Строительные материалы и изделия
УДК 666.974
ОСНОВНЫЕ НАПРАВЛЕНИЯ ПОВЫШЕНИЯ КАЧЕСТВА И РАСШИРЕНИЯ НОМЕНКЛАТУРЫ ЖАРОСТОЙКИХ РАСТВОРОВ И ОГНЕУПОРНЫХ КЛЕЕВ
В.А. Абызов, O.A. Клинов, Е.Н. Ряховский
В связи с ужесточением требований к качеству жаростойких и огнеупорных материалов, особенно актуальны вопросы их совершенствования и расширения номенклатуры. Рассмотрены основные пути развития данных материалов, обобщены подходы к их решению, предложены способы получения стабильных жидких фосфатных огнеупорных клеев и жаростойких растворов, сохраняющих свойства при длительном хранении.
Вопросы снижения себестоимости жаростойких и огнеупорных бетонов всегда были весьма актуальны. В связи с этим при их производстве широкое распространение и применение получили:
1. Заполнители на основе вторичных огнеупоров и некоторых шлаков черной и цветной металлургии, в особенности ферросплавного производства.
2. Тонкомолотые добавки также из вторичных огнеупоров, шлаков, пыли газоочистки ряда огнеупорных производств, шламов химических, нефтехимических и абразивных предприятий, отработанные катализаторы нефтехимических производств и другие материалы, отличающиеся повышенным содержанием огнеупорных соединений (корунда, шпинелей, форстерита, муллита, глинозема, оксида хрома и т.д.).
3. Вяжущие на основе побочных продуктов промышленности, либо получаемые попутно с другой продукцией, либо в значительной мере содержащие попутные продукты промышленности (глиноземистый (ГЦ) и высокоглиноземистый (ВГЦ) цементы от алюминотермической выплавки ряда металлов, ГЦ и ВГЦ с тонкомолотыми огнеупорными добавками, шламовая ортофосфорная кислота, фосфатные связки на основе отходов химической промышленности и др.).
4. Дисперсные огнеупорные промышленные отходы, не требующие измельчения, как часть вяжущего или тонкомолотой добавки.
5. Низкоцементные и бесцементные бетоны, в которых вяжущее частично или полностью заменяется микронаполнителем, который обладает химической или гидравлической активностью, или участвует в процессе спекания.
Таким образом, снижение себестоимости традиционно достигалось путем полного или частич-
ного использования вторичных материалов вместо дорогостоящего чистого сырья, а также сокращения затрат на его измельчение. В сочетании с заменой штучных обжиговых огнеупоров бетонами это позволяло достичь значительной экономии.
Однако, наиболее огнеупорные и термостойкие материалы - фосфатные - используются в весьма незначительных объемах. Основная причина - необходимость многоступенчатой термообработки, хотя и при сравнительно не высоких температурах - 150...350 °С. Эта же причина сдерживает распространение шлакощелочных вяжущих, усугубляясь сложностями с помолом и контролем качества шлаков. Следовательно, упрощение технологии и более широкое распространение фосфатных жаростойких материалов возможно при условии упрощении режима термообработки (дальнейшего снижения температур термообработки до 100... 150 °С и сокращения ее продолжительности) или полного ухода от нее.
В работах ряда исследователей ЦНИИСК, В.А. Копейкина, М.М. Сычева, Л.Г. Судакаса,
Н.Ф. Федорова и др. применительно к фосфатным связкам и фосфатным растворам вопросы регулирования процесса твердения были решены за счет подбора активности наполнителя и заполнителя, а также широкого использования алюмохромфос-фатных, хромфосфатных и алюмоборфосфатных связующих, отличающихся невысокой температурой отверждения.
Для тяжелых жаростойких фосфатных бетонов вышеописанная проблема успешно решена в работах
А.И. Хлыстова (СГАСА) путем рационального подбора порошковой части вяжущего. Это обеспечивает твердение при нормальных температурах за счет процессов контактно-конденсационного твердения вяжущего.
Основные направления повышения качества и расширения номенклатуры жаростойких растворов и огнеупорных клеев
Абызов В.А., Клипов O.A.,
Ряховский Е.Н.__________
Применительно к ячеистым жаростойким бетонам получение материала без термообработки разработано А.Н. Абызовым (УралНИИстромпроект) - по технологии самораспространяющегося экзотермического синтеза.
Таким образом, использование активных при низких температурах компонентов шихты и экзо-термии в процессе структурообразования позволяет уйти от термообработки [1, 2]. Для производства клеевых и растворных составов, сохраняющих подвижность в течение длительного времени, данная проблема не решена. Так, технология получения алюмохромфосфатной связки (АХФС) предусматривает длительный нагрев в реакторе; для некоторых связок необходимо охлаждение (маг-нийфосфатная). Кроме того, известные на сегодня фосфатные жаростойкие клеевые и растворные составы требуют дисперсного огнеупорного наполнителя (с большими затратами на помол). Они обладают низкой живучестью, измеряемой в часах (от 1 часа до 1-2 сут), в то время как жидкие связки, например, АХФС, в герметичной таре может храниться почти неограниченно долго без изменения свойств. Однако, чистые жидкие фосфатные связки (без наполнителя) дороги и редко используются. Потребитель в настоящее время не готов использовать многокомпонентные составы, приготовление которых на месте, непосредственно перед употреблением, требует определенной квалификации.
С целью упрощения технологии и снижения затрат на самую дорогостоящую операцию - помол в качестве дисперсного наполнителя в рассматриваемых материалах целесообразно использовать дисперсные промышленные отходы, содержащие глинозем, корунд, алюмохромсодержащие компоненты, обеспечивающие получение алюмо-хромфосфатных материалов [3].
Вяжущее должно формироваться без термообработки, в процессе взаимодействия ортофос-форной кислоты с наполнителем и добавками [4, 5]. Уход от термообработки на стадии образования вяжущего возможен при использовании, во-первых, активного сырья, во-вторых, управляемой экзотермии (известен опыт использования экзо-термии в получении алюмофосфатных связок и их модификаций) [3]. Это обеспечивает формирование в жаростойких растворах и клеях алюмохром-фосфатного связующего без термообработки, стабильного в течение длительного времени. Применение дисперсных порошкообразных и волокнистых алюмохромсодержащих отходов, таким образом, позволяет получить вязкие клеевые и растворные смеси, в которых активная часть переходит в фосфорнокислые соединения, а более инертная остается во взвешенном состоянии без потери однородности структуры (расслоения). Таким образом, формируется дисперсно-наполненная жидкая фосфатная композиция, в зависимости от состава и консистенции которой она может являться
как клеем, так и раствором. Рассматривая степень перехода наполнителя и добавок в жидкое связующее, можно представить его как функцию:
У =/(*ь х2, х3, х4, х5), где xi - содержание активных оксидов Сг203, А1203, CaO, Si02, MgO, R20 в наполнителе;
х2 - содержание активных оксидов СаО, MgO, R20 в добавках (техногенные отходы требуемой дисперсности и состава); х3 - содержание Р205 в смеси; х4 - дисперсность наполнителя; х5 - жидко-твердое отношение.
Влиянием второстепенных факторов (температура окружающей среды, интенсивность перемешивания), как показывает практика, можно пренебречь.
При оптимальном сочетании факторов определенное содержание Cr203, А1203, CaO, Si02, MgO, R20 с одной стороны, обеспечивает экзо-термию, необходимую для их частичного перехода в раствор, с образованием стабильной вязкой структуры, устойчивой при хранении, с другой стороны, не приводит к схватыванию и потере подвижности. По составу такие растворы представляют собой смесь фосфатного связующего с дисперсным наполнителем (удельная поверхность в пределах 4000-5500 см2/г). Помимо удельной поверхности наполнителя, влияет его фракционный состав, в частности, содержание частиц менее 5 мкм.
На прочностные показатели растворов и клеев влияет большее количество факторов - помимо указанных выше, играет роль вид огнеупора и качество его поверхности, пористость, длительность твердения до первого нагрева, наличие сушки (и ее режим) перед первым нагревом.
В результате были разработаны составы жидких фосфатных клеевых и растворных смесей, длительно хранящихся без расслоения и потери подвижности (до 2 мес). В зависимости от фракционного состава, они являются клеями или растворами (последние содержат также огнеупорный наполнитель фракции 0,..0,5 мм. Набор прочности происходит в процессе первого нагрева теплового агрегата. Предел прочности при сжатии достигает 35...40 МПа, температура применения, в зависимости от состава, 1500... 1650 °С, адгезия к огнеупорам высокая (например, для шамота разрушение идет по огнеупору), клеевые швы не смачиваются расплавами металлов.
Литература
1. Абызов, В.А. Жаростойкий газобетон на основе алюмомагнийфосфатного связующего и высокоглиноземистых промышленных отходов: Автореф. дис. ... канд. техн. наук / В.А. Абызов. -Пермь, 2000. -21 с.
2. Абызов, В.А. Ячеистые жаростойкие материалы на основе промышленных отходов /
В.А. Абызов // Строительство и образование: сб.
Серия «Строительство и архитектура», выпуск 4
13
Строительные материалы и изделия
науч. тр. - Екатеринбург: УГТУ, 2001. - Вып. 4. -
С. 123-124.
3. Абызов, В.А. Пути повышения качества жаростойкого фосфатного газобетона / В.А. Абызов, O.A. Клипов // Проблемы повышения надежности и качества строительства: сб. докл. научно-практ. конф. - Челябинск: Изд-во ЗАО РКФ «Восточные ворота», 2003. — С. 112—113.
4. Жаростойкий газобетон на алюмобор-
фосфатном связующем /В.А. Абызов, А.Н. Абызов,
В.А. Магилат и др. // Строительные материалы и изделия: межвузовский сб. науч. тр. - Магнитогорск: МГТУ, 2002. - С. 143-148.
5. Трофимов, Б.Я. Разработка фосфатного связующего для жаростойкого газобетона / Б.Я. Трофимов, В.А. Абызов // Строительство и образование: сб. науч. тр. - Екатеринбург: УГТУ, 1998. - С. 181-185.