видуально-речевого опыта, в дискурсе развиваются умения кооперативного общения - инициативного реплицирования, аргументирования и т. д.
Таким образом, групповое и партнерское сотрудничество, как никакая другая социальная форма организации обучения, способствует формиро-
ванию мотивации, речевых навыков и умений в личностно-ориентированном общении, с тем, чтобы каждый мог говорить в соответствии со своим коммуникативным намерением, индивидуальными потребностями и заданной ситуацией.
СПИСОК ЛИТЕРАТУРЫ
1. Николаев В.Г. Интерактивность на уроке иностранного языка. - М.: Наука, 2002. - 59 с.
2. Макаров М.Л. Языковое общение в малой группе: опыт интер-претативного анализа дискурса: Автореф. дис. ... д.фил.н. -Тверь, 1998. - 40 с.
3. Schwerdtfeger I.C. Gruppenarbeit und innere Differenzierung. -München: Göthe-Institut, 1998. - 221 S.
Поступила 18.12.2006 г.
УДК 681.3:378
ОСНОВЫ ТЕХНОЛОГИИ ПОСТРОЕНИЯ МОДЕЛЕЙ ОБЪЕКТА ПРОЕКТИРОВАНИЯ ДЛЯ ДИСТАНЦИОННОГО ОБУЧЕНИЯ
О.Л. Ахремчик
Тверской государственный технический университет E-mail: [email protected]
Отражены основные составляющие технологии для построения моделей проблемной области, ориентированных на творческий уровень представления и усвоения материала при применении методов и средств дистанционного обучения на примере обучения проектированию систем управления технологическими процессами. Выделены описания объекта проектирования и базовые составляющие его модели. В качестве концептуальных основ предложены концепции извлечения, структуризации и формализации знаний. Рассмотрена технологическая цепочка построения модели объекта проектирования. Сформулированы вопросы и задачи для экспертов при извлечении знаний. В качестве инварианта фрагмента знаний для тренажерного комплекса в дистанционном обучении проектированию предложен объем времени на представление и освоение иерархического представления системы с общесистемных позиций, структурного представления изучаемой системы, детализации рассматриваемых описаний в методологии проблемной области.
В [1, 2] показано, что применение сетевых технологий и методов дистанционного обучения требуют комплексной разработки структурной и понятийно-сущностной моделей проблемной области; алгоритмической модели рассматриваемой области; проблемной модели изучаемого объекта; модели знаний специалиста, ориентированных на программную реализацию и использование в процессе внеаудиторной работы. Целью данного вида работ является представление системы понятий на аналитическом и творческом уровне, необходимом для осуществления как алгоритмической, так и эвристической деятельности. Поэтому при разработке моделей для лабораторных тренажерных комплексов, применяемых в дистанционном обучении для курсов общепрофессионального и специального циклов, требуются модели проблемной области, ориентированные на творческий уровень представления и усвоения материала с учетом личностно направленных аспектов самостоятельной работы при использовании методов и средств дистанционного обучения.
Одной из самых приближенных к творческому уровню является область автоматизированного
проектирования технических устройств и, в частности, область проектирования систем управления технологическими процессами (СУТП). Наиболее сложным этапом в процессе обучения проектированию СУТП является обучение начальным стадиям проектирования для которых присущи неопределенность ряда задач и представление знаний на высшем уровне усвоения.
В качестве предмета исследования в настоящей работе рассматриваются теоретические основы создания и применения моделей объекта проектирования для лабораторных тренажерных комплексов, используемых для дистанционного обучения автоматизированному проектированию систем управления. Построение модельных описаний проводится с учетом проблемности, диалогично-сти, рефлексивности и вариативности процесса обучения. Основой для построения модели является набор классификаций элементов проблемной области. Согласно [3] можно выделить два признака классификации проектируемых систем - по типу элементов и по типу отношений, связывающих элементы в систему. В области программно-техни-
ческих средств, используемых для автоматизированного синтеза СУТП, выбирается признак классификации по типу элементов (функциональному назначению в проектируемой системе). Выбор обосновывается необходимостью разработки как обобщенной функциональной структуры, так и функциональной структуры в выбранном элементно-параметрическом базисе на начальных стадиях создания системы.
В связи с большим количеством производителей и многообразием номенклатуры технических средств и программного обеспечения, используемого при проектировании СУТП, большое значение при обучении приобретает терминологическая совместимость. Затраты на согласование и кодирование терминов особенно велики при переобучении, когда меняется не только термин, но и комплекс связей в сознании человека. Перекодирование локальных понятий приводит к потере аналогии и подобия. В радиотехнике и электронике идут по пути ассоциаций с эквивалентными схемами замещения. В физике устанавливается совместимость понятий на основе системы единиц. В области автоматизированного проектирования пока нет четко обоснованного подхода к терминологической совместимости, что связано с выделением инвариантов проблемной области и групп преобразований с инвариантами.
Понятийная система проблемной области и принятые в ней способы рассуждений взаимосвязаны с вопросами ее формализации. Анализ проблемной области проектирования показывает, что в нее входят подобласти: программно-технических средств, систем управления, методов проектирования, инструментов для автоматизированного проектирования, форм представления описаний разрабатываемой системы. Интеграция знаний и опыта проектировщиков обеспечивается на основе разработки моделей: возможных локальных решений, проектируемой СУТП, проектных процедур.
Предлагаемая технология построения моделей объекта проектирования для дистанционного обучения ориентирована на совмещение процесса создания учебной САПР с процессом извлечения знаний. При этом сокращается время извлечения и получается не система автоматизации приобретения знаний, а САПР, способная решать набор задач как в области проектирования, так и в области обучения проектированию. Формируются базы данных и правил, которые можно использовать в действующих САПР. Стартовым объектом для применения технологии является набор примеров, включающих технические задания и описания систем управления.
Описание СУТП включает текстовое, схемное и аналитическое описания. Текстовое описание содержит свойства системы и ее структурных примитивов, диапазон их изменения, целевые функции. Использование аналитического описания позволяет оценить траекторию СУТП в пространстве со-
стояний и обобщенных координат. Схемное описание проводится на этапах эскизного, технического проектирования, разработки рабочей документации. Схемное описание является результатом применения и детализации бинарного отношения соединения составляющих разрабатываемой системы.
Технология построения моделей проблемной области для тренажерного комплекса, используемого при обучении проектированию, базируется на концепциях извлечения, структуризации и формализации знаний. Извлечение знаний направлено на описание требований к системе, методов построения, результатов проектирования. В основе концепции извлечения лежит формирование иерархии обобщений и абстрактных элементов, используемых в проблемной области. Эксперт использует собственные структуры знаний, поэтому задача обучения автоматизированному проектированию - показать способ формирования знаний для осознания их структуры. Извлечение знаний предусматривает организацию информационного потока (определение носителя информации, формирование вопросов и задач, организацию диалога и записи результатов) и собственно извлечение знаний из потока (редукцию информации и выделение фрагментов).
В ходе организации информационного потока обязательным условием является учет психологических и педагогических аспектов, связанных с дистанционным обучением, когда преподаватель выступает не только как источник знаний, но и как компонент системы управления их приобретением в ходе развития и укрепления навыков самостоятельной работы обучаемого.
Результатом структуризации знаний является концептуальная модель в виде описания СУТП на языке проблемной области. Этап формализации завершается построением модели системы в виде математической модели. При этом элементы представляются в виде векторов признаков, взаимодействия элементов - в виде упорядоченных пар и алгоритмических преобразований (операторных выражений), логических и функциональных зависимостей. Выделенные концепции базируются на эвристических процедурах проектирования, включающих рекурсивные операции.
Пересмотр и дополнение результатов извлечения, структуризации и формализации знаний после программной реализации, разработки и апробации методики применения тренажерного комплекса изменяет модели и вносит итеративность в процесс их построения. Особенность дистанционного обучения проектированию СУТП определяет наличие двух составляющих системы знаний: область проектирования и область обучения с применением компьютерных технологий.
В качестве инварианта процесса построения моделей для лабораторных тренажерных комплексов, используемых в дистанционном обучении начальным стадиям автоматизированного проекти-
рования, предлагается рассматривать объем времени, затрачиваемый на извлечение, структуризацию, формализацию знаний.
Базовыми составляющими модели объекта проектирования являются модели: проблемной области (определяет семантику данных), прикладной логики (определяет действия, которые могут быть выполнены над данными), взаимодействия с пользователем (определяет модель визуального представления информации).
Технологическая цепочка построения модели объекта проектирования является итеративной и включает основные стадии: анализ проблемной области, выделение ситуации, выделение элементов ситуации, выделение набора признаков и значений признаков для элементов, выделение понятий для элементов и признаков, выделение набора признаков и значений признаков для понятий, концептуальное описание ситуации, сравнение описания с ситуацией, выделение дидактических особенностей разрабатываемой модели, выделение блоков материала для организации обучения.
На множестве определенных наборов признаков {Ргк({Л&п})} каждый к-й набор указывает нау-й элемент соответствующей ситуации 87к. Ситуация 8ц является частью структуризации процесса изучения взаимодействия СУТП - окружающая среда. При извлечении необходимо подобрать число к ситуаций для описания взаимодействия проектируемой системы с окружающей средой и структуризации самой системы. На множестве наборов признаков {Ртк({Л1гп})} образуется последовательность классов, за каждым из которых закрепляется определенное понятие Бв. Система понятий 8Вв индивидуальна и порождает базу имен {Ш} для распознавания элементов систем, подсистем и систем в окружающей среде. Система понятий индивидуальна и изменяется во времени:
8в=8Ве№}А
Формируется система понятий на множестве объектов обучающей выборки (примеров). Множество {Ргк({Л1гп]})} составляет экспериментальную основу выборки. Формирование набора признаков происходит при регистрации: наличия свойства у объекта, наличия отношений между двумя объектами, принадлежности объекта классу.
В ходе построения модели объекта проектирования закономерна постановка вопроса: какие атрибуты включить в модель и сколько значений атрибутов рассматривать? При этом учитываются достоверность, непротиворечивость, избыточность и универсальность данных. Одновременно рассматриваются дидактические свойства модели после ее программной реализации: наличие гипермедийных элементов, возможность общения в реальном и отложенном времени, открытый доступ к значительному объему образовательных ресурсов, направленность обучения на практическую значимость, формирование системы понятий с учетом произвольного и непроизвольного запоминания.
При постановке вопросов экспертам при извлечении знаний предлагается решить классическую прямую задачу, основанную на операции абстрагирования: имеется ситуация, требуется выделить существенные свойства и отношения, значения свойств, логическую форму представления и т. д., а также закодировать выделенное (представить в форме для дальнейшей обработки на содержательном уровне). При построении модели объекта проектирования постановка задачи осуществляется в контексте выделения границ СУТП - окружающая среда. Ситуации представляются в виде иерархической структуры:
8/(а,/)<^>8/1(а1, /)... $1п(ап, /), 8к(аъ 0<^1>8/п(аи, О-. Я„(а1Ш /)..., где а - свойства набора признаков, системоо-образующий оператор.
Алгоритм построения иерархий в области проектирования СУШ базируется на: выделении типового технологического оборудования, определении основных физических параметров, управление которыми осуществляется в оборудовании, получении выборки проектных решений по построению систем управления выделенными параметрами.
Получение и анализ выборки преследует цели выделения перечней: системных компонентов, входящих в объект проектирования; свойств; одинаковых объектов; общих свойств для синтеза функциональной структуры; новых свойств, которые появляются при установлении внутрисистемных связей. Применительно к данным стадиям свойствами объекта проектирования, в части которых объект заменяется моделью, являются: иерархичность, целостность и связность.
Ограничениями на область принятия решений при автоматизированном проектировании СУТП являются: набор программно-технических средств, заданный тип системы, детализация представления описаний системы и ее составляющих.
Структурные компоненты экземпляров конкретных СУТП имеют свою вероятность попасть в состав системы. Данные вероятности описываются неизвестным многомерным распределением, математический аппарат для исследования которого отсутствует. Эксперт пользуется аналогиями при рассмотрении отдельных элементов и оперирует обобщенными понятиями. Критерием отбора является частота выделенных задач, решаемых СУТП (отношение числа рассматриваемых задач к общему числу) и частота управления выделенным параметром. Допущение ошибки при выборе элементов из приборного ряда в составе модели в учебном варианте приводит к тому, что будущий специалист в своей практике никогда не сталкивается с выбранными приборами, параметрами и системами. Поэтому технология построения моделей объекта проектирования для дистанционного обучения предусматривает формирование эвристических приемов по выработке у него аналогий на другие объекты проблемной области.
Анализ вариантов реализации СУТП [4] показывает, что различия между системами управления давлением, температурой, расходом, уровнем, концентрацией появляются на приборном уровне при подстановке для входов структурных компонент значений физической величины. Другими словами приемы топологической идентификации в процессе проектирования СУТП типовые, что позволяет дать обоснование задания структуры в текстовом описании системы и сформировать начальные нуль-граф и орграф для модельного представления СУТП. Предлагаемые графовые модели соответствуют классической структуре системы автоматического управления.
Составляющей технологии построения моделей объекта проектирования является задача выделения подсистем. В случае представления модели схемного описания системы ориентированным графом традиционная декомпозиция системы основывается на выделении части графа в подсистему на основе принципа сильных связей. Большая часть работы выполняется разработчиком на основе информации о функциональном назначении подсистем.
Для выделенной подсистемы задача синтеза может быть сформулирована как многопараметрическая и многокритериальная задача с ограничениями: Сг(Мрп ¿¡г, ф)^тт/тах, /е{7};
О%г(М¥, Яг, ф)<О^ГдОП, и¥ей;, Яге ¿У, где Мрг _ алгоритмическая модель функционирования, ¿¡г - модель структуры, ф - оператор взаимодействия МрГ и Яг,{7} - множество критериев и ограничений, С^ - г-й критерий для оценки варианта, - г-ое ограничение на допустимые решения, Мрг* и ¿¡г - пространство решений.
В области проектирования СУТП при извлечении знаний от экспертов постановка вопросов может быть организована следующим образом: перейти от текста задания к 0-графу, перейти от 0-графа к орграфу, перейти от орграфа к мультигра-фу, осуществить конфигурацию программируемых приборов для работы в разработанной схеме.
Выделение набора задач для эксперта при построении модели объекта проектирования для дистанционно обучения позволяет выделить следующие задачи. Задача 1. Имеется четыре формы представления проектируемой системы {текст}, {схема 1}, {схема 2}, {схема 3}. Вопрос - в чем различие описаний? Сопряженный с ним вопрос - что одинакового в описаниях? Задача 2. Имеется набор элементов для построения СУТП. Какие свойства позволяют отличать элементы? Какие свойства элементов одинаковы? Задача 3. Имеется набор схем разных систем. Отыскать соответствие систем друг с другом. Задача 4. Имеется схема. Выявить правила для установки связи между элементами.
Из задач 1 - 3 следует вывод набора аксиом, направленных на устранение различий в описаниях. Из задачи 4 следует установление связей и их
свойств. В ходе решения задач выявляются ограничения налагаемые на ситуации при нахождении причинно-следственных связей. Концепция извлечения правил направлена на формирование перехода от метода проб и ошибок в поисках закономерностей проблемной области к целенаправленному поиску с оценкой промежуточных результатов и перспективности применяемых процедур. Поиск направлен на выявление множества терминов для определения понятий Бе, структура которых в различных описаниях должна совпадать при определении их семантической близости.
В ходе построения модели объекта проектирования выделяются уровни детализации методологии описания СУШ при проектировании: уровень обобщенных свойств СУШ (системное исследование), логико-функциональный уровень (отражает структурные свойства и логические функции независимо от технической реализации), функциональный уровень - определяет реализацию функции в конкретных функциональных элементах и типах приборов функциональной схемы), уровень аппаратной реализации (представление физической структуры, отраженной в функциональной и принципиальной электрической схемах, уровень программной реализации (конфигурация программируемых приборов для выполнения функций в рамках разработанных схемных решений), уровень конструктивной реализации (размещение приборов в щитах и пультах с прокладкой внутри и межщитовых соединительных линий).
Три последних уровня можно представить как подуровни уровня технической реализации.
Технология разработки модели объекта проектирования предусматривает взаимосвязанные: архитектурное отображение СУТП; логическое отображение; отображение в рамках определенного элементного базиса; программно-технико-конструктивное отображение. Базовой процедурой рассматриваемой технологии является построение структурных моделей СУТП и их частей (подсистем, компонентов).
Для геометрической интерпретации процесса структурирования знаний об объекте проектирования выделим три базовых координаты в евклидовом пространстве ХЛс переменной метрикой. Координаты отражают уровни: иерархии структуры систем по Дж. Клиру [3], структурирования объекта, методологии в детализации представления проблемной области.
Терминологическая совместимость при разработке модели в рамках иерархических уровней функциональной иерархии осуществляется посредством определения понятий одного уровня через понятия другого.
При введении трехмерного пространства для тренажерного комплекса для дистанционного обучения проектированию СУТП инвариантом при представлении знаний и обучении является объем времени, необходимый для исследования и осво-
ения фрагментов знаний проблемной области. Каждая составляющая инварианта отражает время движения вдоль осей ^ГХИнвариант позволяет сравнивать системы знаний и методики обучения. Две методики эквивалентны, если один и тот же индивид с использованием разных методик для изучения одной и той же системы знаний, представленной в виде куба, затрачивает один и тот же объем времени.
Таким образом, появляется возможность осуществления перехода от несравнимой терминологии в системах представления знаний к инвариантам, имеющим физический смысл и являющихся параметрами, характеризующими программно-инструментальные комплексы для дистанционного обучения.
Введение времени как характеристики модели объекта проектирования для тренажерных комплексов дистанционного обучения позволяет перейти к осмысленному использованию понятий «поток знаний» и выделить три класса систем: с уменьшением потока, с сохранением потока, с увеличением потока знаний.
Основы рассматриваемой технологии использованы при разработке системы с сохранением потока знаний, ориентированной на изучение процесса синтеза схемных решений при построении системы управления температурными режимами в хлебопечении. Базой системы является интегрированный лабораторный практикум по дисциплинам «Технические средства автоматизации» и «Проектирование систем управления». Оценка образовательного процесса с использованием практикума проводилась по реакции участников на сам тренинг, сравнительному анализу схемных решений участников тренинга с использованием и без использования методов и средств дистанционного обучения.
Анализ результатов апробации практикума в течение двух лет показал, что в процессе обучения появляются психологические и педагогические аспекты, свойственные процессу передачи знаний при дистанционном обучении:
• наглядность представления материалов при самостоятельной работе студента;
• отсутствие психологического барьера при выполнении работ с реальным оборудованием на
СПИСОК ЛИТЕРАТУРЫ
1. Орчаков О.А., Калмыков А.А. Проектирование дистанционных курсов. - М.: Изд-во МНЭПУ, 2002. - 50 с.
2. Филатова Н. Н., Ахремчик О. Л., Вавилова Н. И. Проектирование тренажерных комплексов для технического образования. - Тверь: Изд-во Тверского гос. техн. ун-та, 2005. - 160 с.
физическом стенде в лабораториях вуза после самостоятельной работы;
• в процесс взаимодействия обучающего и обучаемого в ходе изучения спецдисциплины вводится новое звено - мультимедийный обучающий комплекс с сетевым доступом и образовательными ресурсами Интернет, изменяющие психологию общения;
• совмещение изучения сетевых и мультимедийных технологий с изучением специальных дисциплин;
• формирование у обучаемых новых ассоциативных связей между условными обозначениями элементов принципиальных схем и внешним видом реальных устройств для их технической реализации.
Использование программной реализации полученных моделей объекта проектирования в ходе дистанционного изучения спецдисциплин приводит к:
• интегрированности учебных материалов, что изменяет требования к уровню подготовки и методике проведения занятий;
• повышению качества образовательного процесса за счет одновременного применения компьютерных тренажеров и реального стенда;
• повышению эффективности работы преподавателя за счет рубежного контроля до и после выполнения лабораторных работ с помощью компьютерного тестирования;
• уменьшению числа ошибок при монтаже технических средств на стенде при выполнении индивидуальных заданий и сокращению времени на их поиск преподавателем;
• выделению фрагментов и понятий учебного курса, которые вызывают затруднения при усвоении;
• выявлению неточностей и ошибок в компьютерном обеспечении;
• повышению интенсификации труда преподавателя в части подготовки методического обеспечения тренажеров для дистанционного обучения;
• повышению затрат времени и машинных ресурсов на сопровождение и поддержку практикума по изучению объекта проектирования.
3. Клир Дж. Системология: автоматизация решения системных задач. - М.: Радио и связь, 1990. - 544 с.
4. Ахремчик О.Л., Сердобинцев С.П., Семенов А.А. Автоматизация линии по производству пресервов // Рыбное хозяйство. -1992. - № 5. - С. 35-37.
Поступила 09.10.2006 г.