Научная статья на тему 'OPTICAL CLEARING AS A TOOL FOR MULTIMODAL TISSUE IMAGING'

OPTICAL CLEARING AS A TOOL FOR MULTIMODAL TISSUE IMAGING Текст научной статьи по специальности «Медицинские технологии»

CC BY
40
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «OPTICAL CLEARING AS A TOOL FOR MULTIMODAL TISSUE IMAGING»

OPTICAL CLEARING AS A TOOL FOR MULTIMODAL TISSUE IMAGING

VALERY TUCHIN

Science Medical Center, Saratov State University, Saratov, Russia Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Saratov, Russia Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre " of the Russian Academy of Sciences, Saratov, Russia A.N. Bach Institute of Biochemistry, FRC "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia.

tuchinvv@mail.ru

ABSTRACT

The concepts of multimodality and temporal formation or expansion of optical transparency windows of biological tissues are fruitful tools of the method of immersion optical clearing (IOC) of tissues. The method is based on a controlled and reversible modification of the optical properties of a tissue when exposed to a biocompatible optical clearing agent (OCA). At present, the basics of the method have been studied and the leading mechanisms of IOC have been described [1-4]. These mechanisms determine a significant increase in the efficiency of imaging of almost all known optical imaging tools and laser impact on living tissues. This versatility is due to the fact that the method is aimed at temporary suppression of the fundamental cause that limits the transparency of the tissue and blurs the image of its structures, namely, elastic light scattering in the tissue. As a result, the IOC method makes it possible to enhance the contrast of pathological foci in depth of tissue when imaging living tissues using various optical modalities operating in an ultra-wide wavelength range from deep UV to terahertz. Figure 1 illustrates the main optical methods that benefit significantly from the optical clearing method [1-17].

Figure 1: Different optical tools beneficial from the immersion optical clearing method.

It is important to note that the method is well compatible with other widely used imaging modalities such as computed tomography, MRI and ultrasound [6,15,17].

Recently, there has been activity in the field of application of the method in therapeutic technologies, including photodynamic, photocatalytic and photothermal therapies [5, 18, 19].

Unique applications may be in transplantology, since OCAs are known as cryopreservative fluids for transplant storage [3, 20] and can provide a better optical communication channel with smart implants in the human body [21].

ACKNOWLEDGMENTS

The study was funded by the grant under the Degree of the Government of the Russian Federation No. 220 of 09 April

2010 (Agreement No. 075-15-2021-615 of 04 June 2021).

REFERENCES

[1] A.Yu. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin, Recent progress in tissue optical clearing for spectroscopic application, Spectrochim. Acta Part A: Mol. Biomol. Spectr. 197, 216-229 (2018).

[2] A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, P. A. Timoshina, D. K. Tuchina, D. D. Yakovlev, D. A. Yakovlev, I. Yu. Yanina, O. S. Zhernovaya, V. V. Tuchin, Measurement of tissue optical properties in the context of tissue optical clearing, J. Biomed. Opt. 23(9), 091416 (2018).

[3] L. Oliveira and V.V. Tuchin, The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering, Springer Nature Switzerland AG, Basel, 2019 - 177 p.

[4] V.V. Tuchin, D. Zhu, and E.A. Genina (Eds.), Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging, Taylor & Francis Group LLC, CRC Press, Boca Raton, FL, 2022 - 688 p.

[5] V.V. Tuchin, E.A. Genina, E.S. Tuchina, A.V. Svetlakova, Y.I. Svenskaya, Optical clearing of tissues: issues of antimicrobial phototherapy and drug delivery, Advanced Drug Delivery Reviews 180(1), 114037 (2022).

[6] N.I. Kazachkina, V.V. Zherdeva, I.G. Meerovich, A.N. Saydasheva, I.D. Solovyev, D.K. Tuchina, A.P. Savitsky, V.V. Tuchin, A.A. Bogdanov Jr., "MR and fluorescence imaging of gadobutrol-induced optical clearing of red fluorescent protein signal in an in vivo cancer model, NMR Biomed. e4708-1-13 (2022).

[7] A. Jaafar, R. Holomb, A.Y. Sdobnov, Z. Ocskay, Z. Jakus, V.V. Tuchin, M. Veres, Ex vivo confocal Raman microspectroscopy of porcine dura mater supported by optical clearing, J. Biophotonics 15 (1), e202100332 (2022).

[8] S.M. Zaytsev, M. Amouroux, G. Khairallah, A.N. Bashkatov, V.V. Tuchin, W. Blondel, E.A. Genina, Impact of optical clearing on ex vivo human skin optical properties characterized by spatially resolved multimodal spectroscopy, J. Biophotonics 15(1), e202100202 (2022).

[9] Z. Wei, Q. Lin, E.N Lazareva, P.A. Dyachenko (Timoshina), J. Yang, Y. Duan and V.V Tuchin, Optical clearing of laser-induced tissue plasma, Laser Phys. Lett. 18, 085603-1-7 (2021).

[10] P. Listewnik, M. Ronowska, M. Wasowicz, V.V. Tuchin, M. Szczerska, Porous phantoms mimicking tissues—Investigation of optical parameters stability over time, Materials 14, 423-1-11 (2021).

[11] P.A. Dyachenko, L.E. Dolotov, E.N. Lazareva, A.A. Kozlova, O.A. Inozemtseva, R.A. Verkhovskii, G.A. Afanaseva, N.A. Shushunova, V.V. Tuchin, E.I. Galanzha, and V.P. Zharov, Detection of melanoma cells in whole blood samples using spectral imaging and optical clearing, IEEE J. Selec. Tops Quant. Electr. 27 (4), 7200711-1-11 (2021).

[12] I. Carneiro, S. Carvalho, R. Henrique, A. Selifonov, L. Oliveira, V.V. Tuchin, Enhanced ultraviolet spectroscopy by optical clearing for biomedical applications, IEEE J. Selec. Tops Quant. Electr. 27 (4), 7200108-1-8 (2021).

[13] Q. Lin, E.N. Lazareva, V.I. Kochubey, Y. Duan, V.V. Tuchin, Kinetics of optical clearing of human skin studied in vivo using portable Raman spectroscopy, Laser Physics Letters 17 (10), 105601(2020).

[14] G.R. Musina, I.N. Dolganova, N.V. Chernomyrdin, A.A. Gavdush, V.E. Ulitko, O.P. Cherkasova, D.K. Tuchina, P.V. Nikitin, A.I. Alekseeva, N.V. Bal, G.A. Komandin, V.N. Kurlov, V.V. Tuchin, K.I. Zaytsev, Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics, J. Biophotonics 13(12), e202000297 (2020).

[15] D.K. Tuchina, I.G. Meerovich, O.A. Sindeeva, V.V. Zherdeva, A.P. Savitsky, A.A. Bogdanov Jr, V.V. Tuchin, Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging, J. Biophotonics 13(11), e201960249 (2020).

[16] M.V. Novoselova, T.O. Abakumova, B.N. Khlebtsov, T.S. Zatsepin, E.N. Lazareva, V.V. Tuchin, V.P. Zharov, D.A. Gorin, E.I. Galanzha, Optical clearing for photoacoustic lympho- and angiography beyond conventional depth limit in vivo, Photoacoustics 20, 100186 (2020).

[17] E.A. Genina, Y.I. Surkov, I.A. Serebryakova, A.N. Bashkatov, V.V. Tuchin, V.P. Zharov, Rapid ultrasound optical clearing of human light and dark skin, IEEE Trans. Med. Imag. 39 (10), 3198-3206 (2020).

[18] L. Pires, V. Demidov, B.C. Wilson, A.G. Salvio, L. Moriyama, V.S. Bagnato, I.A. Vitkin, C. Kurachi, Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models, Cancers 12, 1956 (2020).

[19] A. Bucharskaya, N. Khlebtsov, B. Khlebtsov, G. Maslyakova, N. Navolokin, V. Genin, E. Genina, V. Tuchin, Photothermal and photodynamic therapy of tumors with plasmonic nanoparticles: Challenges and prospects, Materials 15, 1606 (2022).

[20] S. Bojic, A. Murray, B.L. Bentley, R. Spindler, P. Pawlik, J.L. Cordeiro, R. Bauer, and J. Pedro de Magalhaes, Winter is coming: the future of cryopreservation, BMC Biology 19, 56 (2021).

[21] J. Kim, J. Seo, D. Jung, T. Lee, H. Ju, J. Han, N. Kim, J. Jeong, S. Cho, J. H. Seol, and J. Lee, Active photonic wireless power transfer into live tissues, PNAS 117 (29), 16856-16863 (2020).

i Надоели баннеры? Вы всегда можете отключить рекламу.