Научная статья на тему 'OPTIMISATION OF THE BORE REAMING PROCESS IN HYBRID STACKS MADE OF CARBON FIBRE AND METAL ALLOYS'

OPTIMISATION OF THE BORE REAMING PROCESS IN HYBRID STACKS MADE OF CARBON FIBRE AND METAL ALLOYS Текст научной статьи по специальности «Технологии материалов»

CC BY
33
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
iPolytech Journal
ВАК
Ключевые слова
REAMING / REAMER / CARBON FIBER / HYBRID STACK / TITANIUM ALLOY / ANOVA

Аннотация научной статьи по технологиям материалов, автор научной работы — Chashchin N.S.

The present work aims to improve the existing technology of reaming bores in hybrid stacks containing a composite material interlayered with titanium and aluminium alloys. The study was conducted using statistical approaches at the stages of experimental design and data processing in the Statistica 6 and Microsoft Excel 2010 software. The bore roughness was measured using a Taylor Hobson Form Talysurf i200 contact profilometer. The height of the tool build-up edge was investigated using a Bruker ContourGT-K1 optical profilometer. Bore diameters were determined using a Carl Zeiss Contura G2 coordinate measuring machine. An experimental study was carried out using an Atlas Copco PFD-1500 automatic feed drilling unit and a 14 mm MAPAL reamer with a replaceable head. A methodology for a comprehensive experimental study of boring and reaming processes in the “OT4 titanium alloy - VT6 titanium alloy - polymeric composite materials - VT6 titanium alloy - 1933 aluminium alloy” hybrid stack was developed and implemented. It was found that the most significant factors affecting the parameters of bore accuracy, in particular, the deviation from the true bore longitudinal section profile, include the cutting speed in the first and the second degree, as well as the feed. The optimum cutting modes are a cutting speed of 7.24 m/min, a feed of 0.27 mm/rev and a machining allowance of 0.5 mm. As a result, the time of reaming one bore is reduced by 4.6 times. The optimum cooling method, ensuring the increased accuracy and reduced roughness of the bore in the aluminium alloy layer, is cooling by carbon dioxide at a temperature of -56.5°C. As a result of experimental works, basic laws governing the boring and reaming processes in multicomponent hybrid stacks composed by carbon-fibre-reinforced plastics with titanium and aluminium alloys were investigated.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «OPTIMISATION OF THE BORE REAMING PROCESS IN HYBRID STACKS MADE OF CARBON FIBRE AND METAL ALLOYS»

2022:26(1 ):35-42

MECHANICAL ENGINEERING AND MACHINE SCIENCE

Original article

https://doi.org/10.21285/1814-3520-2022-1 -35-42

Optimisation of the bore reaming process in hybrid stacks made of carbon fibre and metal alloys

Nikolay S. Chashchin1H

1irkutsk National Research Technical University, Irkutsk, Russia 1rufle54007@mail.ru, https://orcid.org/0000-0002-6623-338X

Abstract. The present work aims to improve the existing technology of reaming bores in hybrid stacks containing a composite material interlayered with titanium and aluminium alloys. The study was conducted using statistical approaches at the stages of experimental design and data processing in the Statistica 6 and Microsoft Excel 2010 software. The bore roughness was measured using a Taylor Hobson Form Talysurf i200 contact profilometer. The height of the tool build-up edge was investigated using a Bruker ContourGT-K1 optical profilometer. Bore diameters were determined using a Carl Zeiss Contura G2 coordinate measuring machine. An experimental study was carried out using an Atlas Copco PFD-1500 automatic feed drilling unit and a 14 mm MAPAL reamer with a replaceable head. A methodology for a comprehensive experimental study of boring and reaming processes in the "OT4 titanium alloy - VT6 titanium alloy - polymeric composite materials - VT6 titanium alloy - 1933 aluminium alloy" hybrid stack was developed and implemen ted. It was found that the most significant factors affecting the parameters of bore accuracy, in particular, the deviation from the true bore longitudinal section profile, include the cutting speed in the first and the second degree, as well as the feed. The optimum cutting modes are a cutting speed of 7.24 m/min, a feed of 0.27 mm/rev and a machining allowance of 0.5 mm. As a result, the time of reaming one bore is reduced by 4.6 times. The optimum cooling method, ensuring the increased accuracy and reduced roughness of the bore in the aluminium alloy layer, is cooling by carbon dioxide at a temperature of -56.5°C. As a result of experimental works, basic laws governing the boring and reaming processes in multicomponent hybrid stacks composed by carbon-fibre-reinforced plastics with titanium and aluminium alloys were investigated. Keywords: reaming, reamer, carbon fiber, hybrid stack, titanium alloy, ANOVA

For citation: Chashchin N. S. Optimisation of the bore reaming process in hybrid stacks made of carbon fibre and metal alloys. iPolytech Journal. 2022;26(1):35-42. https://doi.org/10.21285/1814-3520-2022-1-35-42.

МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ

Научная статья УДК 621.951

Оптимизация процесса чистовой обработки

отверстий в многокомпонентных пакетах из углепластиков и металлических сплавов

Николай Сергеевич Чащин1н

1 Иркутский национальный исследовательский технический университет, г. Иркутск, Россия 1rufle54007@mail.ru, https://orcid.org/0000-0002-6623-338X

Резюме. Цель - оптимизация технологии обработки отверстий в смешанных пакетах, содержащих слои композиционного материала, титанового и алюминиевого сплавов. Исследование проводилось с помощью статистических подходов к планированию экспериментов и обработке результатов в программе Statistica 6, а также в приложении Microsoft Excel 2010. Измерение шероховатости отверстий производилось на контактном профилометре Taylor Hobson Form Talysurf i200. Высота нароста на режущей кромке инструмента исследовалась с помощью оптического профилометра Bruker ContourGT-K1, снятие параметров диаметров отверстий - на координатно-измерительной машине Carl Zeiss CONTURA G2. Экспериментальное исследование производилось с помощью сверлильной машины с автоматической подачей Atlas Copco PFD-1500 и сборной развертки MAPAL диаметром 14 мм. Разработана и реализована методика комплексного экспериментального исследования процесса получе-

© Chashchin N. S., 2022

2022;26(1 ):35-42

ния отверстий в СП структуры «титановый сплав ОТ4 - титановый сплав ВТ6 - полимерные композиционные материалы - титановый сплав ВТ6 - алюминиевый сплав 1933». Установлено, что наиболее значимыми факторами среди исследованных, влияющих на параметры точности отверстия, в частности на отклонение профиля продольного сечения отверстия, являются скорость резания в первой и второй степени, а также подача. Оптимальными режимами резания для поставленной цели являются скорость резания - 7,24 м/мин, подача - 0,27 мм/об и припуск на обработку - 0,5 мм. Таким образом, время обработки одного отверстия на операции развертывания снижено в 4,6 раза. Показано, что оптимальным способом охлаждения, обеспечивающим повышение точности и снижение шероховатости поверхности отверстия в слое из алюминиевого сплава, является охлаждение углекислым газом с температурой -56,5°C. Таким образом, в результате выполнения экспериментальных работ были исследованы основные закономерности процесса обработки точных отверстий в многокомпонентных смешанных пакетах из углепластиков, титановых и алюминиевых сплавов, реализуемого в технологической последовательности «сверление - развертывание».

Ключевые слова: развертывание, развертка, углепластик, смешанный пакет, титановый сплав, дисперсионный анализ

Для цитирования: Чащин Н. С. Оптимизация процесса чистовой обработки отверстий в многокомпонентных пакетах из углепластиков и металлических сплавов // iPolytech Journal. 2022. Т. 26. № 1. С. 35-42. https://doi.org/10.21285/1814-3520-2022-1-35-42.

INTRODUCTION

In modern mechanical engineering, existing materials begin to approach the limit of design possibilities. Therefore, it is important to search for and introduce materials with higher mechanical properties. In this study, we investigate polymeric composite materials (PCM) [1, 2]. The application of PCM allows the weight of the finished product to be reduced, which subsequently decrease the product operational costs. It is practically impossible to completely abandon classical materials in highly loaded assemblies; therefore, metal alloys are used for such purposes. The so-called hybrid stack (HS) is formed at the points of connecting dissimilar materials. HS represents a combination of composite materials with metal alloys. Bolted joints are typically used to connect dissimilar materials

[3-5]. Since the reliability of such joints depends on the bore quality [6-8], the achievement of accurate bores [9-11] in dissimilar materials appears to be a priority.

MATERIALS AND METHODS

The object of the study was a five-layer HS (fig. 1) containing a composite material interlay-ered with titanium and aluminium alloys.

The HS machining [12, 13] was carried out from the OT4 side, which is determined by the presence of one-sided approach to the stack in the real product. Bore requirements: a diameter of 14 mm; a diameter allowance of IT9; the upper roughness allowance limit (Ra) for metal alloy and PCM layers of 1.6 and 6.3 ^m, respectively [14-17].

1

OT4

VT6 CD

Polymer composite materials CD

VT6 CD

1933 CO

Fig. 1. Hybrid stack Рис. 1. Смешанный пакет

Чащин Н. С. Оптимизация процесса чистовой обработки отверстий в многокомпонентных пакетах

Study tool. The cutting tool [18-20] used in the study was a 14 mm replaceable-head MAPAL reamer. The cutting part of the replaceable head consists of six brazed carbide tips. The cooling channel is directed to the front surface of each tip. The cutting tool is shown in fig. 2.

The use of a replaceable-head reamer is justified by the reduction in tool costs, as well as the need to remove the tool for investigating the built-up formation at the cutting edge. This design ensures quick installation and deinstallation and reduces the installation error.

Measurement equipment. In order to study the diameters of the reamed bores, a Carl Zeiss contura G2 coordinate measuring machine was used. The bore roughness was measured by a Taylor Hobson Form Talysurf i200 contact pro-filometer. A FLIR SC7000 thermal camera was applied for recording the temperature in the cutting area.

Testing procedure. In order to determine cutting modes ensuring the highest reaming performance and required quality indicators of bores, multicriteria optimisation was applied to establish the degree of the effect caused by technological factors on the parameters of the bore in the considered HS. These factors include cutting modes, allowance, cooling method, and hybrid stack composition.

The study was conducted using the three-level composite design with two main and one

block factor. The main factors involve machining modes of feed and cutting speed with the reaming allowance selected in terms of a block factor. The choice of these factors is justified by their influence on the bore parameters, which is confirmed by the work performed in a related field.

The composite design is non-full factorial, which means using fewer experiments than necessary for testing all the studied modes. This approach appears to be relevant for machining studies, since an increase in the number of work cycles leads to an increase in the cutting tool wear, thus affecting the obtained results.

The allowance levels of the main factors in the regression model describing the effect of the cutting process parameters on the bore quality are provided in tab. 1.

Table 1. Allowance levels of the main factors Таблица 1. Уровни варьирования главных факторов

Factor Level -1 Level 0 Level+1

Cutting speed, V, m/min 6.1 11.8 17.5

Feed, S, mm/rev 0.16 0.27 0.38

The block factor characterises the reaming allowance Z. The values of the block factor are given in tab. 2.

Table 2. Allowance levels of the block factor Таблица 2. Уровни варьирования блокового фактора

Block Level 1 Level 2

Block: reaming allowance, Z, mm 0.1 0.5

Fig. 2. MAPAL replacebale-head reamer (014 mm) Рис. 2. Режущий инструмент MAPAL (014 мм)

2022:26(1 ):35-42

In order to investigate the influence of the cutting area cooling method and the composition of adjacent layers in the hybrid stack on the parameters of the bore in the aluminium alloy layer during reaming, a full Box-Behnken factorial design with two main factors was selected. In terms of these factors, discrete variables, represented by the method of cooling the cutting area and the hybrid stack composition, were used.

The allowance levels of the factors in the 3-level full Box-Behnken factorial design are provided in tab. 3.

Table 3. Factor allowance levels Таблица 3. Уровни варьирования факторов

RESULTS

Let us consider the expression for optimising the process of reaming the HS of the "OT4 titanium alloy - VT6 titanium alloy - PCM - VT6 titanium alloy - 1933 aluminium alloy" structure.

The optimisation task of the reaming process in terms of performance consists in the minimisation of the cutting time. The cutting time is calculated by the formula:

(I+ lp + l0)nd Tc~ 100051; '

where l - the thickness of the object, where the through bore is formed; lp + l0 - the tool penetration length and overtravel at the end of cutting; d - the tool diameter; s - the feed; v - the cutting speed. In this study, the sum of the penetration length and overtravel is assumed to be 5 mm.

In this regard, it is necessary to select the advanced cutting modes providing the surface roughness within the range of allowed values. In order to solve this problem, let us determine the most efficient cutting modes by establishing the desirability levels of response functions. For the optimisation in terms of performance, the desirability for the lower and average values of the studied parameters is taken equal to one, while the upper value desirability is zero (except for

the "cutting time" parameter describing the process performance). Therefore, the desirability values linearly decreasing with the increase in the cutting time are selected. Using this method, the cutting modes both ensuring the optimum values of the bore accuracy and having high performance were determined.

The highest desirability value was established corresponding to the values of the V = 7.24 m/min cutting speed, S = 0.27 mm/rev feed, and the reaming allowance of z = 0.5 mm. In the above modes, the correspondence of maximum performance (1.01 min cutting time) with the required parameters of the bore accuracy is achieved: the IT9 deviation of diameters from 14 mm is in the limits of 43 ^m, the roughness of the bore surface for metallic material layers is under 1.6 ^m, Ra = 6.3 is used for the composite material layers.

In order to increase the requirements for the parameters of the bore surface roughness, let us take the desirability equal to 0.5 for the average value levels. Since the optimisation in this case is aimed at improving the quality, the "cutting time" parameter is the exception and the desirability is set the same at all levels.

The highest desirability value was established corresponding to the values of the V = 6.1 m/min cutting speed, S = 0.22 mm/rev feed, and the reaming allowance of z = 0.5 mm.

In these modes, the maximum bore quality is achieved, while the response value of roughness and deviation from the true longitudinal section profile are decreased (tab. 4). However, the performance decreases due to the increased to 1.5 min cutting time of the reaming operation.

During the optimisation of the cutting area cooling methods and the composition of the hybrid stack in terms of surface quality and bore reaming accuracy, the desirability of a response at the upper, average, and lower levels was set equal to 1, 0.5 and 0, respectively, for obtaining maximum accuracy. The maximum desirability corresponds to the lower levels of response values.

The greatest desirability value corresponds both to the method of cooling (cooling by carbon dioxide with the temperature of -56.5°C) and the PCM/1933 composition of the hybrid stack. Although the use of these machined material com-https://ipolytech.ru

Factor Level -1 Level 0 Level+1

Cutting area cooling method no cooling air cooling -56.5°C carbon dioxide cooling

Composition of the studied object Ti/Al PCM/Al Al

Чащин Н. С. Оптимизация процесса чистовой обработки отверстий в многокомпонентных пакетах

binations is not always possible, they should be preferred in the case of possible changes in the product design.

Tab. 4 represents factor combinations ensuring the maximum quality of machined bores.

Fig. 3 shows a histogram of the desirability function.

Table 4. Combination of factors ensuring the maximum quality of machined bores

Таблица 4. Сочетание факторов, обеспечивающих максимум по качеству обработанных отверстий

Desirability Factors and levels Response Response value

0.57 Cooling method: carbon dioxide (-56.5°C) Hybrid stack composition: PCM/1933 shape accuracy 10.47 |jm

Ra in 1933 layer 0.64 |jm

Rz in 1933 layer 3.42 jm

Temperature -15°C

Fig. 3 shows that the minimum level of desirability corresponds to the VT6/1933 combination during the machining both with and without air cooling. Therefore, this material combination should be avoided in the product design. When other material combinations are impossible, preference should be given to the selection of the most effective method of cooling the cutting area, i.e., the carbon dioxide cooling at a temperature of -56.5°C. The PCM/1933 combina-

tions have desirability values insignificantly differing from those provided by cutting area cooling methods. A similar situation is observed during machining of the aluminium alloy layer only.

CONCLUSION

As a result of experimental works, basic laws governing the process of precise boring and reaming in multicomponent hybrid stacks made of carbon-fibre-reinforced plastics with titanium and aluminium alloys were investigated. The following theoretical conclusions and practical results were obtained:

1. A methodology for a comprehensive experimental study of the boring process in the HS of the "OT4 titanium alloy - VT6 titanium alloy -PCM - VT6 titanium alloy - 1933 aluminium alloy" structure was developed and implemented. The developed methodology is aimed at elucidating the technological possibilities of the reaming operation.

2. In order to determine the optimum combination of technological parameters of the bore reaming in HS, including cutting modes and machining allowance ensuring the required values of the roughness and bore accuracy, a methodology for investigating the process using the probabilistic method was applied on the basis of design experiment and multifactorial variance analysis.

Fig. 3. Desirability function histogram (see tab. 4). Рис. 3. Гистограмма функции желательности (см. табл. 4)

2022;26(1):35-42

3. According to the obtained results, the task of increasing the performance, surface quality and bore accuracy in the studied stacks was solved by selecting the optimum cutting modes during reaming. The most significant factors, affecting the parameters of the bore accuracy, in particular the deviation of the bore longitudinal section profile, include the cutting speed in the first and the second degree, as well as the feed. The optimum cutting modes are a cutting speed of 7.24 m/min, a feed of 0.27 mm/rev, and a machining allowance of 0.5 mm. Thus, the time of reaming one bore is reduced by 4.6 times.

4. During the process of reaming the studied HS, the major technological problems arise during the machining of the aluminium alloy layer. These problems are related to the effect of the HS composition and the cooling method. These factors were investigated using the full factorial Box-Behnken design. The dependence of the roughness and accuracy of bores in the aluminium alloy layer on cutting area cooling methods

and the HS composition was determined.

5. On the basis of the obtained results, the task of optimising the surface quality and accuracy of bores in the aluminium alloy layer was solved by selecting the optimum methods of cooling the cutting area and HS composition. The best cooling method improving the accuracy and reducing the surface roughness of the bores in the aluminium alloy layer was established to be the cooling with carbon dioxide at a temperature of -56.5°C.

6. Recommendations are formulated for the design of hybrid stacks, containing carbon-fibre-reinforced plastics interlayered with aluminium and titanium alloys. In order to achieve optimal parameters of the obtained bores in terms of accuracy and surface roughness, the aluminium alloy layer should be located after the carbon-fibre-reinforced plastic layer (in the machining direction) and the location of this layer after the titanium layer should be avoided.

References

1. Chashhin N. S., Pashkov A. E., Ivanov Y. N., Sturov A. A. Roughness of holes in metal and polymer composite bags. In: Materials Science and Engineering: IOP Confer-ence Series. 2019;632:012089. https://doi.org/10.1088/1757-899X/632/1/012089.

2. Sturov A. A., Chashhin N. S., Ivanov Y. N. Service life testing of composite material. In: Materials Science and Engineering: IOP Conference Series. 2019;632(1):012110. https://doi.org/10.1088/1757-899X/632/1/012110.

3. Chashchin N. S. Hole finishing in mixed packages. In: Aviakosmicheskie tekhnologii (AKT-2018): trudy XIX Mezhdunarodnoj nauchno-tekhnicheskoj konferencii i shkoly molodyh uchenyh, aspirantov i studentov = Aerospace technologies (AKT-2018): proceedings of 19th International scientific and technical conference and school of young scientists, graduate students and students. 7-8 June 2018, Voronezh. Voronezh; 2018, p. 262-266. (In Russ.).

4. Ivanov Y. N., Pashkov A. E., Chashhin N. S. Optimization of hole generation in TI/CFRP stacks. In: Materials Science and Engineering: IOP Conference Series. 2018;327(4):042043. https://doi.org/10.1088/1757-899X/327/4/042043.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5. Chashhin N. S., Ivanov Y. N., Pashkov A. E., Sturov A. A. Precise holes machining in multicomponent stacks from metals and CFRP. In: Aviamechanical engineering and transport: Proceedings of the International Conference. 2018. https://doi.org/10.2991/avent-18.2018.13.

6. Abdelhafeez A. M., Soo S. L., Aspinwall D. K., Dow-

son A., Arnold D. Burr formation and hole quality when drilling titanium and aluminium alloys. Procedia CIRP. 2015;37:230-235.

https://doi.org/10.1016/j.procir.2015.08.019.

7. Pyatyh A. S, Savilov A. V., Timofeev S. A. Method of tool wear control when stainless steel end milling. Trenie i iznos. 2021 ;42(4):411-417. https://doi.org/10.32864/0202-4977-2021-42-4-411-417.

8. Timofeev S., Savilov A., Pyatykh A. Studies on the effect of cutter wear on cutting dynamics when turning. Materials Today: Proceedings. 2021;38(4): 1367-1370. https://doi.org/10.1016/j. matpr.2020.08.105.

9. Savilov A., Pyatykh A., Nikitenko A. Axial contact points method for improving end-milling productivity. Materials Today: Proceedings. 2021;38(4): 1505-1507. https://doi.org/10.1016/j. matpr.2020.08.138.

10. Nikitenko A. V., Savilov A. V., Pyatykh A. S. Study of the axial contact points method applied when end-milling titanium alloys. In: Radionov A. A., Gasiyarov V. R. (eds.). Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering. Cham: Springer; 2020, p. 436-444. https://doi.org/10.1007/978-3-030-54817-9_51.

11. Ivanov Yu. N., Minaev N. V., Bayandin V. V., Shaglaeva N. S. Synthesis and properties of epoxy resin-based polymeric composite materials. Izvestiya vuzov. Himiya i himicheskaya tekhnologiya = Proceedings of Universities. ChemChemTech. 2021;64(7):89-95. https://doi.org/10.6060/ivkkt.20216407.6379.

12. Zitoune R., Krishnaraj V., Collombet F. Study

Чащин Н. С. Оптимизация процесса чистовой обработки отверстий в многокомпонентных пакетах

of drilling of composite material and aluminium stack. Composite Structures. 2010;92(5):1246-1255. https://doi.org/10.1016/j.compstruct.2009.10.010.

13. Chigrinetz E. G. Titanium-reinforced glass fiber plastic main rotor blade beam drilling process optimization. Vest-nik Moskovskogo aviacionnogo instituta = Aerospace MAI Journal. 2016;23(1):177-188. (In Russ.).

14. Starodubtseva D. A., Tri Vinh Le, Koltsov V. P. Formation of the surface roughness during grinding with flap wheels after shot peening. In: International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018): MATEC Web Conference. 2018;224:01070.

https://doi.org/10.1051/matecconf/201822401070.

15. Koltsov V. P., Starodubtseva D. A., Tri Vinh Le. Surface roughness formation during shot peen forming. In: Materials Science and Engineering: IOP Conference Series. 2018;327(4):042125. https://doi.org/10.1088/1757-899X/327/4/042125.

16. Koltsov V., Starodubtseva D. Investigation of traces of interaction between flap wheel and aluminum alloy plain surface. Procedia Engineering. 2017;206:473-478. https://doi.org/10.1016/j.proeng.2017.10.503.

17. Koltsov V. P., Starodubtseva D. A., Vinh Le Tri, Son Phung Xuan. Step-by-step surface roughness formation during shot peening and subsequent grinding with flap

wheels. In: Advances in Engineering Research: Proceedings of the International Conference. 2018;158:386-390. https://doi.org/10.2991/avent-18.2018.75.

18. Yanyushkin A. S., Rychkov D. A., Lobanov D. V. Improvement of quality of the pro-cessed surface of composite materials when milling. In: Sovremennye tekhnologii v mashinostroenii i litejnom pro-izvodstve: materialy I Mezhdunarodnoj nauchno-prakticheskoj konferencii = Modern technologies in mechanical engineering and foundry: materials of the Istinternational scientific and practical conference. 22-24 October 2015, Cheboksary. Cheboksary: Chuvash State University named after I. N. Ulyanov; 2015, p. 277-285. (In Russ.).

19. Lobanov D. V., Yanyushkin A. S., Rychkov D. A. Technological manufacturing meth-ods and selection of cutting tools for milling of composite materials based on polymers. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Mashinostroenie = Bulletin of the South Ural State University. Series: Mechanical Engineering Industry. 2015;15(1):35-46. (In Russ.).

20. Markov A. M. Technological features of machining of parts from composite materials. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering. 2014;7:3-8. (In Russ.).

Список источников

1. Chashhin N. S., Pashkov A. E., Ivanov Y. N., Sturov A. A. Roughness of holes in metal and polymer composite bags // Materials Science and Engineering: IOP Conference Series. 2019. Vol. 632. Р. 012089. https://doi.org/10.1088/1757-899X/632/1/012089.

2. Sturov A. A., Chashhin N. S., Ivanov Y. N. Service life testing of composite material // Materials Science and Engineering: IOP Conference Series. 2019. Vol. 632. Iss. 1. Р. 012110. https://doi.org/10.1088/1757-899X/632/1/012110.

3. Чащин Н. С. Чистовая обработка отверстий в смешанных пакетах // Авиакосмические технологии (АКТ-2018): тр. XIX Междунар. науч.-техн. конф. и шк. молодых ученых, аспирантов и студентов (г. Воронеж, 7-8 июня 2018 г.). Воронеж, 2018. С. 262-266.

4. Ivanov Y. N., Pashkov A. E., Chashhin N. S. Optimization of hole generation in TI/CFRP stacks // Materials Science and Engineering: IOP Conference Series. 2018. Vol. 327. Iss. 4. Р. 042043. https://doi.org/10.1088/1757-899X/327/4/042043.

5. Chashhin N. S., Ivanov Y. N., Pashkov A. E., Sturov A. A. Precise holes machining in multicomponent stacks from metals and CFRP // Aviamechanical engineering and transport: Proceedings of the International Conference. 2018. https://doi.org/10.2991/avent-18.2018.13.

6. Abdelhafeez A. M., Soo S. L., Aspinwall D. K., Dowson A., Arnold D. Burr formation and hole quality when drilling titanium and aluminium alloys // Procedia CIRP. 2015. Vol. 37. P. 230-235. https://doi.org/10.1016/j.procir.2015.08.019.

7. Пятых А. С, Савилов А. В., Тимофеев С. А. Метод

контроля износа режущего инструмента при концевом фрезеровании нержавеющей стали // Трение и износ. 2021. Т. 42. № 4. С. 411-417. https://doi.org/10.32864/0202-4977-2021-42-4-411-417.

8. Timofeev S., Savilov A., Pyatykh A. Studies on the effect of cutter wear on cutting dy-namics when turning // Materials Today: Proceedings. 2021. Vol. 38. Part 4. P. 1367-1370. https://doi.org/10.1016/j.matpr.2020.08.105.

9. Savilov A., Pyatykh A., Nikitenko A. Axial contact points method for improving end-milling productivity // Materials Today: Proceedings. 2021. Vol. 38. Part 4. P. 1505-1507. https://doi.org/10.1016/j. matpr.2020.08.138.

10. Nikitenko A. V., Savilov A. V., Pyatykh A. S. Study of the axial contact points method applied when end-milling titanium alloys // Proceedings of the 6th International Con-fer-ence on Industrial Engineering / eds. A. A. Radionov, V. R. Gasiyarov. Cham: Springer, 2020. P. 436-444. https://doi.org/10.1007/978-3-030-54817-9_51.

11. Иванов Ю. Н., Минаев Н. В., Баяндин В. В., Шаглаева Н. С. Синтез и свойства полимерных композиционных материалов на основе эпоксидной смолы // Известия вузов. Химия и химическая технология. 2021. Т. 64. № 7. С. 89-95. https://doi.org/10.6060/ivkkt.20216407.6379.

12. Zitoune R., Krishnaraj V., Collombet F. Study of drilling of composite material and aluminium stack // Composite Structures. 2010. Vol. 92. Iss. 5. P. 1246-1255. https://doi.org/10.1016/j.compstruct.2009.10.010.

13. Чигринец Е. Г. Оптимизация процесса сверления армированного титаном стеклопластикового лонжерона лопасти несущего винта вертолета // Вестник Мос-

2022;26(1):35-42

ковского авиационного института. 2016. Т. 23. № 1. С. 177-188.

14. Starodubtseva D. A., Tri Vinh Le, Koltsov V. P. Formation of the surface roughness during grinding with flap wheels after shot peening // International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018): MATEC Web Conference. 2018. Vol. 224. Р. 01070. https://doi.org/10.1051/matecconf/201822401070.

15. Koltsov V. P., Starodubtseva D. A., Tri Vinh Le. Surface roughness formation during shot peen forming // Materials Science and Engineering: IOP Conference Series. 2018. Vol. 327. No. 4. Р. 042125. https://doi.org/10.1088/1757-899X/327/4/042125.

16. Koltsov V., Starodubtseva D. Investigation of traces of interaction between flap wheel and aluminum alloy plain surface // Procedia Engineering. 2017. Vol. 206. P. 473-478. https://doi.org/10.1016/j.proeng.2017.10.503.

17. Koltsov V. P., Starodubtseva D. A., Vinh Le Tri, Son Phung Xuan. Step-by-step surface roughness formation during shot peening and subsequent grinding with flap

wheels // Advances in Engineering Research: Proceedings of the International Conference. 2018. Vol. 158. P. 386-390. https://doi.org/10.2991/avent-18.2018.75.

18. Янюшкин А. С., Рычков Д. А., Лобанов Д. В. Качество обработанной поверхности композиционных материалов фрезерованием // Современные технологии в машиностроении и литейном производстве: матер. I Междунар. науч.-практ. конф. (г. Чебоксары, 22-24 декабря 2015 г.). Чебоксары: Изд-во Чувашского гос. ун-та им. И. Н. Ульянова, 2015. С. 277-285.

19. Лобанов Д. В., Янюшкин А. С., Рычков Д. А. Технологические методы изготовления и выбора режущего инструмента для фрезерования композиционных материалов на полимерной основе // Вестник ЮжноУральского государственного университета. Серия: Машиностроение. 2015. Т. 15. № 1. С. 35-46.

20. Марков А. М. Технологические особенности механической обработки деталей из композиционных материалов // Наукоемкие технологии в машиностроении. 2014. № 7. С. 3-8.

INFORMATION ABOUT THE AUTHOR

ИНФОРМАЦИЯ ОБ АВТОРЕ

Nikolay S. Chashchin,

Junior Researcher,

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia

Чащин Николай Сергеевич,

младший научный сотрудник,

Иркутский национальный исследовательский

технический университет,

664074, г. Иркутск, ул. Лермонтова, 83, Россия

Contribution of the author

The author performed the research, made a generalization on the basis of the results obtained and prepared the copyright for publication.

Заявленный вклад автора

Автор выполнил исследовательскую работу, на основании полученных результатов провел обобщение, подготовил рукопись к печати.

Conflict of interests

The author declares no conflict of interests.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

The final manuscript has been read and approved by the author.

Автор прочитал и одобрил окончательный вариант рукописи.

Information about the article

The article was submitted 18.11.2021; approved after reviewing 28.12.2021; accepted for publication 28.02.2022.

Информация о статье

Статья поступила в редакцию 18.11.2021; одобрена после рецензирования 28.12.2021; принята к публикации 28.02.2022.

i Надоели баннеры? Вы всегда можете отключить рекламу.