УДК 629.7.083
ОПТИМИЗАЦИЯ ПЕРИОДИЧНОСТИ УГЛУБЛЕННОГО НАЗЕМНОГО КОНТРОЛЯ АВИАЦИОННЫХ КОМПЛЕКСОВ ПО КРИТЕРИЮ МИНИМУМА ПОТЕРЬ В САМОЛЕТОВЫЛЕТАХ1
А.М. БРОННИКОВ, С.Н. КОХОВЕЦ, Д.В. МОРОЗОВ
Решается задача по оптимизации периодичности углубленного наземного контроля авиационных комплексов. В качестве критерия оптимизации выбираются средние потери в самолетовылетах.
Ключевые слова: оптимизация программы контроля, оптимизация программы технического обслуживания, критерий эффективности эксплуатации, численная оптимизация.
1. Введение
Наземный контроль работоспособности агрегатов и систем бортового оборудования самолета является важным элементом программы его технического обслуживания и ремонта. Он может производиться при любой стратегии технического обслуживания.
Наземный контроль с помощью контрольно-проверочной аппаратуры или автоматизированных систем контроля необходим, прежде всего, для тех объектов авиационного оборудования, техническое состояние которых не определяется в полете по данным бортовых средств контроля, а на земле - средств регистрации полетной информации. Он также необходим для объектов авиационных систем, функции которых “скрыты” от экипажа, а также для тех агрегатов, нарушение работоспособности которых с малой вероятностью обнаруживается экипажем в полете. При этом отказы таких систем могут приводить к невыполнению полетного задания и другим опасным последствиям.
Наземный контроль должен быть глубоким и обеспечивать выявление «скрытых» отказов. Среднее время нахождения объекта в состоянии «скрытого» отказа будет тем меньше, чем меньше интервал между двумя соседними проверками работоспособности объекта и чем выше достоверность наземного контроля. Однако, с другой стороны, при чрезмерно частом применении наземных средств для контроля возрастает время простоя самолета на работах по контролю. Это также может привести к срыву требований на выполнение полетных заданий. Таким образом, при выборе периодичности наземного контроля возникают противоречивые требования. В интересах компромиссного удовлетворения этих требований решается задача оптимизации периодичности применения наземных средств контроля на основе выбранного показателя.
В настоящее время в государственной авиации периодичности выполнения и перечни работ по наземному контролю определены регламентом технического обслуживания и ремонта и другой нормативно-технической документацией. В то же время эффективность работ по наземному контролю зависит от многих факторов: интенсивности полетов, степени старения объектов эксплуатации, влияния отказов авиационных систем на конкретные виды выполняемых полетных заданий и др. Очевидно, что перспективная программа контроля должна быть гибкой, зависеть от сложившихся условий эксплуатации с целью обеспечения максимальной эффективности ее использования.
Вопросам оптимизации программы технического обслуживания авиационных систем посвящено значительное количество работ, например, [1 - 5]. В [1] приводится современный обзор критериев оптимизации параметров технического обслуживания авиационных систем. В [2] решается задача оптимизации программы технического обслуживания, где в качестве критерия
1 Работа выполнена при финансовой поддержке РФФИ, грант № 11 -08-01174-а.
выступает коэффициент технического использования. В связи со старением существующего парка отечественных воздушных судов в эксплуатационной экономике возникло новое научное направление, связанное со скорейшим обнаружением факта начала старения отдельных элементов, узлов и агрегатов авиационных систем и принятием превентивных мер по предупреждению их отказов в процессе применения [1]. В [3] в предположении, что аварийное восстановление техники всегда стоит дороже предупредительного, получено решение задачи об оптимальных предупредительных заменах «стареющих» элементов по критерию оперативной готовности. Наряду с критериями коэффициентов технического использования, оперативной готовности, экономическими критериями (например, финансовые затраты на эксплуатацию) в ряде случаев находит применение и критерий средних потерь в самолетовылетах.
В статье решается задача по оптимизации периодичности углубленного наземного контроля авиационных систем и комплексов. В качестве критерия оптимизации выбираются средние потери в самолетовылетах. Задача оптимизации формируется как определение такой периодичности выполнения работ по углубленному наземному контролю, при котором обеспечиваются минимальные потери в самолетовылетах.
2. Постановка задачи
Принимается допущение, что у объекта эксплуатации является известной интенсивность отказов X(i), которая в общем случае может зависеть от времени. Используется стратегия эксплуатации «до отказа». Комплекс может находиться в двух состояниях: S0 - работоспособное состояние и S1 - состояние отказа. Вероятность невыполнения полетного задания при отказе навигационного комплекса составляет Рнз. Среднее время на проведение аварийно-восстановительных работ составляет Ta. Объект является восстанавливаемым. Аварийно-восстановительные работы либо полностью обновляют объект, либо восстановление происходит без обновления объекта (например, в результате регулировки). В рассматриваемом подходе можно использовать и блочное строение комплекса. Тогда аварийно-восстановительные работы проводятся заменой отказавшего блока на новый. В этом случае происходит частичное обновление объекта.
Рассматривается конечный период эксплуатации, состоящий из m полетов со средней продолжительностью полета Тп. Углубленный наземный контроль характеризуется известной вероятностью пропуска отказа ßн и известной продолжительностью работ Ткр. Наряду с углубленным наземным контролем используется бортовой контроль с известной вероятностью пропуска отказа ßo. Бортовой контроль реализуется встроенными системами контроля и летным экипажем. Подлежит определению постоянная периодичность выполнения работ по контролю тк.
В качестве критерия оптимизации используются средние потери в самолетовылетах
W(m,tK) = M[Nm(m,tK)] + v-Ta ■ M[N(m,tK)] + vTKpM[NK(m,tK)]. (1)
Здесь M [ Nm (m, Тк )] - математическое ожидание числа невыполненных полетных заданий из-за полетов с отказами авиационного комплекса; M [ N (m, тк)] - математическое ожидание числа аварийно-восстановительных работ; M [N (m, тк)] - математическое ожидание числа работ по углубленному наземному контролю; v - средняя интенсивность полетов (отношение количества полетов к временному промежутку, выраженному в часах). В показателе (1) первый член характеризует вероятностные потери в самолетовылетах из-за невыполнения полетных заданий, а второй и третий члены характеризуют вероятные потери в самолетовылетах из-за простоев на земле по устранению отказов и контролю работоспособности.
Необходимо определить периодичность выполнения наземного контроля тк, при которой критерий (1) принимает минимальное значение.
3. Математические модели
Для вычисления значения критерия (1) необходимо вычислить для каждого полета на планируемом интервале эксплуатации вероятность полета с отказом Р( ($1). В качестве времени моделирования выбирается время полета При использовании данного времени все воздействия на объект в виде работ по углубленному наземному контролю, аварийно-восстановительным работам выполняются мгновенно в межполетные интервалы. В этом случае вероятность полета с отказом ($1) определяется по следующей рекуррентной формуле
Р, ($1 ) = Р,-1$ )Р(; -1) + Р,-1Й )•(!-Р(' -1))-а + Р> -2 Й)-(1 -Р(; - 2))-(1 - а )• а +...
+ Р1($1 )(1 -р®)-П(1 -а1)-а,-1 + П(1 -а!)-а,, ' = 1,2,...,т. (2)
7=1 7=1
гГ.. Л
Здесь а( = 1 - exp
- J 1(u )du
j
- вероятность отказа объекта с наработкой iT~ .
(i-l)Tn
Формула (2) получена при допущении, что аварийно-восстановительные работы полностью обновляют объект. Если же восстановление объекта происходит без обновления объекта, то формула (2) преобразуется к виду
Р (S) = Р-1 (S )b(i -1) + Р,-1 (S )• (1 - b(i -1)) • a, + Pi-2 (S) • (1 - b(i - 2)). (1 - а,-, )• ai +...
i-2¡ \ i-1¡ \ (3)
+ P1(S1 M1 -b(1))-n(1 - aj)-ai-1 + П(1 - aj)-ai, i = l2^^ m
j=1 j=1
В этом случае наработка объекта совпадает с временем налета.
Периодичность выполнения углубленного наземного контроля тк влияет на вероятность полетов с отказом (2) или (3) за счет изменения последовательности вероятностей пропуска отказов Р(/). Например, если углубленный наземный контроль проводится через три полета, то такая последовательность будет иметь вид
b(1) = bo, b(2) = bo. b(3) = Р„, b(4) = Po. b(5) = bo. b(6) = Ьн ■■ ■ ■. b(m).
Вероятность пропуска отказов при углубленном наземном контроле меньше, чем при бортовом контроле. Поэтому в межполетные интервалы, соответствующие моменту проведения наземного контроля, происходит скачкообразное уменьшение вероятности полета с отказом. Скачки вызваны мгновенными (относительно времени полета) углубленной оценкой состояния комплекса и восстановлением его работоспособности при обнаружении отказа.
Математическое ожидание числа невыполненных полетных заданий из-за полетов с отказами объекта эксплуатации определяется следующей формулой
M [ N Нз (m, t к)] = I POS,)- (4)
i=1
Математическое ожидание числа аварийно-восстановительных работ на планируемом интервале эксплуатации определяется по формуле
m
M[N(m, Тк)] = I (1 -ß(i))p.(Si). (5)
i=1
С учетом (4) и (5) формула для критерия (1) принимает следующий вид
m m
W(m, tK) = F„ Y P(Si) + v- Ta • Z (1 -ß(i))p(Si) + vTKp
i=1 i=1
m
где ][ - обозначение целой части числа.
Необходимо определить периодичность тк в (6), обеспечивающую минимум целевой функции (6).
4. Решение оптимизационной задачи
Без введения дополнительных упрощений определить аналитически периодичность тк, обеспечивающую минимум целевой функции (6), не представляется возможным. Такая задача может решаться методами численной оптимизации. Причем исследования показывают, что в общем случае целевая функция (6) может содержать и локальные минимумы. Поэтому гарантированное оптимальное решение может быть получено на основе полного перебора всех возможных значений периодичности тк = 1, 2, ..., т+1. Значению тк = т+1 в соответствии с формулой (6) соответствует случай, когда на рассматриваемом интервале эксплуатации из т полетов углубленный наземный контроль не проводится.
Таким образом, оптимизационная задача решается следующим образом. Задается начальное значение тк = 1. В зависимости от вида восстановления при проведении аварийновосстановительных работ рассчитываются вероятности полетов с отказом для каждого ,-го полета (1=1, 2, ... т). Полученные значения подставляются в формулу целевой функции (6) и определяется ее значение. Затем тк увеличивается на единицу, и расчеты повторяются вновь. Наконец из т+1 значений целевой функции Ж (т, Тк) определяется минимальное. Ему соответ-
_опт
ствует оптимальное значение Тк .
На рис. 1 в качестве примера приведены графики зависимостей средних потерь в самолетовылетах от периодичности контроля для четырех постоянных значений интенсивности отказов, равных 0,01 1/ч, 0,005 1/ч, 0,0025 1/ч и 0,001 1/ч. Зависимости рассчитаны для следующих условий: ¿п=2,5 ч, т = 200, V = 0,08 1/ч, р0=0,9, рн=0,1, Рнз=0,4, Ткр=1 ч, Та=3 ч. Для удобства восприятия периодичность контроля Тк приведена в часах.
При X = 0,01 1/ч оптимальная периодичность контроля составляет хкпт = 12,5 ч, минимальные потери в самолетовылетах Ж1опт (т, Т^Г ) = 10,7 . При X = 0,005 1/ч оптимальная периодичность контроля составляет тоЛт = 17,5 ч. Минимальные потери в самолетовылетах Ж2опт (т, ) = 6,8. Для кривой потерь при X = 0,005 на рисунке отчетливо виден второй мини-
мум при тк » 50 ч. Но данный минимум является локальным. При X = 0,0025 1/ч оптимальная периодичность контроля составляет топт = 30 ч. Минимальные потери в самолетовылетах Ж3опт (т, Т™^) = 4,3. При X = 0,001 экстремум у кривой потерь отсутствует. Следовательно, в
этом случае проводить работы по наземному контролю нецелесообразно.
Из приведенных зависимостей потерь в самолетовылетах от периодичности наземного контроля следует, что даже при наличии минимума целевой функции не всегда целесообразно на практике назначать оптимальную периодичность работ по контролю. Так, например, если в рассматриваемом примере при X = 0,0025 1/ч вместо оптимальной периодичности тЮ™ = 30 ч назначить ткз = 80 ч, то потери в самолетовылетах будут отличаться от оптимальных всего на несколько процентов. Но в то же время, если при X = 0,01 1/ч вместо оптимальной периодичности Т°пт = 12,5 ч назначить тк1 = 80 ч, то потери в самолетовылетах будут отличаться от оптимальных более чем на 30 процентов, что может оказаться весьма существенным. Следовательно, при практическом решении задачи определения периодичности работ по углубленному наземному контролю недостаточно определить оптимальное значение т^”1". Необходимо дополнительно исследовать зависимость Ж (т, Тк) на эффективность оптимального решения.
Рис. 1. Зависимости показателей средних потерь в самолетовылетах от периодичности контроля при различных интенсивностях отказов
На рис. 2 приведены графики зависимостей средних потерь в самолетовылетах от периодичности контроля для значений вероятности пропуска отказа при наземном контроле (Рн=0,1; Рн=0,5; рн=0,8). Исходные данные те же, что и для зависимостей потерь на рис. 2 (Тп=2,5 ч, т = 200, V = 0,08 1/ч, р0=0,9, Рнз=0,4, Ткр=1 ч, Та=3 ч, интенсивность отказов принята равной X=0,01 1/ч).
С ухудшением достоверности контроля оптимальное значение периодичности контроля уменьшается: при рн=0,1 т^™ = 12,5 ч; при рн=0,5 топт = 7,5 ч. В случае приближения достоверности наземного контроля к достоверности бортового контроля проводить работы по наземному контролю нецелесообразно, как следует из зависимости при рн=0,8.
Рис. 2. Зависимости показателей средних потерь в самолетовылетах от периодичности контроля при различных достоверностях наземного контроля
5. Заключение
Использование предложенной методики оптимизации периодичности работ по углубленному наземному контролю авиационных комплексов позволяет научно обосновывать периодичности выполнения этих работ, а также разрабатывать при необходимости гибкое планирование периодичности наземного контроля в зависимости от сложившихся условий эксплуатации. Это позволит повысить эффективность использования авиационных комплексов и их наземной эксплуатации.
ЛИТЕРАТУРА
1. Барзилович Е.Ю., Данилов В.Ю., Матвиенко Г.П., Прокопьева Е.А. Об экономии эксплуатационных затрат за счет оптимизации параметров технического обслуживания авиационных систем // Научный Вестник МГТУ ГА. - 2006. - № 106. - С. 108-113.
2. Полетаев В.П., Богданов Д.А. Моделирование и расчет периодичности профилактического обслуживания технических систем по эмпирической функции надежности // Конструкции из позиционных материалов. - 2007. - № 4. - С. 58-67.
3. Байков А.Е. Обоснование оптимальной процедуры предупредительных замен стареющих элементов авиационных систем // Научный Вестник МГТУ ГА. - 2003. - № 63. - С. 53 - 65.
4. Емелин Н.М. Отработка систем технического обслуживания летательных аппаратов. - М.: Машиностроение,
1995.
5. Управление техническим состоянием динамических систем / под общ. ред. И.Е. Казакова. - М.: Машиностроение, 1995.
OPTIMIZATION OF THE PERIODICITY OF GROUND MONITORING OF AIRBORNE INTEGRATED SYSTEMS BY USING THE TEST FOR MINIMUM LOSSES IN AIRCRAFT FLIGHTS
Bronnikov A.M., Kochovec S.N., Morozov D.V.
In this paper, the problem on optimization of the periodicity of thorough ground monitoring of airborne integrated systems is solved. As an optimality test, mean losses in aircraft flights are chosen.
Key words: optimization of the monitoring programme, optimization of the maintenance programme, the criterion of efficiency of the operation of, numerical optimization.
Сведения об авторах
Бронников Андрей Михайлович, 1969 г.р., окончил Иркутское ВВАИУ (1991), доктор технических наук, начальник кафедры эксплуатации комплексов авиационного оборудования и систем объективного контроля ВУНЦ ВВС «Военно-воздушная академия им. проф. Н.Е. Жуковского и Ю.А. Гагарина», автор более 80 научных работ, область научных интересов - автоматизация управления полетом летательных аппаратов, управление техническим состоянием авиационной техники, автоматизированные системы контроля.
Коховец Сергей Николаевич, 1983 г.р., окончил ВВИА им. проф. Н.Е. Жуковского (2010), инженер по авиационному оборудованию в/ч 49719, автор 4 научных работ, область научных интересов -управление техническим состоянием авиационной техники.
Морозов Дмитрий Владимирович, 1978 г.р., окончил Дальневосточный ГТУ (2006), адъюнкт Воронежского авиационного инженерного университета, автор 6 научных работ, область научных интересов - автоматизированные системы контроля.