Научная статья на тему 'Оптимизация гальванической ванны с дополнительными катодами и биполярными электродами'

Оптимизация гальванической ванны с дополнительными катодами и биполярными электродами Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
403
54
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НЕРАВНОМЕРНОСТЬ ГАЛЬВАНИЧЕСКОГО ПОКРЫТИЯ / ПОВЕРХНОСТЬ / ДЕТАЛЬ СЛОЖНОЙ ФОРМЫ / ДОПОЛНИТЕЛЬНЫЙ КАТОД / БИПОЛЯРНЫЙ ЭЛЕКТРОД / ЗАДАЧА ОПТИМИЗАЦИИ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Литовка Юрий Владимирович, Као Ван Зыонг, Соловьёв Денис Сергеевич

Исследуется возможность снижения неравномерности гальванического покрытия на деталях сложной формы. Предложен способ нанесения гальванического покрытия, сочетающий в себе использование дополнительных катодов и биполярных электродов. Поставлена задача оптимизации гальванической ванны, в ходе решения которой необходимо найти количество дополнительных катодов, биполярных электродов, их размеры и координаты их базовых точек в пространстве гальванической ванны. Определены ограничения, которые должны выполняться при решении задачи. Построена математическая модель для расчета распределения толщины покрытия на поверхности детали в гальванической ванне. Разработаны алгоритмы для определения количества дополнительных катодов и биполярных электродов и определения размеров и места расположения дополнительных катодов и биполярных электродов, при которых значение критерия неравномерности будет минимальным. Рассмотрен пример, подтверждающий, что при сложной геометрической форме детали-катода использование дополнительных катодов и биполярных электродов позволяет получить более равномерное гальваническое покрытие поверхности детали. Показано, что неравномерность покрытия по сравнению с традиционной технологией при использовании (при оптимальном количестве, размерах и расположении) только дополнительных катодов уменьшается на 32,48 %, только биполярных электродов на 6,8 %, при их одновременном использовании на 37 %.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Литовка Юрий Владимирович, Као Ван Зыонг, Соловьёв Денис Сергеевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

OPTIMIZATION OF ELECTROPLATING BATH WITH ADDITIONAL CATHODES AND BIPOLAR ELECTRODES

The possibility of reducing the non-uniformity of the plating on the complex shaped parts is studied. The method of plating that combines the use of additional cathodes and bipolar electrodes is presented. The task of optimization of the plating bath, during the solution of which it is necessary to find the number of additional cathodes, bipolar electrodes, their dimensions and the coordinates of the base points in the space of the plating bath, is set. The limits, which must be carried out when solving the problem, are defined. A mathematical model to calculate the distribution of the coating thickness on the surface of the items in the plating bath is designed. The algorithms for determining the number of additional cathodes and bipolar electrodes and the size and location of the additional cathode (additional cathodes) and bipolar electrode (bipolar electrodes), at which the values of non-uniformity are minimal, are developed. The paper considers the example confirming that with the complex geometry of the parts of the cathode the use of additional cathodes and bipolar electrodes provides a more uniform plating surface of the part. It is shown that the non-uniformity of the coating compared to the conventional technology while using (at the optimum number, size and location) only additional cathodes is reduced by 32.48 %, only bipolar electrodes by 6.8 %, with their simultaneous use by 37 %.

Текст научной работы на тему «Оптимизация гальванической ванны с дополнительными катодами и биполярными электродами»

УПРАВЛЕНИЕ, МОДЕЛИРОВАНИЕ, АВТОМАТИЗАЦИЯ

УДК 621.357

Ю. В. Литовка, Ван Зыонг Као, Д. С. Соловьёв

ОПТИМИЗАЦИЯ ГАЛЬВАНИЧЕСКОЙ ВАННЫ С ДОПОЛНИТЕЛЬНЫМИ КАТОДАМИ И БИПОЛЯРНЫ1МИ ЭЛЕКТРОДАМИ

Исследуется возможность снижения неравномерности гальванического покрытия на деталях сложной формы. Предложен способ нанесения гальванического покрытия, сочетающий в себе использование дополнительных катодов и биполярных электродов. Поставлена задача оптимизации гальванической ванны, в ходе решения которой необходимо найти количество дополнительных катодов, биполярных электродов, их размеры и координаты их базовых точек в пространстве гальванической ванны. Определены ограничения, которые должны выполняться при решении задачи. Построена математическая модель для расчета распределения толщины покрытия на поверхности детали в гальванической ванне. Разработаны алгоритмы для определения количества дополнительных катодов и биполярных электродов и определения размеров и места расположения дополнительных катодов и биполярных электродов, при которых значение критерия неравномерности будет минимальным. Рассмотрен пример, подтверждающий, что при сложной геометрической форме детали-катода использование дополнительных катодов и биполярных электродов позволяет получить более равномерное гальваническое покрытие поверхности детали. Показано, что неравномерность покрытия по сравнению с традиционной технологией при использовании (при оптимальном количестве, размерах и расположении) только дополнительных катодов уменьшается на 32,48 %, только биполярных электродов - на 6,8 %, при их одновременном использовании - на 37 %.

Ключевые слова: неравномерность гальванического покрытия, поверхность, деталь сложной формы, дополнительный катод, биполярный электрод, задача оптимизации.

Введение

Для придания поверхности деталей специальных свойств используются гальванические покрытия [1]. Показателями, характеризующими качество гальванических покрытий, являются равномерность, блеск, микротвёрдость, коррозионная стойкость, прочность сцепления электрохимических покрытий с основой и др. [2]. Равномерность представляет собой одно из самых важнейших свойств гальванического покрытия. В гальваническом процессе неравномерность является негативным явлением, приводящим к браку, перерасходу энергии и металлов покрытия. Неравномерность нанесённого покрытия обусловлена неоднородностью электрического поля, особенно когда деталь имеет сложную форму. Это объясняется чем, что толщина покрытия на краях обычно больше, т. к. в таких точках плотность тока больше, чем в других местах. Для устранения этого эффекта можно использовать гальваническую ванну с дополнительными катодами [3]. Эти катоды располагают около краёв детали-катода и подключают к токоподво-дящим катодным штангам ванны. При использовании дополнительных катодов плотность тока у краёв основного катода будет уменьшаться, следовательно, будет уменьшаться и толщина покрытия на крайних точках основного катода.

В углублениях, «глухих» отверстиях, напротив, толщина покрытия будет меньше (иногда покрытия вообще не будет). Для устранения данного эффекта можно использовать гальваническую ванну с биполярными электродами [3, 4]. Биполярные электроды, не находящиеся в электрическом контакте с токоподводящими штангами ванны, располагают между анодом и катодом. При гальваническом процессе поверхность биполярного электрода делится на две части.

Часть поверхности, приближённая к аноду, будет выполнять функцию катода, а часть поверхности, приближённая к катоду, - функцию анода. В результате электрическое поле в ванне искажается и, в зависимости от расположения биполярных электродов, можно получить более равномерное покрытие.

В случае, если обрабатываемая деталь имеет сложную геометрическую форму, то рассмотренные способы по отдельности не смогут обеспечить требуемую равномерность гальванического покрытия.

Целью нашей работы являлось изучение возможности снижения неравномерности гальванического покрытия на деталях сложной формы.

Для достижения поставленной цели предлагается способ нанесения гальванического покрытия, сочетающий в себе использование дополнительных катодов и биполярных электродов. Отметим, что эффективное применение данного способа невозможно без определения оптимального расположения и конфигурации дополнительных катодов и биполярных электродов.

Для математической постановки задачи оптимизации гальванической ванны с дополнительными катодами и биполярными электродами примем следующие допущения:

- количество дополнительных катодов - Кд, количество биполярных электродов - Кб;

- дополнительные катоды, биполярные электроды и анод представляют собой прямоугольные тонкие пластины размерами Рд-1-; х Рд-2-;, г = 1, 2, ..., Кд, Рб-1-г х Рб-2-/, } = 1, 2, ..., Кб и Ра-1 х Ра-2 соответственно. Толщина дополнительных катодов и биполярных электродов в расчётах не учитывается;

- базовыми точками дополнительных катодов, биполярных электродов и анода будет являться пересечение их диагоналей. Базовые точки будут использоваться для задания положения этих электродов в пространстве ванны;

- координаты базовых точек: для дополнительных катодов хд-;, уд-;, гд-ь г = 1, 2, ..., Кд; для биполярных электродов хбф уб-/-, гб-/, } = 1, 2, ..., Кб; для анода ха, уа, zа;

- положение основного катода задаётся координатами точек его перегибов. Эти координаты сохраняются в массиве та88К [хк, ук, гк], к = 1, 2, ..., п; где п - количество точек перегибов основного катода.

Пример задания размеров дополнительного катода и координат его базовой точки (хд, уд, zд) представлен на рис. 1.

Математическая постановка задачи оптимизации гальванической ванны с дополнительными катодами и биполярными электродами

В качестве критерия оптимизации будем использовать критерий неравномерности распределения толщины гальванического покрытия на катоде-изделии, который рассчитывается по формуле

где 5тш - минимальная толщина покрытия; 5; (х, у, г) - толщина покрытия в точке катода с координатами х, у, г; т - количество точек, в которых вычисляется толщина покрытия.

С учетом вышесказанного математическая постановка задачи оптимизации гальванической ванны с дополнительными катодами и биполярными электродами формулируется следующим образом.

Рд_1

Рд_1

Рис. 1. Пример задания конфигурации дополнительного катода

(1)

Найти количество дополнительных катодов Кд, биполярных электродов Кб, их размеры (Рд-1-/ х Рд-2-г, I = 1, 2, ..., Кд; Рб-1-/- х Рб-2-у, } =1, 2, ..., Кб) и координаты их базовых точек (хд-г, уд-г, гд-!-, I = 1, 2, ..., Кд; х^, убф гб-/,} = 1, 2, ..., Кб) в пространстве гальванической ванны, доставляющих минимум критерию неравномерности (1): ^^-шт. При этом должен выполняться ряд ограничений:

- минимальная толщина покрытия на поверхности детали должна быть не менее заданной:

^шш — ^зад,

где 5зад - заданная по условиям технологического процесса толщина покрытия, которая должна быть обеспечена в любой точке поверхности детали;

- условия нахождения дополнительных катодов внутри ванны:

Р

Хд_.--^>0, I = 1, 2,...,Кл;

2

или

или

или

Р

хд+ ^ < Нх, i = 1, 2 ... ,Кд; 0 < уд_ г. < Ну, i = 1>2> ... , Кд;

Р 2

гд i —^ >0, i = 1, 2,...,Кд;

д _. 2 д

Р 2 .

гд i + < Hz, i = 1,2, ... ,Кд;

д _ * 2 z д

условия непересечения дополнительных катодов с основным катодом: Р

хд i + д_ _' < min(х,), i = 1, 2,..., К; к = 1, 2,..., n;

д _» 2 к д

Рд_1_

хд i--> max(хк), i = 1,2, ... , Кд; к = 1,2,... , n;

Р 2 •

гд_i < min(zk), i = 1, 2, ..., Кд; к = 1, 2,..., n;

Р 2

гд_i —^ > max(zk), i = 1, 2, ., Кд; к = 1, 2, ., n;

- условия нахождения биполярных электродов внутри ванны и непересечения с катодом: 0 < хб_j < Нх; хб_j Ф Хк, j = 1, 2,..., Кб; к = 1, 2, ..., n;

Р

У а < Уб _ j--^, j = 1, 2,..., Кб;

Р

Уб_j + б_!_j < max(Ук), j = 1, 2,..., Кб; к = 1, 2, ..., n;

б _2_ j

z6 _ j

> 0, j = 1, 2,..., Кб;

Z6_j + < H, j =1, 2 Кб;

- условия непересечения дополнительных катодов:

x

д _ i+1

Р

д_1_i+1 ■ хд ;--^ > 0, i =1, 2, Кд;

или

z

•д _ i+1

Р

Рд _1_ i+

2

д _2_ i+1

д _ г

- — ■/ --

2

д _2_ i

2

> 0, i =1, 2, К;

- условия непересечения биполярных электродов:

хб _ ]+1 - хб_ ] > 0 1 =1, 2, Кб

или

z

б _2_ j+1

■б _ j+1

--'/ .--

2

45 _ j

б _2_ j 2

>0, j =1, 2,..., Кб.

Расчёт распределения толщины покрытия на поверхности изделия в гальванической ванне выполняется с помощью математической модели, состоящей из следующих уравнений:

Э

5( x, у, z) = —(x, У, z )T; Р

ik (x, у, z) = -Xgrad ф(x, у, z);

av av дф =_

dx2 ду2 dz2 '

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

r1 'и=0;

dn

ф( x, y, z ) + Fa (г; ( x, y, z))/' = U а ; ф( x, у, z) + FK (iK (x, y, z))/'к = 0; ф(x,у,z) + FK(iK(x,у,z))/'K__; = 0, i = 1,2,..., Кд; Ф(x,у,z) + Fhe(i(x,у,z))/'e_j = Uhe, j = 1,2,..., Кб;

'к_д_i = ¥(Рд_1_i, Рд_2_i, xд_i, уд_i, zд_i i = ..., Кд ;

'he _ j = Y(Phe _1_ j , Phe _2_ j , xhe _ j , уЬе _ j , zhe _ j ), j = 1, 2, ••• , Кб

(2)

(3)

(4)

(5)

(6)

(7)

(8) (9)

(10) (11)

где Э - электрохимический эквивалент металла покрытия; р - плотность металла покрытия; П - выход металла по току; гк(х, у, г) - катодная плотность тока; х, у, г - линейные координаты; Т - время нанесения покрытия; % - электропроводность электролита; ф (х, у, г) - потенциал

2

д _ i

электрического поля в любой точке гальванической ванны с координатами (х, у, z); n - нормаль к поверхности изолятора; SH - площадь поверхности изолятора; Fa(ia(x, у, z)), Fx(ix(x, у, z)), Fbe(i(x, у, z)) - функции поляризации на аноде, катоде (дополнительном катоде) и биполярном электроде соответственно; Sa, 5к, S^j, Sbe - площадь поверхности анода, катода, дополнительных катодов и биполярных электродов соответственно; i - номер дополнительного катода; j - номер биполярного электрода; Ua, Ube - напряжение на аноде и на биполярном электроде соответственно; у - функция зависимости площади дополнительных катодов и биполярных электродов от их размеров и координат базовых точек.

В математическую модель входит закон Фарадея (2) для определения толщины покрытия на катоде; закон Ома в дифференциальной форме (3) для определения плотности тока; дифференциальное уравнение Лапласа (4) для нахождения распределения потенциала каждой точки в объёме электролита; уравнение краевого условия (5) на границе «электролит - изоляторы», а также краевых условий на аноде (6), катоде (7), дополнительных катодах (8) и биполярных электродах (9); уравнения зависимости площади дополнительных катодов (10) и биполярных электродов (11) от их размеров и координат базовых точек. Центральным уравнением математической модели является дифференциальное уравнение Лапласа второго порядка в частных производных с краевыми условиями второго и третьего рода. Его решение детально рассмотрено в [4-7].

Алгоритм решения задачи оптимизации гальванической ванны с дополнительными катодами и биполярными электродами

Решение задачи оптимизации ванны с дополнительными катодами и биполярными электродами заключается в определении их количества, размеров и мест расположения в пространстве гальванической ванны, при которых значение критерия неравномерности (1) будет минимальным. Для нахождения количества дополнительных катодов и биполярных электродов используется следующий алгоритм (рис. 2).

i = 0; j = 0

X

Расчет Ro

i = i + 1; j = 0 Г~

Нахождение размеров и места расположения дополнительного катода, при которых значение критерия неравномерности Й1 будет минимальным

Нахождение размеров и места расположения биполярного электрода, при которых значение критерия неравномерности Й1 будет минимальным

Рис. 2. Алгоритм нахождения количества дополнительных катодов и биполярных электродов

1. Рассчитываем значение критерия неравномерности при отсутствии дополнительных катодов и биполярных электродов. Сохраняем это значение как Я0.

2. Добавляем дополнительный катод и осуществляем нахождение размеров и места расположения дополнительного катода, при которых значение критерия неравномерности будет минимальным. Сохраняем это значение критерия неравномерности как Я1.

3. Сравниваем значения Я0 и

- если Я1 > Я 0, сохраняем количество дополнительных катодов и переходим к шагу 4:

- если Я1 < Я0, вычисляем модуль разности между Я0 и Я1 и сравниваем это значение с заданной точностью е. Если модуль разности между Я0 и Я1 меньше е, то охраняем количество дополнительных катодов и переходим к шагу 4. Если модуль разности между Я0 и Я1 больше е, то присваиваем значение Я1 значению Я0 и возвращаемся к шагу 2.

4. Добавляем биполярный электрод и осуществляем нахождение размеров и места расположения биполярного электрода, при которых значение критерия неравномерности будет минимальным. Сохраняем это значение критерия неравномерности как Я 1.

5. Сравниваем значения Я0 и Я1:

- если Я1 > Я0, сохраняем количество биполярных электродов и завершаем алгоритм;

- если Я1 < Я0, вычисляем модуль разности между Я0 и Я1 и сравниваем это значение с заданной точностью е. Если модуль разности между Я0 и Я1 меньше е, сохраняем количество биполярных электродов и завершаем алгоритм. Если модуль разности между Я0 и Я1 больше е, то присваиваем значение Я1 значению Я0 и возвращаемся к шагу 4.

Для нахождения размеров и места расположения дополнительного катода, при которых значение критерия неравномерности будет минимальным, используется следующий алгоритм.

1. Задаём начальные размеры (Рд_10, Рд_20) и координаты базовых точек (хд0, уд0, гд0) дополнительного катода так, чтобы этот дополнительный катод не пересекал основный катод и анод или находился между ними.

2. С помощью рассмотренной системы уравнений математической модели без учёта дополнительного катода рассчитываем значение критерия неравномерности и сохраняем как Я3.

3. С помощью математической модели и с учётом дополнительного катода заново рассчитываем значение критерия неравномерности и сохраняем как Я4.

4. Сравниваем Я3 и Я4. Если Я3 меньше Я4, то сохраняем текущие размеры (Рд_10, Рд_20) и координаты базовых точек (хд0, уд0, гд0). Если Я3 больше Я4, то используем метод покоординатного спуска [8] для нахождения оптимальных размеров (Рд_10, Рд_20) и координат базовых точек (хд0, уд0, гд0) и возвращаемся к шагу 3.

5. На каждом шаге осуществляется проверка условий непересечения дополнительных катодов с основным катодом, стенками ванны и другими дополнительными катодами.

6. Цикл заканчивается при достижении дополнительным катодом границы изоляторов.

Алгоритм нахождения размеров и места расположения биполярного электрода осуществляется аналогично.

Пример работы алгоритма оптимизации гальванической ванны с дополнительными катодами и биполярными электродами

В качестве примера рассматривается гальваническая ванна размерами 200 х 200 х 150 мм. В ванне располагаются плоский анод размерами 100 х 100 мм и деталь-катод, имеющая сложную геометрическую форму. Размеры и расположение анода и катода показаны на рис. 3, 4.

Рис. 3. Схема расположения детали-катода в гальванической ванне (вид спереди)

Рис. 4. Схема гальванической ванны с расположением анода и детали-катода (вид сверху): 1 - деталь-катод; 2 - анод

При отсутствии дополнительных катодов и биполярных электродов рассчитанное значение критерия неравномерности (1) составляет = 2,207. Толщина слоя гальванического покрытия на поверхности детали-катода показана на рис. 5.

Рис. 5. Гальваническое покрытие на детали при отсутствии дополнительных катодов и биполярных электродов

Решение задачи оптимизации по вышеуказанному алгоритму позволило найти следующие параметры (рис. 6, 7):

- количество дополнительных катодов: 4;

- размер первого дополнительного катода: 40 х 80 мм;

- размер второго дополнительного катода: 40 х 80 мм;

- размер третьего дополнительного катода: 25 х 50 мм;

- размер четвёртого дополнительного катода: 25 х 50 мм;

- базовые координаты первого дополнительного катода: 25; 160; 45;

- базовые координаты второго дополнительного катода: 175; 160; 45;

- базовые координаты третьего дополнительного катода: 100; 160; 17,5;

- базовые координаты четвёртого дополнительного катода: 100; 160; 82,5;

- количество биполярных электродов: 2;

- размер первого биполярного электрода: 10 х 10 мм;

- размер второго биполярного электрода: 10 х 10 мм;

- базовые координаты первого биполярного электрода: 80; 155; 50;

- базовые координаты второго биполярного электрода: 120; 155; 50.

2

5

z

\ У3 --►

J

/ 7 V 6

о x

Рис. 6. Проекция ванны на плоскость ХОХ: 1 - деталь-катод; 2-5 - дополнительные катоды; 6, 7 - биполярные электроды

10 *-* о 40 I-J

ю 6 ° 10

г 7 - > -4;5

,10

40

Рис. 7. Схема расположения электродов в гальванической ванне после решения задачи оптимизации (вид сверху): 1- деталь-катод; 2-5 - дополнительные катоды; 6, 7 - биполярные электроды; 8 - анод

При использовании только дополнительных катодов значение критерия неравномерности составило Я = 1,49. Распределение слоя нанесённого покрытия на детали-катоде показано на рис. 8.

В этом случае уменьшение неравномерности по сравнению с традиционной технологией (один анод, одна деталь-катод) составляет 32,48 %.

мкм

Рис. 8. Слой покрытия на детали-катоде при использовании только дополнительных катодов

При использовании только биполярных электродов значение критерия неравномерности составило Я = 2,057. Распределение слоя нанесённого покрытия на детали-катоде показано на рис. 9.

Уменьшение неравномерности по сравнению с традиционной технологией (один анод, одна деталь-катод) в этом случае составляет 6,8 %.

мкм

Рис. 9. Слой покрытия на детали-катоде при использовании только биполярных электродов

При одновременном использовании дополнительных катодов и биполярных электродов значение критерия неравномерности составило Я = 1,39. Распределение слоя нанесённого покрытия на детали-катоде показано на рис. 10.

В этом случае уменьшение неравномерности по сравнению с традиционной технологией (один анод, одна деталь-катод) составляет 37 %.

М КМ

20 -т—-------______

15

10

Рис. 10. Слой покрытия на детали-катоде при одновременном использовании дополнительных катодов и биполярных электродов

Таким образом, с помощью дополнительных катодов и биполярных электродов на поверхности основного катода получается более равномерное покрытие. В случае, когда основной катод имеет другую сложную геометрическую форму, возможно использовать также выше проведенную математическую модель и алгоритмы для решения задачи оптимизации гальванической ванны с дополнительными катодами и биполярными электродами.

Заключение

По результатам исследований можно сделать следующие выводы.

- при сложной геометрической форме детали-катода одновременное использование дополнительных катодов и биполярных электродов позволяет получить более равномерное гальваническое покрытие поверхности детали;

- при использовании только дополнительных катодов (с оптимальными количеством, размерами и расположением) уменьшение неравномерности для рассматриваемого примера по сравнению с традиционной технологией (один анод, одна деталь-катод) составляет 32,48 %;

- при использовании только биполярных электродов (с оптимальными количеством, размерами и расположением) уменьшение неравномерности составляет 6,8 %;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- при одновременном оптимальном использовании дополнительных катодов и биполярных электродов уменьшение неравномерности составляет 37 %.

СПИСОК ЛИТЕРАТУРЫ

1. Малахов А. И. Коррозия и основы гальваностегии / А. И. Малахов, А. И. Тютина. М.: Химия, 1977. 216 с.

2. Кудрявцев Н. Т. Электрохимические покрытия металлами / Н. Т. Кудрявцев. М.: Химия, 1979. 352 с.

3. Каданер Л. И. Равномерность гальванических покрытий / Л. И. Каданер. Харьков: Изд-во ХГУ, 1960. 414 с.

4. Литовка Ю. В. Численный расчёт электрического поля в гальванической ванне с биполярными электродами / Ю. В. Литовка, В. В. Михеев // Теоретические основы химической технологии. 2006. Т. 40, № 3. С. 328-334.

5. Литовка Ю. В. Решение уравнения Лапласа при моделировании процесса нанесения никелевого гальванического покрытия с использованием реверса тока / Ю. В. Литовка, В. В. Егоров // 26 Междунар. науч. конф. «Математические методы в технике и технологиях» (9-13 сентября 2013 г., Ангарск). Ангарск: АГТА, 2013. С. 16-18.

6. Литовка Ю. В. Проверка адекватности математической модели распределения гальванического покрытия на детали в многоанодной ванне / Ю. В. Литовка, Д. С. Соловьёв // Вестн. Тамбов. гос. техн. ун-та. 2012. Т. 18, № 1. С. 128-135.

7. Соловьёв Д. С. Постановка задачи оптимального управления реверсивным режимом нанесения гальванического покрытия в ванне со многими анодами / Д. С. Соловьёв, В. В. Конкина, Ю. В. Литовка // Вестн. Тамбов. гос. техн. ун-та. 2015. Т. 21, № 2. С. 248-256.

8. Сухарев А. Г. Курс методов оптимизации / А. Г. Сухарев, А. В. Тимохов, В. В. Фёдоров. М.: Наука, 1986. 328 с.

Статья поступила в редакцию 13.03.2016

ИНФОРМАЦИЯ ОБ АВТОРАХ

Литовка Юрий Владимирович - Россия, 392000, Тамбов; Тамбовский государственный технический университет, д-р техн. наук, профессор; профессор кафедры «Системы автоматизированной поддержки принятия решений»; [email protected].

Као Ван Зыонг - Россия, 392000, Тамбов; Тамбовский государственный технический университет; аспирант кафедры «Системы автоматизированной поддержки принятия решений»; [email protected].

Соловьёв Денис Сергеевич - Россия, 392000, Тамбов; Тамбовский государственный технический университет, канд. техн. наук; ассистент кафедры «Информационные системы и защита информации»; [email protected].

Yu. V. Litovka, Van Duong Cao, D. S. Soloviev

OPTIMIZATION OF ELECTROPLATING BATH WITH ADDITIONAL CATHODES AND BIPOLAR ELECTRODES

Abstract. The possibility of reducing the non-uniformity of the plating on the complex shaped parts is studied. The method of plating that combines the use of additional cathodes and bipolar electrodes is presented. The task of optimization of the plating bath, during the solution of which it is necessary to find the number of additional cathodes, bipolar electrodes, their dimensions and the coordinates of the base points in the space of the plating bath, is set. The limits, which must be carried out when solving the problem, are defined. A mathematical model to calculate the distribution

of the coating thickness on the surface of the items in the plating bath is designed. The algorithms for determining the number of additional cathodes and bipolar electrodes and the size and location of the additional cathode (additional cathodes) and bipolar electrode (bipolar electrodes), at which the values of non-uniformity are minimal, are developed. The paper considers the example confirming that with the complex geometry of the parts of the cathode the use of additional cathodes and bipolar electrodes provides a more uniform plating surface of the part. It is shown that the non-uniformity of the coating compared to the conventional technology while using (at the optimum number, size and location) only additional cathodes is reduced by 32.48 %, only bipolar electrodes -by 6.8 %, with their simultaneous use - by 37 %.

Key words: unevenness of galvanic covering, surface, part of complex shape, additional cathode, bipolar electrode, problem of optimization.

REFERENCES

1. Malakhov A. I., Tiutina A. I. Korroziia i osnovy gal'vanostegii [Corrosion and foundations of electroplating]. Moscow, Khimiia Publ., 1977. 216 p.

2. Kudriavtsev N. T. Elektrokhimicheskiepokrytiia metallami [Electrochemical coating with metals]. Moscow, Khimiia Publ., 1979. 352 p.

3. Kadaner L. I. Ravnomernost' gal'vanicheskikh pokrytii [Uniformity of galvanic coatings]. Kharkiv, Izd-vo KhGU, 1960. 414 p.

4. Litovka Iu. V., Mikheev V. V. Chislennyi raschet elektricheskogo polia v gal'vanicheskoi vanne s bipoliarnymi elektrodami [Numerical calculation of electric field in a plating bath with bipolar electrodes]. Teo-reticheskie osnovy khimicheskoi tekhnologii, 2006, vol. 40, no. 3, pp. 328-334.

5. Litovka Iu. V., Egorov V. V. Reshenie uravneniia Laplasa pri modelirovanii protsessa naneseniia ni-kelevogo gal'vanicheskogo pokrytiia s ispol'zovaniem reversa toka [The solution of Laplace's equation in the simulation process for applying nickel plating using current reversal]. 26 Mezhdunarodnaia nauchnaia konferent-siia «Matematicheskie metody v tekhnike i tekhnologiiakh» (9-13 sentiabria 2013 g., Angarsk). Angarsk, Angar-skaia gosudarstvennaia tekhnicheskaia akademiia, 2013. P. 16-18.

6. Litovka Iu. V., Solov'ev D. S. Proverka adekvatnosti matematicheskoi modeli raspredeleniia gal'vani-cheskogo pokrytiia na detali v mnogoanodnoi vanne [Inspection of the adequacy of the mathematical model of the distribution of the plating on the details in multi-anode bath]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 2012, vol. 18, no. 1, pp. 128-135.

7. Solov'ev D. S., Konkina V. V., Litovka Iu. V. Postanovka zadachi optimal'nogo upravleniia reversivnym rezhimom naneseniia gal'vanicheskogo pokrytiia v vanne so mnogimi anodami [Statement of the problem of optimal control of reversible mode of plating in a bath with a number of anodes]. Vestnik Tambovskogo gosu-darstvennogo tekhnicheskogo universiteta, 2015, vol. 21, no. 2, pp. 248-256.

8. Sukharev A. G., Timokhov A. V., Fedorov V. V. Kurs metodov optimizatsii [Course of optimization]. Moscow, Nauka Publ., 1986. 328 p.

The article submitted to the editors 13.03.2016

INFORMATION ABOUT THE AUTHORS

Litovka Yuriy Vladimirovich — Russia, 392000, Tambov; Tambov State Technical University; Doctor of Technical Sciences, Professor; Professor of the Department "Systems of Automated Decision Support"; [email protected].

Cao Van Duong — Russia, 392000, Tambov; Tambov State Technical University; Postgraduate Student of the Department "Systems of Automated Decision Support"; polyc [email protected].

Soloviev Denis Sergeevich — Russia, 392000, Tambov; Tambov State Technical University, Candidate of Technical Sciences; Assistant of the Department "Information Systems and Information Security"; [email protected].

i Надоели баннеры? Вы всегда можете отключить рекламу.