Intellectual Technologies on Transport. 2015. No 4
Optical Digital Systems and Complexes for Space Applications
Denisov Andrew, Demin Anatoly Letunovskiy Alexandr
Saint-Petersburg national research University Mozhaisky Military Space Academy
of information technologies, mechanics and optics St. Petersburg, Russia
St. Petersburg, Russia [email protected], [email protected]
Abstract. The optical digital systems and the Earth remote sensing from space complexes main directions development trend is considered according to public sources. The most important areas analyzes - remote sensing and astrometry. The main performance characteristics in use of space systems *.
Keywords: optical digital systems and complexes for space applications, remote sensing of the Earth, astrometry, linear ground resolution, spacecraft.
Introduction
The control augmentation of scientific-technical and technological processes related to different lines of research in the national economy and the country’s defense interests, as well as near and far space research, challenges the remote sensing of the Earth (RSE) usage and capabilities such line of research as astrometry. We define principal directions of constructions for solving practical tasks, which stand in front of optical digital systems and complexes (ODSaC) installing on the spacecraft board with mass 100-2000 kg [1-23].
Remote sensing of the Earth:
• The linear ground resolution is not worse than 0.5 m for the panchromatic channel and less than 3 m for multispectral;
• The swath is about 20 km;
• The ratio signal/noise is not worse than 150;
• The modulation transfer function on the valid frequency is not worse than 0.2.
Astrometry:
• It is creation of high precision (the accuracy is not worse than 25 10-6 arc seconds) directory provisions (the precision of positions and proper motions is not worse than 110-3 arc seconds; the precision of parallax determining is approximately 410-5 arc seconds for stars, which size is 16 m; the photometry precision is 0.01-0.10 m for the wavelength of 0.2-10 p.m, the spectral bands number is 10-16) and the proper motions of celestial objects up to 18 m;
• The creation of a spectral energy distributions (R~1/2000) stars catalogue is up to 12 m (optional up to 16-18 m) and radial velocities of all stars are up to 18-19 m of 4-6 independent-independent intervals of the spectrum.
Consider the first of these areas. The usage of the remote sensing of the Earth in the optical range of wavelengths allows to obtain information about both geographical and geophysical parameters of its, and anthropogenic processes, occurring on the Earth’s surface. It increases the value of this information.
* The article was published in Russian in the Scientific and technical journal “Izvestiya vuzov. Instrument-making”, 2010, is. 3, pp. 51-59.
ERS, depending on tasks for solving which it is intended, is carried out by the shuttle, object, stereoscope, static, dynamic, topographic and spectrometric shooting methods. Remote sensing in the optical range is carried out by using ODSaC, which established on the spacecraft board (SC). The development of space ODSaC is on the way of circuit solutions and information technology package creation, that allows to develop and create complexes with unique combination of information, energy, accuracy and dimensional parameters.
According to conception of building a new generation space complexes for various purposes it is planned to create ODSaC, providing:
• The Earth’s surface monitoring with high spatial and energy resolution;
• The receiving information for describing the Earth’s surface and its topography with high precision;
• The problem solving of astrometry with high precision;
• The carrying out astrophysical studies (including spectroscopy) with high precision and validity.
Also, it is necessary for further researches:
• The consideration of the information technologies possible areas for improvement in the ground segment with the purpose of increasing its productivity for consumers satisfaction;
• The improving of the space research technology and methodology with the purpose of improving the reliability and validity for detection of a variety mobile and motionless objects on a complex background.
New design and technological solutions for creation of advanced ODSaC should be based on the following directions:
• The development of large-aperture optical systems with the ability to change the configuration depending on the required spatial and energy resolution;
• The creation of multimodal optical systems with active control of the form wave front;
• The reducing of mass-dimensional characteristics based on the usage of new construction materials, production technologies, electronic elements and photodetectors.
The rapid development of ODSaC for space-based RSE at the end of 20th century has led to appearance of systems with the linear resolution on the surface (the pixel projection on the Earth’s surface) around 1-2 m under the entrance pupil of lens diameter around 0.35 to 0.7 mm and the mass of the SC 250-1000 kg. For this class of systems fits: IKONOS-2 (USA, 1999); QuickBird-2 (USA, 2001); OrbView-3 (USA, 2002); Spot-5 (France, 2002); Eros-A (Israel, 2000); Cartosat-1 (India, 2005); Kopsat-1 (Korea, 1999); Formosat-Rocsat-2 (Taiwan, 2004).
Further development of the commercial species production market, associated with the appearance of demand on high qual-
Интеллектуальные технологии на транспорте. 2015. № 4
16
Intellectual Technologies on Transport. 2015. No 4
ity information of sub-meter resolution, which is necessary for the development of high precision detailed maps and the Earth’s digital terrain models, provides push to the development of technical means. The offers to put into orbit about 700 km dual-use device GeoEye-1 (2008) and WirldView-II (2009) from American operator companies Digital Globe and Geo Eye are appeared by the end of the 21th century first decade [21].
ODSaC with the linear ground resolution (LGR) about 0.5 m are fixed on these SC, and its video information proposed to be used both performing commercial orders, and in the interests of imagery space intelligence. These SC can provide video information reception from LGR to 0.25 m and high speed to transfer it to the customer under certain conditions. However, the USA’s legal system imposes restrictions on the supply of specific materials for customers outside the USA/Information must be supplied with the resolution about 0.5 m and with the time delay no less than 24 hours. These circumstances create an extra incentive for the development of such space ODSaC for RSE in other countries, including Russia.
One of the main trend of world development SC RSE is realized in the USA’s super satellites described above. It is creation of heavy SC (with weight more than 2000 kg), that host the large-sized device with the entrance pupil diameter about 1.0—1.5 m and the fine-grained multi-element photodetector matrixes (FPZS) with pixel size about 6-8 microns, which allows to achieve very high resolution.
Super satellites GeoEye-1 and WirldView-II provides a view of the Earth’s underlying surface with the pixel projection in panchromatic channel of 0.41 and 0.46 m, properly, the first is in the swath width of 15.2 km, and the second one is 16.4 m, with the height of the orbit 684 and 770 km, properly. The mass of the first SC is 1955, and the second one is 2800 kg, the telescope entrance pupil diameter is 1.1 m for both SC, the effective length of the line multi-element receiver is about 36 000 pixels. The observation is performed in panchromatic (HC) and multispectral (MS) spectral ranges simultaneously. The number of spectral ranges MS channel in the first SC is 4 and in the second one is 8.
As shows the development analysis of SC RSE, in order for further multiply expansion of the specific products using possibilities, it is necessary to improve dual-using sub-meter resolution super satellites, increasing the video materials information content, the accuracy of gridding, increasing shooting productivity and efficiency of video delivery to the consumer.
The table shows data about ODSaC, which work on the space orbit nowadays (D is the diameter of the entrance pupil, F is the focal length, a is the field angle).
The composition of the spacecraft
AND MAIN TACTICAL AND TECHNICAL CHARACTERISTICS
The SC for RSE consists of two parts: ODSaC and multifunctional container unit, which provide data processing and transmission, thermal control, energy production and distribution for the spacecraft.
Fig. 1 shows the orbital configuration of the SC series Ple-iadas [19], and Fig. 2 shows the circuit-design solution ODSaC for RSE series Pleiadas (the lens is located in the carbon case), which is actually generic for all SC, solving the RSE problem.
ODSaC main components are the lens and the system of reception and transformation of information (SRTI), which contains FPZS with electronic components, and unit for data
conversion and compression. Wavelet algorithm is used in SC series Pleiadas for compressing information. It allows to realize the seven-time compression instead of the standard four for video data about 4 Gbps. Star sensor and fiber optic gyroscope provide required position ODSaC on orbit in relation to the Earth’s surface together with the SC propulsion system.
FPZS allows to generate information about the Earth’s surface in panchromatic shooting mode 0.4-0.9 microns and in multispectral mode. Multispectral (or spectrozonal) the images are presented in the individual spectral canals signals form, which can be used for imagery in future. Alternative synthesis of individual signals in natural or artificial colors allows to solve different subject tasks, and helps to discramble of low-contrast images.
ODSaC storage capacity reaches 600 GB and higher; data transfer design speed is about 600 Mbit/s. Maximum input speed of the video data in the storage device is 1.5 Gb/s.
High image quality in ODSaC is a regulatory requirement. So modulation transfer function of the panchromatic channel has to be better than 0.1 on the working spatial frequency, and the ratio signal/noise under the normal Earth’s radiance should be about 100. The evaluation precision of the image positioning without using the ground data should reach 20 m, and when using the supporting characters on the Earth, separated from each other by 80 km - 0.5 m.
On the next phase the data is encoded according to the scheme of trellis code modulators type 8-PSK, which have their own solid-state power amplifiers. Then the data are compressed and transmitted to Earth via the X-band antenna. It is installed on universal double cardanic suspension, it is ensures data transmission during movement. During the registration period image, this mechanism is not used to minimise dynamic distortion. The special suggestive antenna orients the transmitting antenna in satellite motion so that the receiving station always stay in its range. Thus, data transmission from space happens under the unobstructed sight ground receiving station conditions.
Basic optical diagrams using in space ODSaC are shown in figures 3-6 (Fig. 3 - the Ritchie-Chretien diagram with field aberrations corrector, Fig. 4 - mirror optical system - Korsh diagram, Fig. 5 - optical scheme with a two-mirror field aberrations correcto r - four-mirror diagram, Fig. 6 - three-mirror off-axis diagram - Cook three-mirror triplet).
The primary objective of astrometric researches, in spite of the catalog of positions and celestial objects proper motions at the microsecond level of accuracy, is:
• The definition of stars multiplicity;
• The definition of orbital motions in double and multiple systems;
• The searching of unseen satellites to stars;
• The study of star clusters dynamics and kinematics;
• The calculation of trigonometric parallaxes (for finding distances to stars);
• The specification of the interstellar distances scale;
• The investigation of the non-stationary gravitational field of galaxy effect at coordinate-time measurements;
• The specification of the Universe size and age.
These problems are solved, for example, using an optical stellar interferometer, which is placed on an artificial satellite.
Fig. 7 shows the optical scheme of the stellar interferometer (which was performed in the framework of the Gaiae project), which provide the position of two optical radiations in the focal
Интеллектуальные технологии на транспорте. 2015. № 4
17
Intellectual Technologies on Transport. 2015. No 4
The
System Country of origin Spacecraft mass, kg ISIC weight, kg The orbit height, km The type of the optical system Settings Spectral range, pm The angular of the pixel, MK radians Swath width, km projection of the pixel on the Ground, m
КН-12 (2000) Ritchey- Chretien 0 2.3 m
USA 12000 2800 350-550 F = 40 m 0.5-0.8 0.3 4 0.144
v = 0.6°
0 0.7 m 0.45-0.9
IKONOS-2 (1999) USA 700 170 683 Korsch F = 10 m 0.45-0.52 0.52-0.6 1.2 11 0.84
v = 1° 0.63-0.69 0.76-0.9
0 0.3 m
EROS-AI (2000) Ritchey- Chretien F = 3.5 m
Israel 250 70 480 v = 1.5° 0.45-0.9 3.43 12.8 1.65
F = 8 m
v = 1.6°
QUICK- BIRD 0 0.6 m 0.45-0.9 0.8
USA 980 300 Mirror off-axis F = 8.84 m 0.45-0.52 0.52-0.6 1.36 22
(2001) v = 2.1° 0.63-0.69 0.76-0.9 3.2
0 0.16 m 0.49-0.69 4.6 3.8
SPOT-5 France 3000 955,5 822 Scheme F = 1.082 m 0.43-0.47 0.49-0.61 2x57.5
(2002) Schmidt v = 4° 0.61-0.68 0.68-0.89 1.58-1.75 9.2 7.6
0 0.65 m 0.49-0.69 0.43-0.47 0.49-0.61 1 0.7
Pleiadas (2007) France 980 300 695 Korsch F = 12.9 m 20
v = 4° 0.61-0.68 0.68-0.89 4 2.8
0 1.1 m 0.4-0.8 0.6 0.46
WorldView 2 (2009) USA 2800 <1000 759-776 Three mirror F = 13.3 m 0.45-0.51 0.51-0.58 16.4
v = 1.28° 0.63-0.69 0.77-0.895 2.4 1.85
Note: 0 is the diameter of the entrance pupil; F - focal length; v - is the angle of the field of view.
The surface of the Earth Fig. 1. The orbital configuration of the spacecraft series Pleiadas
Интеллектуальные технологии на транспорте. 2015. № 4
18
Intellectual Technologies on Transport. 2015. No 4
Flat mirror
Fig. 2. Circuit-design solution ODSaC made for the SC series Pleiadas
Bland
Fig. 3. Diagram of the Ritchey-Chretien telescope with corrector field aberrations
Fig. 5. Optical layout with two-mirror corrector field aberrations - chetyrehstennoy scheme
Fig. 4. Mirror optical system diagram Korsch
Fig. 6. Transitella off-axis scheme - trehsharnirnye triplet Cook
Интеллектуальные технологии на транспорте. 2015. № 4
19
Intellectual Technologies on Transport. 2015. No 4
4a
Fig. 7. Shows the optical scheme of a stellar interferometer
plane, extending in directions 1 and 2. Each optical radiation follows through its own optical system, which consists of the mirrors 1A, 2A, 3A, 4A, 5A and 1b, 2b, 3b, 4b, 5b, respectively. The interference pattern of two optical radiations interaction forms in the focal plane. This stellar interferometer has the following parameters and characteristics [22]:
• The diameter of main mirrors telescopes interferometer is 1-1.5 m;
• The focal length of the telescope lens is about 30-45 m;
• The field of telescope view is 1-1.5°;
• FPZS dimensions are 0.5x0.5 m;
• FPZS back-illuminated of the interferometer contains the 40x40 mosaic of matrices, 1000x1000 pixels each. The size of the pixel matrix is 12 microns, which corresponds to the angular telescope resolution 0.08”;
• The apparent angular size of the star is 0.3 to 0.4” at a wavelength of 800 nm;
• The random error of the 14th magnitude star position measurement is on the one CCD matrix, which angular size is
0.003”.
Conclusion
Thus, the analysis of the status and development trends of the two main areas oDSaC allows draw following conclusions.
1. The current state of foreign remote sensing systems and prospects of their development testify that there is a wide range of spacecraft for remote sensing and astrometry, according with the wide range of targets, solving in the interests of economics and defense. For example, by limiting ground resolution, provides in PH-range, it is possible to separate four basic directions of development for ODSaC for RSE: system ultra high resolution - 0,2-0,5; high - 0,5-1,0; medium 2-3; small -10-20m.
2. With the aim of improving information, power, accuracy and mass-dimensional ODSaC parameters for space imagery and astrometry, it is necessary to solve the following main tasks of scientific-technical and technological character:
• The creation of space telescopes with the main mirror aperture 1-1,5 m and above. In particular, development of the manufacturing technology and composite mirrors in orbit control is one of the ways of high aperture telescope with diameter of main mirror about 2.5 m creation. If is afford to reduce the weight of the telescope significantly [3, 11];
• The development of composite materials for space systems technology;
• The development of a new generation of actuators, in particular of the drives;
• The creation of the large-format FPZS with pixel size up to 6-9 ^m, which operate in modes time delay and accumulation, and time delay and integration;
• The creation of digital high-speed circuits for information processing at the SC board (compression, encoding);
• The creation of storage devices of large capacity (up to 10.13 bits);
• The creation of a space radio link with the transmission speed from 700 Mbps and above.
References
1. Adrov V. N., Karionov Yu. I., Titarov P. S., Chekurin A. D. Criteria for selecting remote sensing data for topograficas who mapping [Kriterii vybora dannykh DZZ dlya topograficheskogo kartografirovaniya]. Moscow, 2004.
2. Beletsky V. S. Essays on the motion of cosmic bodies [Ocherki o dvizhenii kosmicheskikh tel]. Moscow, Nauka, 1977.
3. Vasiliev V. N., Demin A. V., Gogolev Yu. A., Oleinikov
L. W. Optical-electronic complexes of space home [Optiko-elek-tronnye kompleksy kosmicheskogo bazirovaniya]. Proc. third St. Sci. Conf. the space forces. St. Petersburg, 2007. Pp. 127-133.
4. Vasiliev V. N., Demin A. V., Gogolev Yu. A., Nikiforov V. O. Optical-electronic complexes of space home - perspectives of development [Optiko-elektronnye kompleksy kosmicheskogo bazirovaniya -perspektivy razvitiya]. Proc. Dokl. Int. Sci.-Techn. Conf. “Development space industry of Russia and
Интеллектуальные технологии на транспорте. 2015. № 4
20
Intellectual Technologies on Transport. 2015. No 4
prospects of its further integration into the international system economic relations'1. St. Petersburg, 2007. Pp. 163-165.
5. Garbuk S. V., Gershenzon V. E. Space systems of Earth remote sensing [Kosmicheskie sistemy distantsionnogo zond-irovaniya Zemli]. Moscow, A and B, 1997. 297 p.
6. Grechischev A. V., Likhachev Yu. A. Space system of remote sounding of the Earth [Kosmicheskie sistemy distantsionnogo zondirovaniya Zemli], Annual rev. Vol. 4. Moscow, GIS-Association, 1999. Pp. 83-92.
7. Danilov V.A., Demin A. V, Nikiforov V O., Savitsky A. M., Sokolsky M. N. Multispectral optical electronic system for microsatellites [Mnogospektral’nye optiko-elektronnye sistemy dlya mikrosputnikov]. Mat. Sci.-Techn. Conf. “Surveillance, monitoring and remote sensing of the Earth”. Moscow, MNTORES em. A. S. Popova, 2008. Pp. 34-38.
8. Danilov V.A., Demin A. V, Nikiforov V O., Savitsky A. M., Sokolsky M. N. Opto-electronic complexes for MCA [Optiko-elektronnye kompleksy dlya MKA]. Mat. Sci.-Techn. Conf. “Surveillance, monitoring and remote sensing of the Earth”. Moscow, MNTORES em. A. S. Popova, 2008. Pp. 65-68.
9. Demin A. V., Denisov A. V., letunovskiy A. V. Optical-digital systems for space applications [Optiko-tsifrovye sistemy i kompleksy kosmicheskogo naznacheniya]. Izvestiya vuzov. Pri-borostroeniye. 2010, is. 3, pp. 51-59.
10. Demin A. V., Kanaev I. I., Seregin A. G., Smirnov A. P. The Pair of star Fizeau interferometer with a review depicting a telescope [Sopryazhenie zvezdnogo interferometra Fizo s ob-zornym izobrazhayushchim teleskopom]. Izvestiya vuzov. Pri-borostroeniye, 2006, vol. 49, no. 1, pp. 48-52.
11. Demin A. V., Umbitaliev A.A., Syculin A. K. Prospects of development of space monitoring systems with adaptive optics [Perspektivy razvitiya kosmicheskikh sistem nablyudeniya s adaptivnoy optikoy]. Proc. Dokl. Intern. Sci.-Techn. Conf. “Development of space industry of Russia and prospects of its further integration into the system of international economic rela-tions“. 2007. Pp. 166-169.
12. Demin A. V., Gorbunov G. G., Nikiforov V. O., Savitsky A. M., Skvortsov Yu. S., Sokolsky M. N. Hyperspectral sensors
for remote sensing of the Earth [Giperspektral’naya apparatura dlya distantsionnogo zondirovaniya Zemli]. Optical mice. Phys., 2009, Vol. 76, no. 10, pp. 75-82.
13. Image of Earth from space: application examples [Izo-brazheniya Zemli iz kosmosa: primery primeneniya]. Moscow, R & d CENTER, 2005.
14. Kucheiko A. A. New satellite VHR data from monitoring [Novyy sputnik sverkhdetal’nogo nablyudeniya]. News of cosmonautics, 2009, Vol. 19, no. 12, p. 323.
15. Kucheiko A. A. remote sensing of the Earth: results of 2008 [Kosmicheskoe zondirovanie Zemli: itogi 2008]. R&D. Cnews, 2009.
16. Konechny G. issues of digital mapping [Tendentsii tsifro-vogo kartografirovaniya]. Hannover, Germany, 2007.
17. Titarov P. S. Practical aspects of photogrammetric processing of scanner space imagery high resolution [Prakticheskie aspekty fotogrammetricheskoy obrabotki skanernykh kosmi-cheskikh snimkov vysokogo razresheniya]. Inform. Bul. of GIS Association, 2004, no. 3-4.
18. Chernyavskaya G. M. Space technology in monitoring the Earth [Kosmicheskie sredstva pri monitoringe Zemli]. Earth and universe, 2004, no. 5, pp. 3-12.
19. Chertok B. E. Astronautics today and tomorrow [Kosmo-navtika segodnya i zavtra]. The Military-industrial rev. Arsenal, 2009, no. 3.
20. European system of remote sensing high resolution “Pleiades” [Evropeyskaya sistema distantsionnogo zondirovaniya vysokogo razresheniya «Pleyady»], available at: http://www. sovzond.ru/dzz/publications/541/3037.html.
21. Images GeoEye-1 [Snimki GeoEye-1], available at: http:// www.ra-curs.ru/, page=456.
22. The project Gaiae [Proekt Gaiae], available at: http:// www.safran.ruarticle.php3id_article=621.
23. Tr. III st. sci. Conf. space forces [Trudy tret’ey voenno-nauchnoy konferentsii Kosmicheskikh voysk], 2007.
24. Fender J. Future Trendsin Large Space Optics. Proc. SPIE, 2000, Vol. 4013, pp. 682-686.
Интеллектуальные технологии на транспорте. 2015. № 4
21
Intellectual Technologies on Transport. 2015. No 4
Оптико-цифровые системы и комплексы космического назначения
Денисов А. В., Демин А. В. Летуновский А. В.
Санкт-Петербургский национальный Военно-космическая академия
исследовательский университет информационных им. А. Ф. Можайского
технологий, механики и оптики Санкт-Петербург, Россия
Санкт-Петербург, Россия [email protected], [email protected]
Аннотация. На основе данных из общедоступных источников рассматривается тенденция развития основных направлений оптико-цифровых систем и комплексов дистанционного зондирования Земли из космоса. Анализируются наиболее важнейшие направления - дистанционное зондирование Земли и астрометрия. Представлены основные тактико-технические характеристики находящихся в эксплуатации космических систем.
Ключевые слова: оптико-цифровые системы и комплексы космического назначения, дистанционное зондирование Земли, астрометрия, линейное разрешение на местности, космический аппарат.
Литература
1. Адров В. Н. Критерии выбора данных ДЗЗ для топографического картографирования / В. Н. Адров, Ю. И. Карионов, П. С. Титаров, А. Д. Чекурин. - М. : Ракурс, 2004.
2. Белецкий В. С. Очерки о движении космических тел /
B. С. Белецкий. - М. : Наука, 1977. - 360 с.
3. Васильев В. Н. Оптико-электронные комплексы космического базирования / В. Н. Васильев, А. В. Демин, Ю. А. Гоголев, Л. Ш. Олейников // Тр. III воен.-науч. конф. космических войск. - СПб., 2007. - С. 127-133.
4. Васильев В. Н. Оптико-электронные комплексы космического базирования - перспективы развития / В. Н. Васильев, А. В. Демин, Ю. А. Гоголев, В. О. Никифоров // Тез. докл. междунар. науч.-техн. конф. «Особенности развития космической отрасли России и перспективы её дальнейшей интеграции в систему международных экономических связей». - СПб., 2007. - С. 163-165.
5. Гарбук С. В. Космические системы дистанционного зондирования Земли / С. В. Гарбук, В. Е. Гершензон. - М. : А и Б, 1997. - 297 с.
6. Гречищев А. В. Космические системы дистанционного зондирования Земли / А. В. Гречищев, Ю. А. Лихачев // Еже-год. обзор. - Вып. 4 (1998). - М. : ГИС-Ассоциация, 1999. -
C. 83-92.
7. Данилов В. А. Многоспектральные оптико-электронные системы для микроспутников / В. А. Данилов, А. В. Демин, В. О. Никифоров и др. // Материалы науч.-техн. конф. «Системы наблюдения, мониторинга и дистанционного зондирования Земли». - М. : МНТОРЭС им. А. С. Попова, 2008. - С. 34-38.
8. Данилов В. А. Оптико-электронные комплексы для МКА / В. А. Данилов, А. В. Демин, В. О. Никифоров и др. // Материалы науч.-техн. конф. «Системы наблюдения, мониторинга и дистанционного зондирования Земли». - М. : МНТОРЭС им. А. С. Попова, 2008. - С. 65-68.
9. Демин А. В. Оптико-цифровые системы и комплексы космического назначения / А. В. Демин, А. В. Денисов, А. В. Летуновский // Изв. вузов. Приборостроение. - 2010. Вып. 3. - С. 51-59.
10. Демин А. В. Сопряжение звездного интерферометра Физо с обзорным изображающим телескопом / А. В. Демин, И. И. Канаев, А. Г. Серегин, А. П. Смирнов // Изв. вузов. Приборостроение. - 2006. - Т. 49, № 1. - С. 48-52.
11. Демин А. В. Перспективы развития космических систем наблюдения с адаптивной оптикой / А. В. Демин, А. А. Умбиталиев, А. К. Цыцулин // Тез. докл. «Особенности развития космической отрасли России и перспективы её дальнейшей интеграции в систему международных экономических связей» междунар. науч.-техн. конф. - СПб., 2007. - С. 166-169.
12. Демин А. В. Гиперспектральная аппаратура для дистанционного зондирования Земли / А. В. Демин, Г. Г. Горбунов, В. О. Никифоров и др. // Оптич. журн. - 2009. - Т. 76, № 10. - С. 75-82.
13. Изображения Земли из космоса: примеры применения, научно-популярное издание. - М. : ООО Инж.-технол. центр «СКАНЭКС», 2005.
14. Кучейко А. А. Новый спутник сверхдетального наблюдения / А. А. Кучейко // Новости космонавтики. - 2009. -Т. 19, № 12. - С. 323.
15. Кучейко А. А. Космическое зондирование Земли : итоги 2008 / А. А. Кучейко // R&D. CNews, 2009.
16. Конечны Г. Тенденции цифрового картографирования / Г. Конечны. - Ганновер. унив., Германия, 2007.
17. Титаров П. С. Практические аспекты фотограмметрической обработки сканерных космических снимков высокого разрешения / П. С. Титаров // Инф. бюл. ГИС-Ассоциации. 2004. - № 3-4.
18. Чернявский Г. М. Космические средства при мониторинге Земли / Г. М. Чернявский // Земля и Вселенная. -2004. - № 5. - С. 3-12.
19. Черток Б. Е. Космонавтика сегодня и завтра / Б. Е. Чер-ток // Военно-промышленное обозр. Арсенал. - 2009. - № 3.
20. Европейская система дистанционного зондирования высокого разрешения «Плеяды». - URL : http://www.sovzond. ru/dzz/publications/541/3037.html.
21. Снимки GeoEye-1. - URL : http://www.racurs.ru/, page= 456.
22. Проект Gaiaе. - URL : http://www.safran.ruarticle.php 3id_article=621.
23. Труды третьей воен.-науч. конф. космических войск : в 4 т. Т. 4. СПб., 2007.
24. Fender J. Future Trendsin Large Space Optics // SPIE. -2000. - Vol. 4013. - P. 682-686.
Интеллектуальные технологии на транспорте. 2015. № 4
22