Научная статья на тему 'Оптимизация систем охлаждения и тепловых характеристик конструкций РЭС'

Оптимизация систем охлаждения и тепловых характеристик конструкций РЭС Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
144
53
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Бобылкин И.С. Шуваев В.А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Оптимизация систем охлаждения и тепловых характеристик конструкций РЭС»

Бобылкин И. С. Шуваев В.А.

ФГБОУ ВПО «Воронежский государственный технический университет»

ОПТИМИЗАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ И ТЕПЛОВЫХ ХАРАКТЕРИСТИККОНСТРУКЦИЙ РЭС

Дляповышения эффективности конструкторского проектирования РЭС на основе методов анализа, прогнозирования и оптимизации тепловых характеристик необходимо уже на ранних стадиях разработки правильно выбрать систему охлаждения(СО). Которая должна обеспечить требуемый тепловой режим.

Для решения подобной задачи предложена структурно-функциональная модель СО и обеспечения тепловых режимов РЭС в виде графа, котораяотражает возможные пути передачи тепловой энергии от источников тепла в окружающую среду, что представляет возможность решить задачу оптимального распределения тепловых потоков внутри конкретной конструкции РЭС. Данная задача возникает вследствие того, что в реальных конструкциях современных РЭС существует множество путей, в том числе параллельных, протекания тепловых потоков, в качестве которых выступают как специальные устройства теплоотвода, или выделенные (используемые) области (например, воздушные каналы между модулями), так и элементы конструкции (рамки, шасси, корпуса, элементы электрической коммутации, воздушные и изолирующие прослойки и т. д.). При этом в комплексе во многих случаях действуют все три вида теплопередачи (конвекция, излучение, кондукция) /1-3/. Поэтому появляется задача оптимального использования имеющихся и потенциальных путей передачи тепловых потоков, а также определения максимального количества тепловой энергии, которая может быть отведена в окружающую среду для данной конструкции, в заданных условиях эксплуатации и требованиях к нормальному тепловому режиму.

Подобная задача может быть сведена к классу сетевых задач, в частности к задаче о максимальном потоке /4/.

При представлении конструкции РЭС даже наиболее простой моделью «нагретая зона-корпус», граф, моделирующий систему охлаждения и теплопередачи, имеетвид, показанный на рисунке 1. Здесь вершина Xi соответствует нагретой зоне, являющейся источником теплового потока Р; X2 -воздушный зазор между НЗ и корпусом; X3- корпус; X4- охлаждающая среда- сток тепла. Индексы дуг соответствуют возможным механизмам теплопередачи: КВ- конвекция, КД- кондукция, ИЛ- излучение.

Рисунок 1 - Графовая модель системы теплопередачи для тепловой модели «нагретая зона- корпус»

В качестве пропускной способности дуги принимаем максимально возможную величину теплового потока (мощности), который может проходить с учетом конкретного механизма теплопередачи, заданных условий эксплуатации и размерах конструктивных составляющих РЭС:

Ртах,,=атах,, (Т,_Т,) , (1)

omaxij=amaxij-Sij ,(2)

где amaxij- максимальное значение тепловой проводимости между i-м и j- м телом (частями конструкции );Ti, Tj- температуры частей;8^ - площадь поверхностей, участвующая в теплообмене между телами i и j ;amaxij- максимально возможное значение коэффициента теплообмена в заданных условиях эксплуатации РЭС.

Предельное значение коэффициентов aij обусловлено их зависимостью от температурных плуатации, связанных с разностью предельно допустимой величины рабочей температуры ляемой термостойкостью элементной базы (125-150 °С) , и температуры окружающей среды, требованиями ТЗ. Так значение коэффициента теплообмена излучением определяется /1,5/

л

a

и

(т /100)4 -(ти /100)4

т, - т,

(3)

условий экс-РЭС, опреде-определяемой

где £др- приведенный коэффициент черноты тел i и j;ji

угловой коэффициент излучения.

Коэффициенты теплообмена конвекцией вычисляются /1,2/ в зависимости от ориентации поверхностей и выполнения условия Ti-Tj<(840/L)3, (4)

где Tj- температура среды (воздуха, жидкости);Ь- определяющий размер /1-3/.

При выполнении условия используется выражение /1,2/

т - т

0,25

■ A,, (5)

к

а и = к

L

иначе используется другое

ац = к (т, - т1 )1/3 ■ A3,

где к=1; 1,3; 0,7- коэффициент для вертикальной, верхней и нижней поверхностей,^, А3- коэффициенты, зависящие от теплофизических параметров среды при температуре 0,5(Ti+Tj).

Коэффициент теплообмена кондукцией связан с теплофизическим и геометрическим параметрами механических конструкций РЭС и определяется /2/

а^кд=1к/1, (6)

где 1к- коэффициент теплопроводности материала конструкции, служащей проводником теплового потока;!- длина пути теплового потока.

Анализ выражений (1)-(6) показывает, что aij и Р^ ограничены по величине вследствие конечной разности (Ti-Tj), обусловленный требованиями ТЗ, а также массовыми и габаритными ограничениями, применяемыми материалами (для кондукции).

Тогда задачи определения наибольшей величины теплового потока, передаваемого в окружающую среду с помощью данной СО от конкретной конструкции (что соответствует максимальной тепловой мощности устройств, реализуемых в таком конструктиве), а также выявления наиболее рациональных путей

теплопередачи может быть сформулирована как задача о максимальном потоке /4/. Источником является нагретая зона, стоком-окружающая среда, условие задачи имеет вид:

Р®тах, (7)

Г-P, i = S

ZPj -ZPik = jo,y * S, j Ф t, (8)

' k Ip, j = t

0<Р1з< Рчтах, (9)

При определенных условиях эксплуатации и параметрах конструкции значения Р^жестко связаны с

a

1] •

Для решения такой задачи применяется алгоритм расстановки пометок (алгоритм Форда и Фалкерсо-на) /4/. К этой задаче сводитсяи случай применения более детальных тепловых моделей РЭС и ОС, где учитываются различные источники тепловыделения (до отдельных компонентов) и стоки тепла, т.е. когда рассматривается задача в форме задачи о потоке в сети с несколькими источниками и стоками

/4/.

Решение рассмотренной задачи позволяет оптимизировать конструкцию, структуру и параметры СО в целях повышения эффективности теплоотвода, принять меры по интенсификации теплопередачи по определенным путям.

ЛИТЕРАТУРА

1. Дульнев Г.Н. Тепло- и массообмен в радиоэлектронной аппаратуре / Г.Н. Дульнев. М.: Высш.

шк., 1984.247 с.

2. Дульнев Г.Н. Тепловые режимы электронной аппаратуры / Г.Н. Дульнев, Н.Н. Тарновский. Л.: Энергия, 1977.248 с.

3. Дульнев Г.Н. Теплообмен в радиоэлектронныхаппаратах / Г.Н. Дульнев, Э.М. Семяшкин. Л.: Энергия, 1968. 360 с.

4. Кристофидес Н. Теория графов / Н. Кристофидес. М.: Мир, 1978. 432 с.

5. Роткоп Л.Л. Обеспечения теплового режима при конструирование РЭА / Л.Л.Роткоп, Ю.Е. Спокойный. М.: Совр. радио, 1976. 232 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.