54
AZERBAIJAN CHEMICAL JOURNAL № 2 2023
ISSN 2522-1841 (Online) ISSN 0005-2531 (Print)
UDC 54.05
ORGANOTIN COMPLEXES BASED ON THE INTERACTION OF 2-(BENZYLIDENE AMINO) ACETIC ACID WITH ORGANOTIN CHLORIDES. SYNTHESIS, STRUCTURE
AND ANTIOXIDANT ACTIVITY
Inas J. Mahdi 1, Dhekra Jawad Hashim 2, Angham G. Hadi3, Hadeer Jasem4
1,3
Chemistry department, college of science, Babylon University, Iraq
Technical Institute of Babylon, Al-Furat Al-Awsat Technical University, Babylon, Iraq 4Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
sci.angam.ganem@uobabylon.edu.iq
Received 19.09.2022 Accepted 23.11.2022
In this work, 2-(benzylidene amino) acetic acid was prepared by reflexing reaction of benzaldehyde with glycine, then this prepared and characterized compound was used as ligand to prepare tri and di-organotin complexes by condensation reaction with the corresponding organotin chloride salts. The complexes were identified by different techniques, such as infrared spectra, (tin and proton) magnetic resonance and elemental analyses. The antioxidant activity of 2-(benzylidene amino) acetic acid and prepared complexes were studied by two different methods; Free radical scavenging activity (DPPH) and CUPRRAC methods. Tri and di-tin complexes gave high percentage inhibition than ligand with both methods due to tin moiety, also Triphenyltin carboxylate complex was the best compared with the others.
Keywords: ligand, reflex, triphenyl tin chloride, methanolic solution.
doi.org/10.32737/0005-2531-2023-2-54-61
Introduction
Organotin(IV) carboxylates are well-known for their diverse and important biological properties as antifungal, antiviral, anticancer, wood preservatives, antibacterial, insecticides, photo-stabilizer and gas storage [1-13]. Organ-otin(IV) carboxylates are generally soluble in ordinary organic solvents and are stable crystalline solids with acute melting points [14-27]. Various spectroscopic analyses as well as single crystal structure have been used to describe or-ganotin(IV) carboxylates and their complexes [28-30]. Organotin(IV) complexes' geometrical properties play a crucial role in their biological action. Saxena [31] speculate that antitumor active organotin carboxylates have open coordination sites around the Sn-atom, as well as generally stable ligand-Sn bonds with little hydrolytic breakdown. The five coordinated organotin(IV) carboxylates [32] have been reported to have stronger LOX and anti-proliferative inhibitory action than the hexa coordinated ones, demonstrating the obtainability of coordination sites at tin atom. The importance of the relationship between the structure of organotin(IV) carbox-
ylates and the biological features has sparked research into tin carboxylates. Because of the rapid advancement, which includes important observations in the relevant tin(IV) chemistry. The significance of the link concerning the structure of organotin(IV) carboxylates and biological characteristics has stimulated interest in tin car-boxylates research [33, 34]. Because of the quick progress, which includes significant findings in the relevant Sn(IV) chemistry. The aryl group connected to tin has little effect, while the anion-ic group has little effect.
The presence of both of these biologically active components in a single molecule may broaden the biological spectrum of organ-otin(IV) compounds. Organotin(IV) compounds' biological activity is determined by the coordination number and structure of the Sn moiety [35-37]. Antioxidant chemicals can help reduce oxidative damage caused by aging, cardiovascular disease, cancer, inflammation, skin diseases, and malaria, causing some researchers to look for metal-based antioxidant medicinal molecules, particularly organotin(IV) [38], we report here the synthesis and characterization of organotin(IV) derivatives of 2-(benzylidene
amino) acetic acid and their antioxidant activity studies.
Experimental part
Preparation of 2-(benzylidene amino) acetic acid. (10 mmol, 10.06 gm) of benzaldehyde was mixed with (10 mmol, 0.75 gm) of glycine and (10 mmol, 0.4gm) of NaOH, then 20 ml of ethanol was added to mixture and reflexed about 4 hours. The yellow precipetate was collected and recrystalized by absolute ethanol.
Preparation of Triphentl tin(IV) Complex 1. A methanolic solution of 2-(benzylidene amino) acetic acid (5mmol, 0.815gm) was stirred with (5 mmol, 0.2 gm) NaOH for 30 minute at room temperature. A (5 mmol, 1.927 gm) from triphenyl tin chloride (Ph3SnCl) was dissolved in 30 ml hot methanol then added to 2-(benzylidene amino) acetic acid mixture, left to reflux about 4 hours with continuously stirred [9-12]. The precipitate was left to evaporate under vacuum, washed with diethyl ether.
Preparation of di-organotin(IV) Complexes 2-3. 40 ml methanolic solution of 2-(ben-zylidene amino) acetic acid (4 mmol, 0.652gm) was stirred with (4mmol, 0.16gm) NaOH for 30 minute at room temperature. (2 mmol, 0.61 gm
55
or 0.439 gm) from dibutyl or dimethyltin dichlori de (Bu2SnCl2 or Me2SnCl2) was dissolved in 30 ml of hot methanol then added to 2-(benzylidene amino) acetic acid mixture, left to reflux about 4 hours with continuously stirred [10-14]. The precipitate was left to evaporate under vacuum, washed with diethyl ether.
Antioxidant Activity Tests
a) DPPH technique
Antioxidant activity was measured using the 1,1-diphenyl-2-picrylhydrazine (DPPH) technique, as described by others [39-41]. The compounds were dissolved in methanol at different concentrations of 2; 4; 8; 16, and 32 M, respectively. DPPH (0.1 mM in methanol) was added to each test solution and carefully mixed. After 30 minutes, the solution was discarded. A UV-vis spectrophotometer was used to test the mixture's absorbance at a wavelength of 517 nm. The proportion of inhibition against DPPH was used to calculate antioxidant activity. The percentage inhibition was calculated using equation (1).
b) CUPRACMethod
Antioxidant activity test by CUPRAC method was performed according to method used by others [42].
Inhibition Percentage =
Cotrol Absorbance — Sample Absorbance
Control Absorbance
x 100
(1)
Total antioxidants levais =
A test
A STD
/mmole\
x Conce. of STD (—-—) (2)
Results and Discussion
Synthesis of Organotin(IV) Complexes 1-3. The new complexes were obtained by refluxing methanolic solutions of tri and di-organotin chloride with 2-(benzylidene amino) acetic acid, respectively, with a high yield percentage
(Schem 1 and 2). The resulting compounds were identified using FTIR, NMR (1H and Sn119) spectroscopy techniques, as well as elemental analyses. Tables 1-3 summarize the findings of each study.
2-(benzylidene amino)acetic acid
Scheme 1. Synthesis of Triphenyltin complex 1.
Scheme 2. Synthesis of dibutyl and dimethyl-tin complexes 2 and 3.
Table 1. Physical Analysis Data of 2-(benzylidene amino) acetic acid and Complexes 1-3
Compound Color Yield % MP (0C) Elemental analysis % Calculated (Found)
C H N
2-(benzylidene amino)acetic acid (L) Yellow - 181-183 66.25(65.19) 5.56(6.12) 8.58(8.02)
Ph3SnL Yellowish-white 89.5 210-212 63.32(63.88) 4.53(5.11) 2.73(3.07)
Bu2SnL2 Off white 93.6 217-219 56.04(56.49) 6.15(5.85) 5.03(5.58)
Me2 SnL2 Off white 95.3 205-207 50.77(51.21) 4.69(5.89) 5.92(5.89)
Table 2. FTIR Spectral Data of Complexes 1-3
Compound C=O C-N Sn-C Sn-O
L 1597 1560 - -
Ph3SnL 1645 1640 570 449
Bu2SnL2 1647 1637 567 424
Me2 SnL2 1645 1637 572 450
Table 3. NMR Spectral data (1H and 119Sn) of 2-(benzylidene amino) acetic acid and 1-3 Complexes
Sn(IV) Complex 1H-NMR 119Sn-NMR
L 12.92(s, 1H, COOH), 8.42-8.1 (s, H, CH=N), 6.81-7.91(m, 5H, Ar), 4.7-4.01(t, 2H, CH2). --
Ph3SnL 8.96(m, 5H, Ph), 8.52-8.1 (s, H, CH=N), 6.84-7.39(m, 5H, Ar), 4.14-4.43(t, 2H, CH2). -175
Bu2SnL2 8.44-8.21 (s, H, CH=N), 6.82-7.35(m, 5H, Ar), 4.05-4.12(t, 2H, CH2), 0.7-1.76(Bu). -227
Me2SnL2 8.54-8.21 (s, H, CH=N), 6.83-7.38(m, 5H, Ar), 4.04-4.42(t, 2H, CH2), 0.33-1.68 (s, Me). -267
Figure 1 shows the FTIR spectrum of 2-(benzylidene amino) acetic acid and Complex 2. Due to complexation with organotin compounds, bands of carboxylic acid around 34002400 cm-1 vanished, and all bands were moved to higher or lower wave length. There were also new bands at 449, 424, and 450 cm-1 that were associated to Sn-O and 570, 567, and 572 cm-1 that were related to Sn-C of (1-3) complexes.
Antioxidant Activity
The three synthesized complexes were examined in varied quantities in the antioxidant activity analysis using the two procedures outlined. After obtaining the absorbance in each measurement, the percent inhibition can be computed; also the results may be displayed in the Figures 2 and 3.
In comparison to the standard material used (Figure 4), the results indicated a high oxidation efficiency.
Fig. 1. FTIR Spectra of 2-(benzylidene amino) acetic acid and Complex 2.
Fig. 2. DPPH scavenging activity of 2-(benzylidene amino) acetic acid and its complexes at 250 ^g/mL DMSO solutions at T = 60 min.
Fig. 3. CUPRAC Method activity of 2-(benzylidene amino) acetic acid and its complexes at T = 60 min.
120 100
c 80
0
1 60
^ 40 20 0
y = 1,21x + 40,7 R2 = 0,9709
10
50
20 30 40
Concentration of ascorbic acid (^g/ml) Fig. 4. Standard Inhibition Percentage (Ascorbic Acid).
60
0
With both methods utilized, the antioxidant activity of 2-(benzylidene amino) acetic acid and complexes was measured in varied amounts. When compared to the di-complexes of butyl and methyl, the prepared complexes showed higher activity than the ligand derived from it, and the tri-phenyl complex showed higher activity than the rest of the complexes. This could be due to the presence of three groups of phenyl and an increase in aromaticity.
Conclusion
Three complexes of organotin with different organic substituents were prepared by the reaction of 2-(benzylidene amino) acetic acid with tri-phenyl tin and di-(butyl or methyl) tin salts.
DPPH and CUPRAC methods were used to assess the antioxidant activity of 2-(benzylidene amino) acetic acid and its organ-otin(IV) complexes. Using two methods, the antioxidant activity of the organotin(IV) complexes was found to be greater than that of the 2-(benzylidene amino) acetic acid.
Acknowledgements
The authors would like to thank Babylon University and Al-Mustaqbal University College for kind support.
Conflict of interest
The authors have no conflicts of interest regarding this investigation.
References
1. Mirza, M. Aslam, and Saqib Ali. "Synthesis, structural elucidation, and biological activity to orga-notin(IV) derivatives of (E)-2, 3-bis(4-chloro-phenyl)-2-propenoic acid." 2017.
2. Zhang, X.Y., Song, H.B., Li, Q.S., Liu, X.F., & Tang, L.F. Synthesis, structure and biological activity of organotin derivatives with pyridylmethyl-thiobenzoic acid. Polyhedron. 2007. 26(14). 3743-3749.
3. Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X., & Qian, B. Synthesis, characterization and biological activity of triorganotin 2-phenyl-1, 2, 3-triazole-4-carboxylates. Journal of Inorganic Biochemistry. 2005. 99(8), 1646-1652.
4. Matela, Garima, and Robina Aman. Organotin (IV) complexes of carboxylic acid derivatives. Central European Journal of Chemistry. 2012. 10.1 1-15.
5. Eychenne-Baron, C., Ribot, F., Steunou, N., Sanchez, C., Fayon, F., Biesemans, M., & Willem, R. Reaction of butyltin hydroxide oxide with p-to-luenesulfonic acid: Synthesis, X-ray crystal analysis, and multinuclear NMR characterization of {(BuSn)12O14(OH)6}(4-CH3C6H4SO3)2. 2000. Orga-nometallics. 19(10). 1940-1949.
6. Camacho, C. C., de Vos, D., Mahieu, B., Gielen, M., Kemmer, M., Biesemans, M., & Willem, R. Organotin (IV) derivatives of 3,4-(methylenedi-oxy) phenylacetic acid: synthesis, spectroscopic characterization and in vitro antitumour properties. Main group metal chemistry. 2000. 23(7). 381-386.
7. Matela, G., & Aman, R. (). Organotin (IV) complexes of carboxylic acid derivatives. Central European Journal of Chemistry. 2012. 10(1), 1-15.
8. Hadi, Angham G., Yousif, E., El-Hiti, G. A., Ahmed, D. S., Jawad, K., Alotaibi, M. H., and Hashim, H. 2019, Long-term effect of ultraviolet irradiation on poly (vinyl chloride) films containing naproxen diorganotin (IV) complexes. Molecules. 24(13). 2396. http://doi:10.3390/ mole-cules24132396
9. Hadi, Angham G., Jawad, K., El-Hiti, G. A., Alo-taibi, M. H., Ahmed, A. A., Ahmed, D. S., and Yousif, E. Photostabilization of poly (vinyl chloride) by organotin (IV) compounds against photodegradation. Molecules. 2019. 24(19). 3557. http://doi:10.3390/molecules24193557
10. Hadi, Angham G., Baqir, S.J., Ahmed, D.S., El-Hiti, G.A., Hashim, H., Ahmed, A., Yousif. Substituted Organotin Complexes of 4-Methoxy-benzoic Acid for Reduction of Poly (vinyl Chloride) Photodegradation. Polymers. 2021. 13(22). 3946. https://doi.org/10.3390/polym13223946
11. Ahmed, Ahmed, El-Hiti, G.A., Hadi, A.G., Ahmed, D.S., Baashen, M.A., Hashim, H., Yousif, E.
Photostabilization of poly(vinyl chloride) films blended with organotin complexes of mefenamic acid for outdoor applications. Applied Sciences. 2021. 11(6), 2853. https://doi.org/10.3390/ app11062853.
12. Hadi, Angham G., Jawad, K., Yousif, E., El-Hiti, G.A., Alotaibi, M.H., Ahmed, D.S. Synthesis of telmisartan organotin (IV) complexes and their use as carbon dioxide capture media. Molecules. 2019. 24(8). 1631. http://doi: 10.3390/molecules 24081631.
13. JASEM, Hadeer, Hadi, A. G., El-Hiti, G. A., Baashen, M. A., Hashim, H., Ahmed, A. A., ... & Yousif, E.. Tin-Naphthalene Sulfonic Acid Complexes as Photostabilizers for Poly (vinyl chloride). Molecules. 2021. 26.12: 3629. DOI: 10.3390/Molecules. 26123629
14. Matela, G., Aman, R. Tin and OrganoTin (IV) complexes of thymol derivative derived from alanine: synthesis and characteristic spectral studies. 2011. RJ Chem, 4, 594-8.
15. Bashir, M. S., Ali, S., Shahzadi, S., & Shahid, M. Synthesis, characterization and biological activities of Organotin (IV) Complexes with l-Lysine Monohydrate. Russian Journal of General Chemistry. (2015. 85(6), 1532-1537.
16. Ahmad, F., Parvez, M., Ali, S., Mazhar, M., & Munir, A. Synthesis and spectral studies of tri-and diorganotin (IV) complexes with 5-benzoyl-a-methyl-2-thiopheneacetic acid: crystal structure of [(CH3) 3Sn (C14H11O3S)]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 2002. 32(4). 665-687.
17. Khan, M. I., Baloch, M. K., Ashfaq, M., & Gul, S. Organotin (IV) esters of 4-maleimido-benzoic acid: synthesis, characterization and in vitro anti-leishmanial effects. Journal of the Brazilian Chemical Society. 2009. 20. 341-347.
18. Schurmann, M., Schmiedgen, R., Huber, F., Sil-vestri, A., Ruisi, G., Barbieri Paulsen, A., Barbie-ri, R. Mono-aryltin (IV) and mono-benzyltin (IV) complexes with pyridine-2-carboxylic acid and 8-hydroxyquinoline. X-ray structure of p-chloro-phenyl-tris(8-quinolinato) tin (IV) 2CHCl3. Journal of organometallic chemistry. 1999. 584(1), 103-117.
19. Baul, T. S. B., Dutta, S., Rivarola, E., Butcher, R., & Smith, F.E. The synthesis and structural characterization of some triorganotin (IV) complexes of 2-{[(E)-1-(2-hydroxyaryl) alkylidene] amino} acetic acid. Crystal and molecular structures of Ph3Sn (2-OHC6H4C (H) I NCH2COO) and Me3Sn (2-OHC6H4C (CH3)I NCH2COO). Journal of organometallic chemistry. 2002. 654(1-2), 100-108.
20. Benetollo, F., Lobbia, G. G., Mancini, M., Pellei, M., & Santini, C. (2005). Synthesis, characterization and hydrolytic behavior of new bis(2-pyridylthio) acetate ligand and related organotin
(IV) complexes. Journal of organometallic chemistry, 690(8), 1994-2001.
21. Yin, H. D., Li, G., Gao, Z. J., & Xu, H. L. Synthesis and structural characterizations of diorganotin (IV) complexes with 2-pyrazinecarboxylic acid. Journal of organometallic chemistry. 2006. 691(6), 1235-1241.
22. García-Zarracino, R., Ramos-Quiñones, J., & Hopfl, H. (2003). Self-assembly of dialkyltin (IV) moieties and aromatic dicarboxylates to complexes with a polymeric or a discrete trinuclear macro-cyclic structure in the solid state and a mixture of fast interchanging cyclooligomeric structures in solution. Inorganic chemistry, 42(12), 3835-3845.
23. Prabusankar, G., & Murugavel, R. Hexameric or-ganotincarboxylates with cyclic and drum structures. Organometallics. 2004. 23(23). 5644-5647.
24. Baul, T. S. B., Singh, K. S., Lycka, A., Holcapek, M., & Linden, A. (2005). Synthesis of a cyclic di-nuclear organotin carboxylate via simultaneous debenzylation and decarbonylation reactions: X-ray crystal structure of [(PhCH2) 2 {O2CC6H4 {N (H) N (C6H3-4 (O)-5-O)}-o} Sn] 2. Journal of organometallic chemistry, 690(6), 1581-1587.
25. Zhang, R., Tian, G., & Ma, C. (2005). Syntheses and crystal structures of diorganotin (IV) moieties with 3-hydroxy-2-pyridinecarboxylic acid. Journal of organometallic chemistry, 690(17), 4049-4057.
26. Kapoor, R., Gupta, A., Kapoor, P., Venugopalan, P. Synthesis and characterization of di-n-butyltin (IV) complexes with 4V2'-nitrobiphenyl-2-carb-oxylic acids: X-ray crystal structures of [{(n-C4H9) 2Sn (OCOC12H8NO2- 4')} 2O] 2 and (n-C4H9) 2Sn {OCOC12H8NO2- 4'} 2. Applied organometallic chemistry. 2003. 17(8), 600-606.
27. Baul, T.S.B., Singh, K.S., Linden, A., Song, X., Eng, G. Synthesis, spectroscopic characterization of tribenzyltin (IV) complexes of polyaromatic carboxylic acid ligands: Crystal and molecular structures of Bz3Sn [O2CC6H4 {NN (C6H3-4-OH (C (H) NC6H4X-4))} -o](OH2)(X=-Cl,-OCH3). Polyhedron. 2006. 25(17), 3441-3448.
28. Ma, C.L., Han, Y.W., Zhang, R.F. Syntheses and crystal structures of di-and triorganotin (IV) derivatives with 2, 4, 5-trifluoro-3-methoxybenzoic acid. Polyhedron. 2006. 25(17), 3405-3412.
29. Ma, C., Guo, M., Ru, J., Wang, Q., & Zhang, R. (2011). Syntheses and characterization of diorgan-otin (IV) derivatives with areneseleninic acid: X-ray crystal structures of 1D infinite chains contain-
ing eight-membered ring. Inorganica Chimica Acta. 378(1), 315-318.
30. Saxena, A. K. Organotin compounds: toxicology and biomedicinal applications. Applied Organometallic Chemistry. 1987. 1(1). 39-56.
31. Abdellah M.A., Hadjikakou S.K., Hadjiliadis N., Kubicki M., Bakas T., Kourkoumelis N., Simos Y.V., Karkabounas S., Barsan M.M., Butler, I.S. Bioinorg. Chem. 2009. Article ID 542979, 1.
32. Hadi, A. G., Hassen, T. F., & Mahdi, I. J. (2022). Synthesis, characterization, and antioxidant material activities of organotin (IV) carboxylates with tin-para methoxy benzoic acid. Materials Today: Proceedings, 49, 2797-2801.
33. Hashim, D. J., Falah, T. F., & Hadi, A. G. (2022). Enhanced Antioxidant Activity of Di-and Trior-ganotin Complexes Derived from Mefenamic Acid. Egyptian Journal of Chemistry, 65(5), 1-2.
34. Zubita J.A., Zukerman J., J. Inorg. Chem. 1978. 24. 251.
35. Holmes R. R. Acc. Chem. Res. 1989, 22, 190.
36. Guzman J.D. Molecules. 2014. 19. 19292.
37. Hadi, A.G., Zaooli, R.H., Ahmed, D. S., & Yousif, E. (2021). Anti-oxidant Activity of Naproxen and Its Diorganotin Complexes. INTERNATIONAL JOURNAL, 11(2), 383-385.
38. Choi, H.J.; Kim, J.H.; Lee, C.H.; Ahn, Y.J.; Song, J.H.; Baek, S.H.; Kwon, D.H. (2009). Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Res. 81, 77-81. [CrossRef] [PubMed]. https://doi.org/10.1016/j. antiviral.2008.10.002
39. Song, J.H., Shim, J.K., Choi, H.J. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol. J. 2011. 8, 460. [CrossRef] [PubMed]. http://www.virologyj. com/content/8/1/460
40. Liang, W.; He, L.; Ning, P.; Lin, J.; Li, H.; Lin, Z.; Kang, K.; Zhang, Y. (2015). (+)-Catechin inhibition of transmissible gastroenteritis coronavirus in swine testicular cells is involved its antioxidation. Res. Vet. Sci. 103, 28-33. [CrossRef]. https://doi. org/10.1016/j.rvsc.2015.09.009
41. Hadi, Sutopo, Fenska, M. D., Wijaya, R. A., Noviany, N., Suhartati, T.(), Antimalarial Activity of Some Organotin (IV) Chlorobenzoate Compounds against Plasmodium falciparum. Mediterranean Journal of Chemistry. .202010.3: 213-219. https://doi.org/10.13171/mjc0200312162sh
2-(BENZÍLÍDENAMÍNO)SÍRKO TUR§USUNUN ORQANOTÍN XLORÍDLORÍ ÍLO QAR§ILIQLI TOSÍRÍNO OSASLANAN ORQANOTÍN KOMPLEKSLORÍ. SÍNTEZÍ, QURULU§U УЭ ANTÍOKSÍDANT
foalíyyotí
Inas J. Mahdi, Dekra Jawad Haçim, Angam G. Hadi, Hadeer Jasem
Bu içda benzaldehidin qlisinla refleks reaksiyasindan 2-(benzilidenamino)sirka turçusu alinmiç, sonra alinmiç va xarak-teriza olunan birlaçmadan müvafiq orqanotin xloridla kondensasiya reaksiyasi yolu ila tri- va di-orqanotin komplekslari almaq ûçûn liqand kimi istifada edilmiçdir. Komplekslar IR spektral aqalis, (qalay-proton) maqnit rezonansi va elementar analiz kimi müxtalif üsullarla müayyan edilmiçdir. 2-(benzilidenamino)sirka turçusunun va yaranan komplekslarin antioksidant faaliyyati iki müxtalif üsulla tadqiq edilmiçdir; Sarbast radikal tamizlama faaliyyati (DPPH) va CUPRAC üsullari. Tri- va di-qalay komplekslari qalay hissasina göra har iki üsulla liqandla müqayisada daha yüksak inhiba faizi verdi va trifenilqalay karboksilat kompleksi digarlarindan daha yaxçi idi.
Açar sözlzr: liqand, refleks, trifenilqalayxlorid, metanol тэЫиЫ.
ОЛОВООРГАНИЧЕСКИЕ КОМПЛЕКСЫ НА ОСНОВЕ ВЗАИМОДЕЙСТВИЯ 2-(БЕНЗИЛИДЕНАМИНО)УКСУСНОЙ КИСЛОТЫ С ОЛОВООРГАНИЧЕСКИМИ ХЛОРИДАМИ. СИНТЕЗ, СТРУКТУРА И АНТИОКСИДАНТНАЯ АКТИВНОСТЬ
Инас Дж.Махди, Декра Джавад Хашим, Ангам Г.Хади, Хадеер Джасем
В этой работе 2-(бензилиденамино)уксусная кислота была получена рефлекторной реакцией бензальдегида с глицином, затем полученное и охарактеризованное соединение было использовано в качестве лиганда для получения три- и ди-оловоорганических комплексов реакцией конденсации с соответствующими оловоорганическими хлоридными солями. Комплексы идентифицировали различными методами, такими как ИК- спектральный анализ, (олово-протонный) магнитный резонанс и элементарный анализ. Антиоксидантную активность 2-(бензилиденамино)уксусной кислоты и полученных комплексов изучали двумя разными методами; Активность по удалению свободных радикалов (DPPH) и методы CUPRRAC. Комплексы три- и ди-олова давали более высокий процент ингибирования, чем лиганд, с обоими методами из-за фрагмента олова, а комплекс карбоксилата трифенилолова был лучшим по сравнению с другими.
Ключевые слова: лиганд, рефлекс, трифенилоловохлорид, метанольный раствор