Научная статья на тему 'Определение параметров электросталеплавильного производства и компьютерное моделирование его логистики'

Определение параметров электросталеплавильного производства и компьютерное моделирование его логистики Текст научной статьи по специальности «Строительство и архитектура»

CC BY
93
28
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЛЕКТРОСТАЛЕПЛАВИЛЬНЫЙ КОМПЛЕКС / ТЕХНОЛОГИЯ ЭЛЕКТРОПЛАВКИ / ЛОГИСТИКА / КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Кудасов А. М., Еланский Д. Г.

Проведены моделирование и анализ плановых решений и транспортных потоков, предложены проектные решения по электросталеплавильному комплексу по выплавке стали для железнодорожных колес с применением пакеты прикладных программ AnyLogic. Оценили логистику цеха с применением одного и двух кранов в разливочном пролёте. Рассчитаны основные параметры технологических агрегатов сталелитейного модуля и время обработки на каждом агрегате с учетом вспомогательных и транспортных операций для обеспечения заданной серийности разливки.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Кудасов А. М., Еланский Д. Г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Определение параметров электросталеплавильного производства и компьютерное моделирование его логистики»

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ЕГО ЛОГИСТИКИ

© Кудасов А.М.*, Еланский Д.Г.*

Выксунский филиал Национального исследовательского технологического университета «МИСиС», г. Выкса

Проведены моделирование и анализ плановых решений и транспортных потоков, предложены проектные решения по электросталеплавильному комплексу по выплавке стали для железнодорожных колес с применением пакеты прикладных программ AnyLogic. Оценили логистику цеха с применением одного и двух кранов в разливочном пролёте. Рассчитаны основные параметры технологических агрегатов сталелитейного модуля и время обработки на каждом агрегате с учетом вспомогательных и транспортных операций для обеспечения заданной серийности разливки.

Ключевые слова электросталеплавильный комплекс, технология электроплавки, логистика, компьютерное моделирование.

Сталь продолжает сохранять ведущее положение среди всех других конструкционных материалов. В докризисном 2007 г. в мире было произведено 1332 млн. т стали [1]. Ожидается, что за период с 2010 по 2015 г. Средний ежегодный темп роста выплавки стали составит около 2 %, и ее выплавка к 2015 г. достигнет 1500 млн. т [2].

Анализ структуры сталеплавильного производства показывает, что в мире произойдет увеличение выплавки стали электросталеплавильным способом, в том числе путем замены мартеновских печей электродуговыми [3].

Современная концепция выплавки стали заключается в применении ряда технологических агрегатов, эффективном согласовании технологических операций, в рамках электросталеплавильного комплекса, что существенно повышает значение проектных решений по размещению оборудования и проведения транспортных операций.

Техническая политика ОАО «Российские железные дороги» в области железнодорожного транспорта в настоящее время направлена на решение двух основных задач: ввод в эксплуатацию дорог со скоростным и смешанным движением и создание грузовых вагонов нового поколения с нагрузкой на ось до 300 кН [4]. В связи с этим возникла потребность в цельнокатаных колесах с повышенным уровнем свойств, в частности с запасом твердости в ободе и усталостной прочности в диске.

* Студент.

* Заведующий кафедрой Электрометаллургии стали, кандидат технических наук.

Достижение высоких свойств готовых железнодорожных колёс закладывается в сталеплавильном производстве на базе совершенных технологий выплавки колесной стали, обработки полупродукта на агрегатах ковш-печь, вакууматоре и разливке на машине непрерывной разливки стали (МНРС).

При замене мартеновского производства колёсной стали Выксунского металлургического завода электросталеплавильным комплексом необходимо обеспечить производство не менее 500 тыс. т непрерывно--литой заготовки диаметром 455 мм в год. Годовой фонд рабочего времени электропечи принят 300 суток или 7200 ч/год за вычетом продолжительности ремонтов печи. С учётом синхронизации плавки в дуговой сталеплавильной печи (ДСП) и разливки методом «плавка на плавку» расчёт показал, что необходимо установить трехручьевую блюминговую МНРС со скоростью разливки 0,4 м/мин.

При разливке с серийностью 12 плавок и продолжительностью разливки одной плавки в 53 мин определили, что выплавку стали целесообразно производить в ДСП вместимостью 70 т годовой производительности 560 тыс. т. Определили, что для современной ДСП с удельным расходом электроэнергии 370 кВт • ч/т и принятым коэффициентом мощности соф = 0,8 ДСП следует оснастить трансформатором общей мощности 70 МВА.

Провели расчёт металлошихты для выплавки стали выбранного состава, который показан в табл. 1. Результаты расчёта сведены в табл. 2.

Таблица 1

Расчетный состав выплавляемой стали, массовая доля, %

Марка стали С Мп Si о- S Р № Си

2 0,6 0,7 0,35 0,2 0,007 0,015 0,2 0,20

Таблица 2

Химический состав завалки, массовая доля, %. и масса металлошихты

С Мп Si Р S Сг М Си Бе кг

Лом 3А 0,5 0,7 0,3 0,04 0,06 0,3 0,3 0,2 97,6 70394

Стружка 6А 0,2 0,5 0,2 0,03 0,07 0,5 0,3 0,4 97,8 700

Чугун 4 0,8 1 0,2 0,05 93,95 4900

Средний состав 0,73 0,71 0,34 0,05 0,06 0,28 0,28 0,19 97,37

Приняли расход углеродсодержащего порошка на вспенивание шлака 3,9 кг/т, расход кислорода 34 м3/т. Оценили подсос воздуха в ДСП, расход электродов и футеровки, рассчитали требуемое количество извести для наведения шлака.

Рассчитали материальный баланс плавки, результаты сведены в табл. 3.

Для проведения ковшевой обработки стали предложили использовать двухпозиционную установку ковш-печь (УКП) и двухкамерный вакууматор. Обработка на УКП включает раскисление, легирование, десульфурацию, гомогенизацию и нагрева стали. УКП обеспечивает нагрев металла со скоро-

стью до 4 К/мин, мощность трансформатора определили в 13 МВА. На ва-кууматоре удаляют растворённые в металле водород и азот, а также проводят легирование и дополнительное удаление серы из металла. Определили, что при обработке под вакуумом в 100 Па для снижения содержания водорода с 6,5 до 1 млн-1 необходимо продуть через сталь 4,7 м3 аргона. Определён шлаковый режим, обеспечивающий удаление серы из металла с достижением требуемой концентрации.

Таблица 3

Материальный баланс плавки

Приход кг % Расход кг %

1 Лом 70176 75,64 1 Полу-продукт 70000 75,04

2 Чугун 4900 5,28 2 Шлак 10501 11,26

3 Стружка 700 0,75 3 Отх. газы 12781 13,70

4 Известь 2993 3,23

5 Кислород 3938 5,14

6 Углерод 808 0,87

7 Прир. газ 357 0,38

8 Электроды 140 0,15

9 Футеровка 175 0,19

10 Воздух 7758 8,36

Итого 92779 100 Итого 93282 100

В рамках дипломной работы г-на А.М. Кудасова была поставлена задача освоить компьютерное моделирование электросталеплавильного производства. Компьютерное моделирование электросталеплавильного комплекса в составе шихтовый двор - ДСП -УКП - вакууматор - МНРС провели с использованием пакета программ Апу1о^с 6.9.0 [5].

На рис. 1 показан общий вид модели в момент запуска ДСП.

Построение модели комплекса и освоение работы пакета программ Апу1о^с 6.9.0 потребовали больших усилий и времени, поэтому не все объекты моделирования удалось спроектировать наилучшим образом, в частности, это касается шихтового двора. Для уменьшения количества кранов шихтового двора целесообразно проработать вариант расположения закромов для металлошихты вдоль путей бадьевозов так, чтобы краны передвигались также вдоль путей бадьевозов.

В данной работе была отработана методика создания в компьютерной модели активного объекта, в роли которого выступал завалочный кран.

При создании модели электросталеплавильного цеха приняли следующую продолжительность транспортных операций: перемещение бадьи до ДСП 2 мин., перемещение ковша от ДСП до УКП 3 мин., от УКП до вакуу-матора 7 мин., далее до МНРС 5 мин.

С использованием компьютерной модели определили, что с учётом транспортных операций, для достижения серийности разливки в 11-13 плавок вре-

мя от выпуска до выпуска на ДСП, должно составлять примерно 90 % от заданного времени разливки одной плавки на МНРС, что иллюстрирует рис. 2. Более интенсивная работа ДСП приводит к простоям из-за неготовности МНРС принять ковш на разливку, а повышенное время от выпуска до выпуска на ДСП относительно продолжительности разливки одной плавки снижает серийность разливки; оба эти варианта ведут к ухудшению экономических показателей производства.

кп: простой Время = 0.7196341532477505

40: простой

Рис. 1. Презентация модели, первые секунды после запуска ДСП

21 -,-

0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 Время от выпуска до выпуска / Время ранивки

Рис. 2. Результаты моделирования

Результаты моделирования также показали, что для повышения устойчивости работы цеха целесообразно установить второй разливочный кран.

Список литературы:

1. Еланский Д.Г., Еланский Г.Н., Стомахин А.Я. Электрометаллургия стали - инновации в технологии и оборудовании // Сталь. - 2009. - № 8 -С. 35-40.

2. Лазуткин А.Е., Чижиков А.Г., Семин А.Е. Концепция модернизации металлургических мини-заводов // Электрометаллургия. - 2011. - № 9 - С. 2-9.

3. Шайнович О.И., Шапиро Б.М., Хвощинский А.В. Проектные решения реконструкции мартеновских цехов с установкой электропечей, агрегатов КП и УНРС // Труды IX конгресса сталеплавильщиков. - 2010. - С. 277-281.

4. Кушнарев А.В., Петренко Ю.П., Тимофеев В.В. и др. Технология производства железнодорожных колес повышенной твердости из стали Т // Сталь. - 2011. - № 11 - С. 122-124.

5. Мезенцев К.Н. Моделирование систем в среде AnyLogic / МАДИ. -М., 2011. - Часть 1. - 109 с.; Часть 2. - 103 с.

ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ

СВЕТОДИОДОВ НА ОСНОВЕ ШИРОКОЗОННЫХ ПОЛУПРОВОДНИКОВ

© Маняхин Ф.И.*, Гусева С.Е.*

Выксунский филиал Национального исследовательского технологического университета «МИСиС», г. Выкса

Приведены новые представления о механизме формирования вольтам-перных характеристик (ВАХ) светодиодных гетероструктур с квантовыми ямами на основе широкозонных полупроводников AЮaN/InGaN/GaN, SiC и AЦnGaP в области высоких плотностей токов. Установлено, что сублинейность ВАХ в полулогарифмических координатах в этом режиме обусловлена образованием между р- и п-слоями р-п перехода области с дрейфовым полем, обладающей резистивными свойствами.

Ключевые слова: вольт-амперная характеристика, р-п переход, дрейфовая скорость в сильном электрическом поле, светодиоды, гетеропереходы на основе АЮаМ^а№^а^ А!^аР, SiC.

Вольт-амперные характеристики p-n переходов на основе широкозонных полупроводников (SiC, GaN, AL[nGaP) в области высокой плотности прямого тока наблюдается сублинейность в полулогарифмических координатах

* Профессор кафедры Общепрофессиональных дисциплин, доктор технических наук.

* Доцент кафедры Общепрофессиональных дисциплин, кандидат технических наук.

i Надоели баннеры? Вы всегда можете отключить рекламу.