with different arc welding speeds with composite wire, were investigated. It was deduced from experiments, that the high-quality formation of weld metal under the condition of arc surfacing heat cycle is provided with range of its rate of energy input q = 8,5-33 kJ/cm. The energy component of value q is limited by the range of welding current I = 280-300 A and arc voltage U = 25-27 V, which provides close to the homogeneous melting of the components of composite wire contained the low-melting and refractory components and the largest values of their recovery effervesces in the weld metal. It was shown that under the conditions of surfacing heat cycle its speed should be limited to 16-18 m/h in order to prevent the formation of in excess t.d.p. phases. The weld metal structure is characterized by high enough dispersion of its two base components - y+y' the solid solutions, forming with eutectic and peritectic reaction participation. It was identified that the enhanced heat resistance of weld metal alloyed by ultrafine particles of carbide WC is reached due to its less tendency to the particle coarsening of y' eutectic phase. Estimation of the heat resistance index K (proportion between sample weight after test and original specimen weight) showed, that investigated weld metal type more efficiently resists to chemical destruction of the surface during high temperature heating compared with alloys containing large amount of chromium (20 and more % w.t).

Keywords: weld metal, welding speed, composite wire, heat cycle, temperature gradient, solidification front, structure, inderdendritic distance, heat resistance, scaling, resistance.

Введение

Проблема наплавки сплавов, предназначенных для эксплуатации в условиях пластической деформации при повышенных до 1000-1200 °С значениях температуры, неотъемлемо связана с нейтрализацией влияния движущих сил процессов разупрочнения, развивающихся в металле при циклическом термосиловом воздействии [1]. Результаты проведенных в РФ и за рубежом исследований показывают, что литейные сплавы с (у' + у)-струк-турой на основе интерметаллида №3А1 имеют наилучшие показатели сопротивления процессу разупрочнения под влиянием термосилового воздействия [2, 4].

В настоящее время наибольшее внимание исследователей материалов на основе №3А1 с литой структурой направлено на оптимизацию содержания отдельных тугоплавких легирующих элементов и изучение их влияния на параметры процесса высокоградиентной направленной кристаллизации (ВГНК) [5-7]. Введение редкоземельных металлов, имеющих низкую растворимость в (у' + у)-твердых растворах, способствует как снижению поверхностного натяжения металлического расплава, так и зарождению центров кристаллизации в нем, что способствует диспергированию у'-фазы [8, 9]. Как показывают результаты наших исследований [10] и работы [11], подобное влияние на структуру наплавленного металла оказывают ультрадисперсные тугоплавкие химические соединения (!Ш, ИС^ WC) при вводе их в расплав сварочной ванны. Однако процессы формирования дендритной структуры наплавленного металла с многокомпонентной системой легирования под влиянием таких частиц принципиально отличаются от таковых, протекающих при литье с ВГНК. Объясняется это тем, что при наплавке скорость кристаллизации металла в сварочной ванне и градиент температуры на фронте кристаллизации связаны между собой, зависят от режима электродуговой наплавки и не поддаются раздельному регулированию. Особенно остро данная проблема проявляется при наплавке сплавов, структурно чувствительных к большим скоростям нагрева и охлаждения, которые в целом характерны для высокоэнергетических технологий.

В связи с этим целью работы является выявление особенностей формирования структурно-фазового состава наплавленного металла на основе легированного №3А1.

Материалы и методы исследований

Для наплавки использовали композиционные проволоки (КП) диаметром 3 мм, изготовленные совместным механизированным волочением через

твердосплавную фильеру оболочки проволоки из никелевой ленты и наполнителя, компонентами которого служили две металлические проволоки из алюминия, вольфрама, молибдена, а также смесь из порошков тантала и хрома [12]. В процессе изготовления контролировали отношение толщины никелевой оболочки к ее наружному диаметру, которое является функцией, зависящей от стехиомет-рического соотношения между массами никеля и алюминия (Ni/Al = 6,52), входящими в интерметаллическое соединение Ni3Al. Химический состав КП обеспечивал наплавленный металл (мас. %): 0,3-0,4 C; 3,6-4,0 W; 2,5-3,0 Mo; 3,8-4,2 Cr; 2,0-2,4 Ta; 10,5-11,5 Al; Ni - остальное. Также использовали КП, на внутренней стороне оболочки которой был расположен слой ультрадисперсного (30-90 нм) порошка WC (0,2-0,4 мас. %).

Наплавку вели на постоянном токе («+» на электродной КП) с использованием сварочного автомата А2 MiniMaster (ESAB) и тиристорного источника питания LAF 1001 (ESAB). Вылет проволок относительно контактного мундштука устанавливали в диапазоне 25-27 мм. Для защиты реакционной зоны наплавки использовали аргон, расход которого составлял 30-35 л/мин.

Структуру и свойства наплавленного металла изучали после его термической обработки, выполненной с целью уменьшения остаточных сварочных напряжений по режиму: выдержка в течение 1 ч при температуре 1000 °С, охлаждение на воздухе. Использовали методы оптической (Zeiss Axsiovert 40 MAT) и сканирующей электронной микроскопии на двухлучевой системе Versa 3D.

Для оценки температурного градиента G на фронте кристаллизации принимали, что максимальный теплоотвод направлен вдоль оси валика наплавленного металла. Величину G рассчитывали с учетом данных работ [13, 14]:

AT

G =■

d

(1)

где ДГ - разница между максимальной температурой Ттах сварочной ванны и температурой ликвидус Гь й - расстояние между положением в расплаве сварочной ванны Гтах и точкой вершины дендрита, находящейся на криволинейной поверхности фронта кристаллизации (рис. 1, а). Принимали, что положение такой точки совпадало с условной точкой, в которой происходило контактирование спая термоэлектрода с поверхностью движущегося со скоростью наплавки фронта кристаллизации. Величину й определяли в продольном сечении на макрошлифе кратера сварочной ванны (см. рис. 1, а), полученного после принудительного удаления расплава методом опрокидывания [15].

Изменение температуры в процессе наплавки регистрировали с помощью вольфрам-рениевых термоэлектродов (ВР 5/20), установленных соосно со сварочной ванной по ходу ее движения и подключенных к аналого-цифровому преобразователю LA-20USB. Визуализацию сигнала (термоЭДС, эВ) с преобразователя в виде термического цикла осуществляли в программе PowerGraph 3.3 Professional (номер лицензии HL 1553513233).

Результаты и их обсуждение

Экспериментально установлено, что качественное формирование наплавленного металла в условиях термического цикла процесса дуговой наплавки обеспечивается в диапазоне значений ее погонной энергии q = 8,5...33 кДж/см. Энергетическая составляющая величины q ограничена диапазоном сварочного тока 280-300 А и напряжения на дуге 25-27 В, что обеспечивает близкое к однородному плавление компонентов наполнителя КП, содержащих в своем составе легко- и тугоплавкие элементы и имеющих набольшие значения коэффициентов перехода в наплавленный металл.

Исследованием макросечения кратера сварочной ванны, полученного после принудительного удаления расплава в процессе наплавки, установлено, что направленно ориентированные кристаллиты (рис. 1, б) формируются в наплавленном металле на участке наибольшего теплоотвода в основной металл. Высота этого участка в зависимости от параметров режима наплавки и скорости

движения теплового источника варьируется в диапазоне от 1/3 до 2/3 высоты наплавленного металла. С уменьшением градиента температуры на фронте кристаллизации наследование растущими кристаллитами кристаллографической ориентации прекращается и структура приобретает поликристаллическое строение.

Выявлено, что на формирование структурно-фазового состава наплавленного металла преимущественное влияние оказывают скорость движения теплового источника (скорость наплавки) Ун и величина формирующегося под ее воздействием температурного градиента О на границе фронта кристаллизации. Повышение скорости наплавки до 30-33 м/ч обусловливает достижение градиента значений температуры О на фронте кристаллизации металла до 280 °С/см. В таких условиях формируется гетерогенная (у' + у)-структура наплавленного металла с большей степенью дисперсности, в которой доля области, занимаемой твердым раствором (у + у'п), образовавшимся с участием пе-ритектической реакции, превышает долю области, содержащей (у + у'э)-твердый раствор (рис. 2, а), образовавшийся с участием эвтектической реакции. Также в структуре металла фиксируются многочисленные интерметаллидные фазы, преимущественно содержащие в своем составе тугоплавкие легирующие элементы - "" Мо, Та, не успевшие раствориться и легировать (у' + у)-твердые растворы. По этой причине прочностные характеристики металла при повышенных до 1100 °С значений температуры уменьшаются.

я-ркивг^

б

Рис. 1. Характерная форма фронта кристаллизации (продольное сечение) при наплавке композиционной проволокой (а) и характерные структуры в различных участках наплавленного металла (б): 1 - наплавленный металл; 2 - основной металл; 3 - точка на фронте кристаллизации сварочной ванны в ее осесимметричном сечении, соответствующая положению спая термоэлектрода; 4 - условная точка положения максимальной температуры в расплаве сварочной

ванны

структурных составляющих занимают промежуточное положение между таковыми параметрами, полученными при использовании значений Ун 30 и 9 м/ч.

Рис. 3. Термические циклы в процессе наплавки со скоростью 9 (1), 18 (2) и 33 (5) м/ч: ?р1, ?р2, ?р3 - время контактирования спая термопары с расплавом сварочной ванны; Дг - время, за которое температура расплава изменяется от Ттах до Ть соответствует величине d на макросечении кратера сварочной ванны рис. 1

б

Рис. 2. Изменение соотношения областей, занимаемых (Y + У'п)_ и (у + Y'э)-твердыми растворами в структурах металла, полученных при наплавке со скоростью 33 м/ч (а) и 9 м/ч (б)

В случае использования малых скоростей наплавки (<9 м/ч) замедленная скорость охлаждения металла вблизи границы фронта кристаллизации (рис. 3) способствует созданию наилучших термических условий для твердорастворного упрочнения (Y + Yn)- и (y + /э)-областей тугоплавкими легирующими элементами. Легирующие элементы в этом случае равномерно распределены в твердом растворе и не образуют избыточных интерметал-лидных фаз (рис. 2, б). Однако вследствие того, что расчетное значение температурного градиента на фронте кристаллизации не превышает 100 °С/см, параметры структурных составляющих (толщина дендритов b и расстояние между ними s) повышены по сравнению (рис. 4) с таковыми, сформированными при G > 150 °С/см. Повышение величины Ун до значений 30-33 м/ч обусловливает монотонное уменьшение параметров b и s в структуре (см. рис. 4, а, б), причем более интенсивно оно происходит в периферийных участках валика наплавленного металла, сформированных при повышенных градиентах температуры.

Структура металла, сформированная при скоростях наплавки в интервале 16-18 м/ч, не содержит избыточные топологические плотноупакованные фазы (ТПУ-фазы), а соотношение между областями, занимаемыми (y + Yn)- и (y + /э)-твердыми растворами в структуре, стремится к единице. Параметры b и s

Рис. 4. Схема, поясняющая взаимосвязь параметров кристаллизации (а) и зависимости толщины дендритов (б) и междендритного расстояния (в) от скорости движения теплового источника Ун: - в центральной части наплавленного металла и - в периферийном участке

в

Анализ распределения микротвердости (на образцах, наплавленных при Ун = 18 м/ч) показал, что область структуры, занимаемая (у + у'п)-твердым раствором, характеризуется меньшими значениями И^100 (3900-4300 МПа), что позволяет отнести данную область к относительно вязкой структурной составляющей по сравнению с областью, содержащей (у + у'э)-твердый раствор (Я^100 = = 5800.. .6200 МПа).

Результатами испытаний с использованием методики [10], моделирующих образование трещин термической усталости в наплавленном металле, установлено, что значительное повышение стойкости наплавленного металла на основе №3А1 к трещино-образованию (более 70 теплосмен), по сравнению с промышленным сплавом 02Х15Н65М16В4 (38 те-плосмен), наблюдается после его легирования до 0,2-0,4 мас. % ультрадисперсными частицами ""С. В этом случае зарождение и развитие трещины происходит менее интенсивно, ее ширина раскрытия уменьшается в 4-6 раз (рис. 5). Установлено, что основное влияние на распространение трещины оказывают огрубление и частичная коагуляция частиц у'э-фазы (см. рис. 5, в). С увеличением количества циклов теплосмен развитие этих процессов обусловливает объединение отдельных частиц между собой и с соседними участками металла из области

у-твердого раствора. В результате создаются условия для непрерывного продвижения трещины по структуре металла. Легированный ультрадисперсными частицами металл показал меньшую склонность к огрублению и укрупнению частиц у'э-фазы, что связано с повышенным содержанием в них малоподвижных атомов тугоплавких элементов "" Мо и Та, замедляющих разупрочнение у'-фазы.

Выполненная оценка показателя жаростойкости К (соотношение массы образца после испытания и исходной массы образца) показала (рис. 6), что исследуемый тип наплавленного металла более эффективно сопротивляется химическому разрушению поверхности при высокотемпературных нагревах по сравнению со сплавами, содержащими в своем химическом составе хром в количестве 20 и более мас. %. Повышенная стойкость обусловлена формированием на поверхности наплавленного металла в процессе его термической обработки тонкого (менее 50 мкм) слоя оксида сложного химического состава (А1, Сг, Та, Мо), имеющего наилучшее адгезионное взаимодействие с наплавленным металлом на основе М3А1, а также наличием в оксиде термодинамически стабильных самозалечивающихся оксидов хрома и способствующих выделению субдисперсных хромитов: №А11д Сг0,14 и СгА1и9№0,04.

шшт Ж0Жтт

ШшШ

KSPT-'ib

ш

ВДчхРак/ч!--ft _

250 мкм

а б в

Рис. 5. Характер развития и размер трещин в металле (поперечное сечение), наплавленном с использованием штатной КП (а) и КП, содержащей порошок "С (б) после N = 160 циклов теплосмен, в - вид у'э-фазы после 160 циклов теплосмен. Vн = 18 м/ч. Теплосмена: нагрев до температуры 1200 °С и последующее водяное охлаждение

до температуры 50 °С со скоростью 140-150 °С/с

[рирост массы в виде плотного оксидного cj

| Потеря массы на отсл< >ение с бразовавшегося оксида) |

\ \

---|---1---|---|-----1

02Х29Н4 Х20Н77 180Х11Н62МЗБ2 10Х22Н18 10Х15Н65Г6Б 20Х4Н75МЗВ4Ю11

(ЕвАВ ОК 92.26 (на основе №3А1) жаростойкий до 1200 °С)

Рис. 6. Сравнительный анализ показателя жаростойкости К наплавленного металла на основе №3А1 и промышленных сплавов. Температура 1000 °С, длительность выдержки 184 ч

шщф^Х

20 мкм

шш шш шш

2 ч, 1100 °С

2 ч, 1200 °С

4 ч, 1100 °С

20 мкм

4 ч, 1200 °С

Рис. 7. Влияние температуры и длительности отжига на структуру (термическую стабильность) наплавленного металла на основе №3Л!

Исследование влияния высокотемпературных отжигов с варьированием длительности выдержки от 1 до 4 ч показало, что структура исследуемого металла сохраняет термическую стабильность (рис. 7). Полученные данные следует рассматривать как результат формирования в процессе высокоградиентной кристаллизации гетерогенной структуры, содержащей в своем объеме достаточное долевое участие относительно вязкой структурной составляющей - у-твердого раствора, ре-лаксирующего термические напряжения.

Выводы:

1. Вследствие повышенной структурной чувствительности сплава на основе легированного Ni3Al к термическому циклу аргонодуговой наплавки ее скорость следует ограничивать в пределах 16-18 м/ч. При этом избыточные ТПУ-фазы практически не образуются, а небольшие размеры структурных составляющих (толщина дендритов не более 8 мкм и расстояние между их осями не более 1,1 мкм) способствуют повышению прочностных свойств металла.

2. Микролегирование ультрадисперсными тугоплавкими частицами карбида вольфрама является одним из возможных способов повышения сопротивления наплавленного металла термоусталостным повреждениям при температуре до 1200 °С.

Работа выполнена при финансовой поддержке РФФИ (грант № 18-41-343007).

Список литературы

1. Соколов Г.Н., Лысак В.И. Наплавка износостойких сплавов на прессовые штампы и инструмент для горячего деформирования сталей: монография ВолгГТУ; РПК «Политехник». - Волгоград, 2005. - 284 с.

2. Бунтушкин В.П., Каблов Е.Н., Базылева О.А. Механические и эксплуатационные свойства литейного жаропрочного сплава на основе интерметаллида Ni3Al // Металлы. - 1995. - № 3. - С. 70-73.

3. Исследование микроструктуры и фазового состава интерметаллидного сплава на основе Ni3Al с кристаллографической ориентацией [001] / О.А. Базылева, Э.Г. Аргинбаева, Д.В. Зайцев, Т.В. Фесенко // Металловедение и термическая обработка металлов. - 2015. -№ 3. - С. 13-17.

4. Tsao T.-K., Yeh, A.-C. The thermal stability and strength of highly alloyed Ni3Al // Materials Transactions. -2015. - Vol. 56, iss. 11. - P. 1905-1910.

5. Развитие процесса направленной кристаллизации лопаток ГТД из жаропрочных и интерметаллидных сплавов с монокристаллической структурой / Е.Н. Каблов, Ю.А. Бондаренко, А.Б. Ечин [и др.] // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия: Машиностроение. - 2011. -№ SP2. - С. 20-25.

6. Effects of solidification parameters on microstructures of Ni3Al based single crystal / Li Hang, Zheng Lijing, Zhang Huarui [et al.] // Procedia Engineering. - 2012. -Vol. 27. - P. 1187-1192.

7. Effects of Mo and Ta in Ni3Al based single crystal alloys on their stress-rupture properties at intermediate temperatures / W. Li, H. Li, L. Liu, Y. Pei, Y. Ma, S. Li, S. Gong // Materials Research Innovations. - 2014. -Vol. 18. - P. S4380-S4484.

8. Влияние направленной кристаллизации на структуру и свойства монокристаллов сплава на основе Ni3Al, легированного Cr, Mo, W, Ti, Co, Re и РЗМ / К.Б. Поварова, Ю.А. Бондаренко, А.А. Дроздов, О.А. Базылева // Металлы. - 2015. - № 1. - С. 50-58.

9. Структура и свойства интерметаллидного сплава на основе алюминида никеля, микролегированного редкоземельными металлами / О.А. Базылева, Э.Г. Аргинбаева, А.В. Шестаков, Т.В. Фесенко // Вопросы материаловедения. - 2018. - № 1(93). - С. 35-49.

10. Феноменологическая модель формирования центров кристаллизации в металлическом расплаве при сварке под влиянием ультрадисперсных тугоплавких компонентов / Г.Н. Соколов, В.И. Лысак, И.В. Зорин [и др.] // Вопросы материаловедения. - 2015. - № 4. - C. 159-168.

11. Влияние модифицирования на ликвацию легирующих элементов в хромоникелевом сплаве / Е.Н. Еремин, Ю.О. Филлипов, А.Е. Еремин, А.С. Лосев // Омский научный вестник. - 2012. - № 3(113). - C. 52-57.

12. Композиционная проволока для дуговой сварки и наплавки: пат. 2478029 Рос. Федерация, МПК В23К 35/02 / Дубцов Ю.Н., Зорин И.В., Соколов Г.Н., Лы-сак В.И. - № 2011125559; заявл. 21.06.2011; опубл. 27.03.2013, Бюл. № 9.

13. Phase field investigation of dendrite growth in the welding pool of aluminum alloy 2A14 under transient conditions / W. J. Zheng, Z.B. Dong, Y.H. Wei [et al.] // Computational Materials Science. - 2014. - No. 82. - P. 525-530.

14. Раямяки П., Кархин В.А., Хомич П.Н. Определение основных характеристик температурного поля для

оценки типа затвердевания металла шва при сварке плавлением // Сварочное производство. - 2007. - № 2. -С. 4-7.

15. Ерохин А.А. Влияние жидкотекучести ванны на геометрическую форму сварного шва и технологическую применимость процесса сварки // Сварочное производство. - 1955. - № 6. - С. 5-9.

References

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Sokolov G.N., Lysak V.I. Naplavka iznosostoikikh splavov na pressovye shtampy i instrument dlia goriachego deformirovaniia stalei [Wear-resistant alloy surfacing on press dies and hot-deformation tools for steels/. Monografiia Volgogradskogo gosudarstvennogo politekhnicheskogo uni-versiteta; RPK «Politekhnik». Volgograd, 2005, 284 p.

2. Buntushkin V.P., Kablov E.N., Bazyleva O.A. Mekhanicheskie i ekspluatatsionnye svoistva liteinogo zharoprochnogo splava na osnove intermetallida Ni3Al [Mechanical and operational properties of Ni3Al intermetallic casting heat-resistant alloy]. Metally, 1995, no. 3, pp. 70-73.

3. Bazyleva O.A., Arginbaeva E.G., Zaitsev D.V., Fe-senko T.V. Issledovanie mikrostruktury i fazovogo sostava intermetallidnogo splava na osnove Ni3Al s kristal-lograficheskoi orientatsiei [001] [Investigation of microstructure and phase composition of intermetallic alloy based on Ni3Al with crystallographic orientation [001]]. Metallovedenie i termicheskaia obrabotka metallov, 2015, no. 3, pp. 13-17.

4. Tsao T.-K., Yeh, A.-C. The thermal stability and strength of highly alloyed Ni3Al. Materials Transactions, 2015, vol. 56, iss. 11, pp. 1905-1910.

5. Kablov E.N., Bondarenko Iu.A., Echin A.B. et al. Razvitie protsessa napravlennoi kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monok-ristallicheskoi strukturoi [Development of the process of directed crystallization of GTE blades from heat-resistant and intermetallic alloys with single-crystal structure]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriia: Mashinostroenie, 2011, no. SP2, pp. 20-25.

6. Li Hang, Zheng Lijing, Zhang Huarui et al. Effects of solidification parameters on microstruc-tures of Ni3Al based single crystal. Procedia Engineering, 2012, vol. 27, pp. 1187-1192.

7. Li W., Li H., Liu L., Pei Y., Ma Y., Li S., Gong S. Effects of Mo and Ta in Ni3Al based single crystal alloys on their stress-rupture properties at intermediate temperatures. Materials Research Innovations, 2014, vol. 18, pp. S4380-S4484.

8. Povarova K.B., Bondarenko Iu.A., Drozdov A.A., Bazyleva O.A. Vliianie napravlennoi kristallizatsii na struk-turu i svoistva monokristallov splava na osnove Ni3Al, legi-rovannogo Cr, Mo, W, Ti, Co, Re i RZM [Effect of directional crystallization on the structure and properties of single crystals of Ni3Al, Cr, Mo, W, Ti, Co, Re and REM alloys]. Metally, 2015, no. 1, pp. 50-58.

9. Bazyleva O.A., Arginbaeva E.G., Shestakov A.V., Fesenko T.V. Struktura i svoistva intermetallidnogo splava na osnove aliuminida nikelia, mikrolegirovannogo redkoze-mel'nymi metallami [Structure and properties of intermetallic alloy based on nickel aluminide microalloyed with rare-earth

metals]. Voprosy materialovedeniia, 2018, no. 1(93), pp. 35-49.

10. Sokolov G.N., Lysak V.I., Zorin I.V. et al. Fenomenologicheskaia model' formirovaniia tsentrov kristallizatsii v metallicheskom rasplave pri svarke pod vliianiem ul'tradispersnykh tugoplavkikh komponentov [Phenomenol-ogical model of formation of crystallization centers in the metal melt at welding under the influence of ultradisperse refractory components]. Voprosy materialovedeniia, 2015, no. 4, pp. 159-168.

11. Eremin E.N., Fillipov Iu.O., Eremin A.E., Losev A.S. Vliianie modifitsirovaniia na likvatsiiu legi-ruiushchikh elementov v khromonikelevom splave [Effect of modification on liquation of alloying elements in chromium-nickel alloy]. Omskii nauchnyi vestnik, 2012, no. 3(113), pp. 52-57.

12. Dubtsov Iu.N., Zorin I.V., Sokolov G.N., Lysak V.I. Kompozitsionnaia provoloka dlia dugovoi svarki i naplavki [Composite wire for arc welding and surfacing]. Patent Rossiiskaia Federatsiia no. 2478029 (2013).

13. Zheng W. J., Dong Z.B., Wei Y.H. et al. Phase field investigation of dendrite growth in the welding pool of aluminum alloy 2A14 under transient conditions. Computational Materials Science, 2014, no. 82, pp. 525-530.

14. Raiamiaki P., Karkhin V.A., Khomich P.N. Opre-delenie osnovnykh kharakteristik temperaturnogo polia dlia otsenki tipa zatverdevaniia metalla shva pri svarke plav-leniem [Determination of the main characteristics of the temperature field for the evaluation of the type of hardening of the weld metal during fusion welding]. Svarochnoe proiz-vodstvo, 2007, no. 2, pp. 4-7.

15. Erokhin A. A. Vliianie zhidkotekuchesti vanny na geometricheskuiu formu svarnogo shva i tekhnologicheskuiu primenimost' protsessa svarki [Influence of bath fluid flow on the geometric shape of the weld and technological applicability of the welding process]. Svarochnoe proizvodstvo, 1955, no. 6, pp. 5-9.

Получено 8.11.2018

Опубликовано 21.03.19

Сведения об авторах

Зорин Илья Васильевич (Волгоград, Россия) -кандидат технических наук, докторант, доцент кафедры оборудования и технологии сварочного производства Волгоградского государственного технического университета; e-mail: zorin.iv@vstu.ru.

Соколов Геннадий Николаевич (Волгоград, Россия) - доктор технических наук, профессор, профессор кафедры оборудования и технологии сварочного производства Волгоградского государственного технического университета; e-mail: gnsokolov@yandex.ru.

Лысак Владимир Ильич (Волгоград, Россия) -доктор технических наук, профессор, академик РАН, ректор Волгоградского государственного технического университета; e-mail: rector@vstu.ru.

Дубцов Юрий Николаевич (Волгоград, Россия) -кандидат технических наук, доцент кафедры оборудования и технологии сварочного производства Волгоградского государственного технического университета; e-mail: dubcow@mail.ru.

Денисевич Денис Сергеевич (Волгоград, Россия) -ассистент кафедры сопротивления материалов Волгоградского государственного технического университета; e-mail: adven148@yandex.ru.

Фастов Сергей Анатольевич (Волгоград, Россия) - магистрант кафедры оборудования и технологии сварочного производства Волгоградского государственного технического университета; e-mail: serfastov@gmail.com.

About the authors

Ilya V. Zorin (Volgograd, Russian Federation) -Ph.D. in Technical Sciences, Associate Professor, Department of Equipment and Technology of Welding Production, Volgograd State Technical University; e-mail: zorin.iv@vstu.ru.

Gennady N. Sokolov (Volgograd, Russian Federation) -Doctor of Technical Sciences, Professor, Department of

Equipment and Technology of Welding Production, Volgograd State Technical University; e-mail: gnsokolov@yandex.ru.

Vladimir I. Lysak (Volgograd, Russian Federation) -Doctor of Technical Sciences, Professor, Academician of RAS, rector of Volgograd State Technical University; e-mail: rector@vstu.ru.

Yuriy N. Dubcov (Volgograd, Russian Federation) -Ph.D. in Technical Sciences, Associate Professor, Department of Equipment and Technology of Welding Production, Volgograd State Technical University; e-mail: dubcow@mail.ru.

Denis S. Denisevich (Volgograd, Russian Federation) -Assistant, Department of Strength of Materials, Volgograd State Technical University; e-mail: adven148@yandex.ru.

Sergey A. Fastov (Volgograd, Russian Federation) -Master Student, Department of Equipment and Technology of Welding Production, Volgograd State Technical University; e-mail: serfastov@gmail.com.

i Надоели баннеры? Вы всегда можете отключить рекламу.