Determination of Parameters of Electrode Metal Transported Drops by Simulation and Visualization
D.P. Ilyaschenko12, A.V. Kryukov1, E.V. Lavrova3, M.A. Kuznetsov1, E.V. Verkhoturova4,5
1Yurga Institute of Technology National Research Tomsk Polytechnic University, Leningradskaya str., 26, Yurga 652055, Russia
2Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences,
Academic Ave., 2/4, Tomsk 634055, Russia
3Priazovskyi State Technical University,
Universitetska str., 7, Mariupol 87500, Ukraine
4Irkutsk National Research Technical University,
Lermontova str., 83, Irkutsk 664074, Russia
5Kaliningrad State Technical University,
Sovetsky Ave., 1, Kaliningrad 236022, Russia
Received 20.06.2020
Accepted for publication 03.09.2020
Abstract
The nature of the molten electrode metal melting and transfer is the main process parameter of manual metal arc welding (MMA) with coated electrodes. It significantly affects the efficiency of the welding process. For this reason the relevant task is to identify the parameters of the transferred molten electrode metal drops and their further transfer into the weld pool with maximum accuracy. The aim of the given paper is to develop a method and visual representation of the form and the geometrics (volume, area, mass) of a molten electrode metal drop.
We have developed the method of simulation modeling and visualization for molten electrode metal drops transfer and their parameters. It allows obtaining highly reliable input data to be used for developing and verification of mathematical models for the thermal fields distribution along the welded item surface. The algorithm is realized as the calculation programs for specifying the molten metal drop parameters and means of its geometrics and space form visualization.
We used this method to specify a number of molten electrode metal drop parameters: volume, mass, center-of-gravity position, surface area.
We have established that it is possible to conduct the measurements with maximum The suggested method significantly decreases the labor intensity of experimental studies aimed at specifying the size of electrode metal drops in comparison to the standard methods. When we know the size of the drops under certain welding conditions we can control the drop transfer process, i. e. reduce the heat input into the welded item and produce weld joints with the tailored performance characteristics.
Keywords: MMA, a drop of molten electrode metal, parameters, simulation method, visualization.
DOI: 10.21122/2220-9506-2020-11-3-222-227
Адрес для переписки:
Д.П. Ильященко
Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, ул. Ленинградская, 26, г. Юрга 652055, Россия e-mail: [email protected]
Для цитирования:
D.P. Ilyaschenko, A.V. Kryukov, E.V. Lavrova, M.A. Kuznetsov,
E.V. Verkhoturova.
Determination of Parameters of Electrode Metal Transported
Drops by Simulation and Visualization.
Приборы и методы измерений.
2020. - Т. 11, № 3. - С. 222-227.
DOI: 10.21122/2220-9506-2020-11-3-222-227
Address for correspondence: D.P. Ilyaschenko
Yurga Institute of Technology National Research Tomsk Polytechnic University, Leningradskaya st., 26, 652055, Yurga, Russian Federation e-mail: [email protected]
For citation:
D.P. Ilyaschenko, A.V. Kryukov, E.V. Lavrova, M.A. Kuznetsov,
E.V. Verkhoturova.
Determination of Parameters of Electrode Metal Transported
Drops by Simulation and Visualization.
Devices and Methods of Measurements.
2020, vol. 11, no. 3, pp. 222-227.
DOI: 10.21122/2220-9506-2020-11-3-222-227
УДК 621.791.75
Определение параметров переносимых капель электродного металла методом имитационного моделирования и визуализации
Д.П. Ильященко1'2, А.В. Крюков1, Лаврова Е.В.3, М.А. Кузнецов1, Е.В. Верхотурова4'5
1Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, ул. Ленинградская, 26, г. Юрга 652055, Россия
2Институт физики прочности и материаловедения Сибирского отделения Российской академии наук,
пр-т Академический, 2/4, г. Томск 634055, Россия
3Приазовский государственный технический университет,
ул. Университетская, 7, г. Мариуполь 87500, Украина
4Иркутский национальный исследовательский технический университет,
ул. Лермонтова, 83, г. Иркутск 664074, Россия
5Калининградский государственный технический университет,
Советский пр-т, 1, г. Калининград 236022, Россия
Поступила 20.06.2020 Принята к печати 03.09.2020
Основным технологическим параметром процесса ручной дуговой сварки, покрытым электродами, существенно влияющим на эффективность его протекания, является характер плавления и переноса расплавленного электродного металла. Поэтому актуальным является вопрос максимально точного определения параметров переносимых капель расплавленного электродного металла и их последующего перехода в сварочную ванну. Целью данной работы являлась разработка методики и визуального представления формы и геометрических параметров (объём, площадь, масса) капли расплавленного электродного металла.
Разработан метод имитационного моделирования и визуализации переноса капель расплавленного электродного металла и их параметров, что позволит получить входные данные с высокой степенью достоверности для разработки математических моделей распределения температурных полей по поверхности свариваемого изделия и её верификации. Алгоритм реализован в виде расчётных программ для определения параметров капли расплавленного металла и средств визуального представления её геометрии и пространственной формы.
С помощью данного метода определён ряд параметров капель расплавленного электродного металла: объём, масса, положение центра масс, площадь поверхности.
Установлено, что возможно с максимальной достоверностью производить измерения, увеличить число измеряемых параметров, а также наглядно представить происходящие процессы.
Предложенный метод значительно упрощает трудоёмкость проведения экспериментальных исследований по определению размера капель электродного металла в сравнении со стандартными методами. Зная размер капель при определённых режимах сварки, можно управлять процессом каплепереноса, т. е. уменьшать тепло-вложение в свариваемое изделие и получать сварные соединения с заданными эксплуатационными свойствами.
Ключевые слова: ручная дуговая сварка, капля расплавленного электродного металла, метод имитационного моделирования, визуализация. БОТ: 10.21122/2220-9506-2020-11-3-222-227
Адрес для переписки:
Д.П. Ильященко
Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, ул. Ленинградская, 26, г. Юрга 652055, Россия e-mail: [email protected]
Для цитирования:
D.P. Ilyaschenko, A.V. Kryukov, E.V. Lavrova, M.A. Kuznetsov,
E.V. Verkhoturova.
Determination of Parameters of Electrode Metal Transported
Drops by Simulation and Visualization.
Приборы и методы измерений.
2020. - Т. 11, № 3. - С. 222-227.
DOI: 10.21122/2220-9506-2020-11-3-222-227
Address for correspondence: D.P. Ilyaschenko
Yurga Institute of Technology National Research Tomsk Polytechnic University, Leningradskaya st., 26, 652055, Yurga, Russian Federation e-mail: [email protected]
For citation:
D.P. Ilyaschenko, A.V. Kryukov, E.V. Lavrova, M.A. Kuznetsov,
E.V. Verkhoturova.
Determination of Parameters of Electrode Metal Transported
Drops by Simulation and Visualization.
Devices and Methods of Measurements.
2020, vol. 11, no. 3, pp. 222-227.
DOI: 10.21122/2220-9506-2020-11-3-222-227
Introduction
The main technological parameter of the process of manual arc welding (MMA) with coated electrodes, which significantly affects the efficiency of its flow, is the nature of melting and transfer of molten electrode metal from the end of the electrode to the weld pool. The geometric parameters of the transferred droplets of molten electrode metal have a significant effect on the mechanical and operational properties of the welded joint. Determination of the regularities of the droplet transfer process, such as the formation and size of a drop at the edge of the electrode, makes it possible to create methods for controlling the volume of drops, choose the optimal options for implementing the technological process and serves as the basis for solving a wide range of practical problems.
Now, methods are used to study the transfer of electrode metal [1]: direct (separation and weighing of drops and X-ray and video filming) and indirect (oscillography of current and voltage), which are significantly laborious.
There are various methods for determining the size of drops of electrode metal based on the construction of mathematical models [2-4]. These methods used with various simplifications (assumptions), for example, the arc column is stationary and coaxial with the electrode, and a drop of molten metal has the shape of a segment or a glob, etc., which significantly reduce the reliability of the results obtained. The use of modern computational and graphic programs [5-7] makes it possible to perform calculations with a high degree of reliability and reduces the processing time of experimental data.
The aim of this work is to develop a method for determining the parameters (volume, surface area and mass) of the transferred drops of electrode metal through the arc gap of the MMA process using a software package.
Visualization of the manual metal arc welding with coated electrodes
We applied a numerical algorithm, visualization of molten electrode metal droplets transfer and specification of their dimensional parameters (volume, area, mass) to develop a simulation model of a molten electrode metal. The method of simulation and visualization will allow predicting heat input into the welded metal, as well as predicting the mechanical and operational properties of welded joints.
The construction of a spatial model of a liquid droplet of molten electrode metal was carried out on the basis of frames of high-speed video filming carried out earlier [8] using the Kompas 3D software package from ASCON.
An experimental setup for high-speed shooting and process oscillography shown in Figure 1.
Figure 1 - The experimental setup for high-speed shooting and oscillography of the welding process: 1 - metal plate; 2 - power source; 3 - coated electrode, 4 - rotating electrode holder, 5 - electrode movement limiter, 6 - digital high-speed video camera, 7 - electronic oscilloscope, 8 - current sensor
A visual representation of the welding process and the transition of molten electrode metal droplets from the end of the electrode into the liquid weld pool presented in the form of filming and oscillograms shown in Figures 2 and 3, respectively.
c d
Figure 2 - Filming of the process of transferring drops of electrode metal during MMA: a - the beginning of the formation of a drop on the surface of the coated electrode; b - the growth of a drop of liquid metal on the surface of the electrode; c - drop transition from the electrode surface to the weld pool with the closure of the arc gap; d - the process of the onset of nucleation of the subsequent drop
J,V
30
20
10
100 200 300 t, ins
Figure 3 - Oscillograms of current and voltage (electrodes of the TsL-11 brand with a diameter of 3 mm, power supply VD-306)
Simulation modeling
In order to simplify the simulation, it was assumed, that in any section of the drop, by a plane perpendicular to the axis of the electrode, a simple geometric figure is obtained - a circle. In this case, the sequence of constructing the calculated visual model was as follows:
1. The image obtained during high-speed video filming (Figure 2) was opened in the program window, "Kompas 3D", where using the "spline" command, the contour of the liquid drop was visualized (Figure 4). At this stage, the scale of the construction is determined based on the actual size of the electrode (an electrode diameter of 3 mm was used).
Figure 4 - Liquid drop contour
2. On the rendered contour of the drop, lines were drawn corresponding to the position of the fUture secant planes. At the same time, the lines were initially drawn in places where the direction
of the contour changed, then with the same interval between them.
3. The obtained image (Figure 5) was used to determine the diameters of the section circles and the position of the circle center relative to the axis coinciding with the electrode axis.
Figure 5 - Placement of secant planes
4. Simulation of the droplet volume was carried out in three-dimensional modeling mode in the "Kompas 3D" application. For this, a number of parallel planes were built (their position was determined in point 2) in which the droplet sections were constructed (according to the sizes determined in point 3). Then, using the "Lines" function, a volumetric body corresponding to the shape of a liquid drop was built (Figure 6).
Figure 6 - Solid modeling of the spatial shape of a drop
5. Measurements were made of various parameters of the spatial model of the drop (volume, mass, position of the center of mass, surface area, etc., Figure 7) using the "MCM model" function presented in the "Kompas 3D" program.
Figure 7 - Determination of the parameters of the spatial droplet model Analysis of the method adequacy
processing (Figure 3) according to the following method [8].
The convergence of the results of theoretical studies and the amount of deposition recommended by the manufacturer of the electrode (table), according to: the proposed method - 5 %, the indirect method [8] - 23 %.
Table
Comparison of theoretical and experimental data of certain parameters of transferred drops
The method of simulation modeling and visualization of a molten electrode metal droplet geometrics was tested by comparing the results obtained with the transferred drops parameters obtained by the indirect method [2] after oscillograms
Data retrieval method Electrode type, ^ , „-3 JY t -10 3, sec power supply s.c Drop weight m, g Drop volume V, mm3 Deposition coefficient a, g/Ah
Calculated,
according to the methodology [8] H^fi 12 ± 3.8 diode rectifier 0.37 ± 0.04 45.48 ± 4.9 13.6 ± 0.4
Visualization,
according to the proposed method 0.264 ± 0.05 34.167 ± 2.5 10.5 ± 0.3
Manufacturer data* 11
* SpetsElectrode Company, https://www.spetselectrode.ru/electrod/cl11.htm
The proposed method will allow taking into account the peculiarities of the configuration of the transferred droplets when developing models: thermal processes during welding [9-11] and predicting the chemical composition and operational properties of the deposited weld metal [12], which increases its adequacy.
Conclusion
To determine the shape and size of a drop of molten electrode metal, a method of simulation and
visualization was developed, including a mathematical model, a spatial model of a drop of molten electrode metal using a computer program package. Using this method, a number of parameters of molten electrode metal droplets were determined: volume, mass, position of the center of mass, surface area. It was found, that the proposed method significantly simplifies the complexity of experimental studies to determine the size of drops of electrode metal in comparison with standard methods. Definition the droplet size for different welding modes allow to control the droplet transfer process, i. e. to reduce heat
input into the welded product and to obtain welded joints with specified operational properties.
Acknowledgments
The Russian Science Foundation, grant no. 18-79-10035, supported this work.
References
1. Saraev Y.N., Chinakhov D.A., Ilyashchenko D.I., Kiselev A.S., Gordynets A.S. Investigation of the stability of melting and electrode metal transfer in consumable electrode arc welding using power sources with different dynamic characteristics. Welding International, 2017, no. 31(10), pp. 784-790.
DOI: 10.1080/09507116.2017.1343977
2. Milyutin V.S. Ispytaniya svarochnyh svojstv oborudovaniya dlya dugovoj svarki [Testing the welding properties of equipment for arc welding]. Ekaterinburg, 2019, 466 p.
3. Lebedev V. Determination of the volume of the different drop of electrode metal in the conditions of vibrations of the bath and electrodewith arc mechanized welding. Hoei Mcmepianu i технологи в металургп та машинобудуванш, 2017, no. 2, pp. 95-99 (in Ukrainian).
4. Makarenko V.D., Paly R.V., Mukhin M Yu. Tekhnologicheskie svojstva montazhnoj svarki trubo-provodov [Technological properties of assembly welding of pipelines]. ed. V.D. Makarenko. Moscow: Nedra-Business Center LLC Publ., 2001, 118 p.
5. Krampit A.G., Krampit N.Yu. Method for determining the geometric dimensions and area of the weld. Welding production, 2012, no. 10, pp. 40-42.
6. Votinova E.B., Shalimov M.P. Appication of the complete material balance method to estimate the transition of elements in flux cored arc welding. Solid State Phenomena, 2020, vol. 299 SSP, pp. 559-564.
7. Makarenko V.D., Shatilo S.P. Calculation of the kinetic characteristics of electrode droplets during their passage through the arc gap during welding with coated electrodes. Welding production, 1999, no. 12, pp. 6-10.
8. Il'yaschenko D.P., Chinakhov D.A., Kirichen-ko K.Y., Sydorets V.N. Mathematical formula to determine geometrical dimensions of electrode metal droplets transferred with short circuits. Materials Science Forum, 2018, vol. 938, pp. 1-6.
DOI: 10.4028/www.scientific.net/MSF.938.1
9. Ilyashchenko D.P., Berg V.I., Kryukov A.B., Sa-ranchin A.A. Numerical simulation of thermal processes in welding with pulsed electrode wire feeding. Materials Science Forum, 2018, vol. 927 MSF, pp. 55-63.
DOI: 10.4028/www.scientific.net/MSF.927.55
10. Chiocca A., Frendo F., Bertini L. Evaluation of heat sources for the simulation of the temperature distribution in gas metal arc welded joints. Metals, 2019, vol. 9(11), p. 1142.
DOI: 10.3390/met9111142
11. Yonggang Z., Yanhong Z. High accuracy Numerical simulation on 3D weld-pool shape of large parts. Journal of Physics: Conference Series, 2019, vol. 1187(3), pp. 032-055.
DOI: 10.1088/1742-6596/1187/3/032055
12. Votinova E.B., Shalimov M.P. Application of the complete material balance method to estimate the composition of weld metal in manual arc welding. Solid State Phenomena, 2017, vol. 265 SSP, pp. 762-766. DOI: 10.4028/www.scientific.net/SSP.265.762