DOI: 10.34031/2071-7318-2020-5-1-70-77 1 *Котлярова И.А., 2Степина И.В.
1Брянский государственный технический университет 2Национальный исследовательский Московский государственный строительный университет
*Е-mail:iakotlyarova@list. ги
ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ТЕРМОДЕСТРУКЦИИ И ГРУППЫ ОГНЕЗАЩИТНОЙ ЭФФЕКТИВНОСТИ ДРЕВЕСИНЫ СОСНЫ, МОДИФИЦИРОВАННОЙ БОРАЗОТНЫМ АНТИПИРЕНОМ
Аннотация. Древесина относится к горючим материалам. Для снижения горючести древесину модифицируют функциональными соединениями фосфора, бора и азота, прививка которых изменяет химический состав поверхностного слоя древесины и его структуру. Механизм действия антипиренов связан с их влиянием на энергетические и энтропийные характеристики процесса термодеструкции. Учитывая, что боразотные соединения являются эффективными антипиренами и реагируют с компонентами древесины в «мягких» условиях, исследовали влияние прививки боразотного модификатора на кинетические параметры термодеструкции древесины. Кинетические параметры (энергию активации и величину преэкспоненты) определяли методом термического анализа по ТГА кривым (интегральный метод). В качестве модификатора использовали 50 %-ный водный раствор моноэтанола-мин(Ы^В)тригидроксибората; контролем служили образцы немодифицированной древесины сосны. Полученные экспериментальные данные свидетельствуют, что поверхностное модифицирование древесины сосны боразотным антипиреном обеспечивает материалу II группу огнезащитной эффективности (расход модификатора - 150 г/м2). Антипиренный эффект боразотного модификатора связан с более низким значением энергии активации процесса термодеструкции. Вклад энтропийного фактора в снижение горючести модифицированной древесины менее выражен. Применение моноэта-ноламин(Ы^В)тригидроксибората в качестве антипирена древесины целесообразно в окислительной атмосфере.
Ключевые слова: древесина, модифицирование, боразотные соединения, антипирены, кинетические параметры термодеструкции, термический анализ, огнезащитная эффективность.
Введение. Химическое модифицирование древесины широко используется для улучшения ее свойств [1, 2]. Изменение химического состава и структуры поверхностного слоя древесины в результате привития молекул функциональных модификаторов приводит к увеличению био- и огнестойкости, повышает устойчивость древесины по отношению к воде и другим агрессивным средам, стабилизирует форму и размеры деревянных конструкций и изделий [3-6].
Для снижения горючести древесину модифицируют соединениями фосфора, бора и азота [7-12], к которым на современном этапе предъявляют следующие требования: эффективное снижение горючести за счет повышения температуры воспламенения древесины и (или) создания стерических затруднений при распространении зоны горения; высокая реакционная способность по отношению к высокомолекулярным компонентам древесины при комнатной температуре; нелетучесть; нетоксичность; коммерческая доступность; растворимость в воде [13].
Механизм действия антипиренов различен. Фосфорсодержащие антипирены влияют на механизм термодеструкции углеводной части древесного композита: снижают эффективную энергию активации процесса дегидратации, ингиби-руют процесс прямого окисления углерода в СО2,
снижают экзотермический эффект процесса, увеличивают выход кокса [7, 8, 10]. Органические и неорганические соединения азота наиболее эффективны в газовой фазе. Образующиеся при термодеструкции аммиак, азот и оксиды азота разбавляют паровоздушную смесь у поверхности древесины, снижают температуру воспламенения и ограничивают доступ кислорода к древесному материалу [8]. Комбинация атомов фосфора и азота в составе молекул антипиренов обеспечивает синергетический эффект, усиливая действие антипиренов как катализаторов дегидратации. Антипирены, содержащие бор, повышают термоизоляцию древесного материала за счет образования на поверхности пленки оксида бора, увеличивают выход и термическую устойчивость карбонизированного остатка. Азот усиливает действие борсодержащих антипиренов [10, 11, 12]. Таким образом, снижение горючести древесины при модифицировании антипиренами связано с их влиянием на энергетические характеристики процесса термодеструкции (энергию активации) и созданием стерических затруднений распространения зоны окисления (энтропийный фактор, величина предэкспоненты).
Учитывая, что функциональные антипирены при условии «мягкого» модифицирования древесины упорядочивают ее структуру: увеличивают
степень кристалличности углеводов, формируют трехмерные термостабильные структуры, усиливают меж- и внутримолекулярные взаимодействия между компонентами древесины, интересно оценить вклад энтальпийного и энтропийного факторов в константу скорости реакции термодеструкции модифицированной древесины. Этому исследованию и посвящена данная работа.
Методология. В качестве объектов исследования использовали образцы древесины сосны. Древесину поверхностно модифицировали 50%-ным водным раствором моноэтаноламин^^-В)-тригидроксибората (модификатор наносили кистью, расход - 150 г/м2). После высушивания на воздухе до постоянной массы с образцов модифицированной и немодифицированной древесины снимали в виде стружки поверхностный слой и готовили навески исследуемых материалов в виде элементов правильной формы типа пластины толщиной 0,75 мм.
Испытания на термовесах ТГА-951 проводили в двух газовых средах при скоростях нагревания 5, 10, 20 °С/мин: в динамическом режиме нагревания в атмосфере воздуха (расход - 50 мл/мин); в динамическом режиме нагревания в переменной атмосфере - азот до 750 °С, далее воздух (расход - 50 мл/мин). Построение и анализ термоаналитических кривых проводились с помощью программных утилит «File Modification V 1.0», «General V 1.0» и TGAKin V 1.0, установленных на TAC «Du Pont 9900» и программы Universal Analysis 2000 компании TA Instruments в версии V 4.0C («Intertech corporation»).
Кинетические параметры процесса термодеструкции определяли интегральным методом (по ТГА кривым); основой расчета являлось уравнение Аррениуса
а =
m0 - mx m0 - ^к
K = Z ■ e
RT
где К - константа скорости реакции, Ъ - предэк-споненциальный множитель; Е - энергия активации (кДж/моль); R - универсальная газовая постоянная (8,31 кДж/(моль°К), Т - температура (°К).
Скорость деструкции зависит от температуры и массы образца
d а dt
= Kf (а , f(a) = (1-a)n,
где п - порядок реакции; а - степень превращения, связанная с начальной (то), конечной (тк) массами образца и массой в данный момент(тг) времени соотношением
Энергию активации определяли графическим путем по наклону прямой (анаморфоза), построенной в координатах «логарифм скорости нагревания log(fi) - обратная температура 1/Т)». Анаморфоза строится для каждой степени конверсии и. Значение Z вычисляли подстановкой найденной энергии активации в уравнение
log[Z -Е/R -F(«)]-- 0.457 (Е/ R Т) +2.31,
где F(a) - интегрированная функция конверсии.
Группу огнезащитной эффективности модифицированной древесины определяли по ГОСТ 16363-98 «Средства огнезащитные для древесины. Методы определения огнезащитных свойств» (п. 4.2). Вертикально ориентированный образец модифицированной древесины с размерами (150^60x30 мм), помещался в пламя газовой горелки, установленной в реакционной камере, и подвергался тепловому воздействию в течение 2-х минут. После испытания оценивалась потеря массы образца.
Основная часть. Окислительная термодеструкция древесины включает в себя процессы дегидратации (до 150 °С), деструкцию линейных участков макромолекулярных компонентов древесины (основной этап - 150...450 °С), окисление карбонизированного остатка. Основной этап сопровождается активной потерей массы образцами (70.73 % - для немодифицированной древесины сосны [9] количественно потерю массы оценивают величиной степени конверсии а.
На рис.1 приведены зависимость степени конверсии а (5.70 %) от температуры и скорости нагревания (5, 10, 20 °С/мин); в табл.1 значения кинетических параметров (энергии активации Е и величины предэкспоненты Z) процесса термодеструкции древесины сосны в окислительной атмосфере в температурном интервале 150.450 °С.
Значение энергии активации зависит от степени конверсии. Это указывает на многостадий-ность процесса термодеструкции древесины [13].
На низкотемпературной стадии (150. 180 °С) потеря массы у немодифицированной древесины практически отсутствует, рис. 1а. Потеря массы модифицированной древесины в этом интервале температур связана с каталитическим действием привитых протолитических -ОН групп на процесс дегидратации полисахаридного комплекса древесины.
E
-- скорость нагрсьа у-С г-на;, _ - скорость нагрева 10 ВС ынн;--скорость нагрей! 20 СС ыю*
Рис. 1. Зависимость степени конверсии от температуры и скорости нагревания для образцов немодифицированной (а) и модифицированной (б) древесины сосны (основной период - 150...400 °С)
Таблица 1
Кинетические параметры термодеструкции немодифицированной и модифицированной древесины сосны (основной период - 150...400 °С)
Конверсия, % Немодифицированная древесина Модифицированная древесина
Энергия активации Е, кДж/моль Lоg г, 1/мин Энергия активации Е, кДж/моль Lоg г, 1/мин
5.0 145.6 12.37 55.4 3.641
10.0 145.0 12.17 81.5 6.24
15.0 148.2 12.38 93.8 7.39
20.0 150.3 12.51 101.7 8.11
30.0 154.2 12.77 113.0 9.11
40.0 150.8 12.46 121.5 9.86
50.0 145.7 12.02 123.7 10.09
60.0 143.4 11.85 122.1 9.98
70.0 146.5 12.15 120.8 9.91
Высокотемпературная стадия (180.450 °С) процесса окислительной термодеструкции модифицированной древесины сдвинута в высокотемпературную область, причем потеря массы модифицированными образцами ниже контроля при всех скоростях нагревания. Учитывая, что энергия активации процесса термодеструкции немодифицированной древесины выше, чем у модифицированных образцов, табл. 1, наблюдаемый сдвиг связан с формированием на поверхности древесины в результате модифицирования структур «подложка - модификатор» с пониженной термостойкостью, т.е. имеющих более низкое значение энергии активации процесса деструкции. При нагревании древесины в присутствии кислорода происходит эндотермический распад данных структур, сопровождающийся образованием негорючих газообразных и твердых продуктов деструкции. С увеличением степени конверсии значение энергии активации возрастает, вероятно это связано с частичным выгоранием ан-типирена.
Величина предэкспоненты при всех степенях конверсии у образцов модифицированной
древесины ниже контроля. Это позволяет утверждать, что снижение горючести модифицированной древесины также обусловлено изменением ее надмолекулярной структуры в процессе поверхностного модифицирования водным раствором моноэтаноламин^^-В)тригидроксибората. В результате модифицирования увеличивается степени кристалличности целлюлозы, формируется более упорядоченная структура древесины за счет возникновения водородных связей между полярными группами модификатора и компонентов древесного материала [14-16]. Это создает стерические затруднения при движении зоны окисления сквозь модифицированную древесину [13].
Чтобы оценить вклад энергетического и энтропийного факторов в константу скорости процесса термодеструкции модифицированной древесины, термический анализ проводили при нагревании древесины сосны в динамическом режиме в переменной атмосфере (азот до 750 °С, далее воздух), рис. 2, табл. 2.
--------
60 4----------Ч----^---
40-------------л\-Х---б№---
----
I I I I I I , ■ I I I I I I | I I I I ; I-1 I [ I I I
;00 250 ЗЭО 350 400 4 50 500 550 200 250 ЗОО 350 «0 ¿50 500
П | I М I | I м I | | I м | I | | I | I I | | | I |ТТТ им
350 40 (
Температура. X Температура. 5С
-- скорость нагрева 20 °С/мищ -- скорость нагрева 10 °С/ыщ -- скорость нагрева 5 °С/мнн
Рис.2. Зависимость степени конверсии от температуры и скорости нагревания для образцов немодифицированной (а) и модифицированной (б) древесины сосны (1-й этап - деструкция в инертной атмосфере)
Таблица 2
Кинетические параметры термодеструкции немодифицированной и модифицированной древесины сосны (1-й этап - деструкция в инертной атмосфере)
Конверсия, % Немодифицированная древесина Модифицированная древесина
Энергия активации Е, кДж/моль Lоg Z, 1/мин Энергия активации Е, кДж/мол Lоg Z, 1/мин
5.0 178.8 15.24 80.6 6.17
10.0 163.8 13.54 106.5 8.49
15.0 155.9 12.69 108.3 8.55
20.0 152.1 12.26 111.9 8.82
30.0 151.1 12.05 119.8 9.43
40.0 151.7 11.98 127.6 10.04
50.0 151.5 11.88 129.1 10.13
60.0 151.5 11.84 128.6 10.06
70.0 151.1 11.80 131.0 10.24
Полученные данные свидетельствуют о том, что образцы модифицированной древесины начинают терять массу при более низкой температуре; это подтверждает предположение об активизации процесса дегидратации полисахарид-ного комплекса древесины функциональными группами привитого модификатора (до а = 5 %).
Дальнейшее нагревание сопровождается термодеструкцией исследуемых материалов без окислительных реакций. Этот процесс начинается с углеводов древесины; в первую очередь разрушаются гликозидные и С-С связи пираноз-ного кольца. Температурные интервалы деструкции древесины в атмосфере азоты смещены в высокотемпературную область для всех исследуемых образцов относительно температурных интервалов в окислительной атмосфере; термостабильность древесины в инертной атмосфере выше. Значение энергии активации процесса тер-
модеструкции в инертной атмосфере выше аналогичных значений в окислительной атмосфере для всех образцов.
Величины преэкспоненты для образцов на-тивной древесины в инертной и окислительной атмосферах близки, причем величина предэкспо-ненты мало зависит от степени конверсии. Для модифицированной древесины с увеличением степени конверсии величина предэкспоненты увеличивается, особенно это характерно для процесса деструкции в окислительной атмосфере. Это связано с уменьшением вклада стерических затруднений в снижение горючести древесины. В инертной атмосфере значения log Z выше значений log Z в окислительной атмосфере при всех степенях конверсии. Таким образом, процесс тер-модеструции древесины в инертной атмосфере характеризуется более высокими значениями энергии активации процесса.
Модифицирование древесины моноэтанола-мин(К^-В)тригидроксиборатом не приводит к
смещению температурного интервала деструкции в инертной атмосфере в высокотемпературную область, хотя потеря массы у модифицированных образцов ниже контроля. Это указывает, на доминирование энергетического фактора в ме-
ханизме действия данного антипирена; некоторое повышение горючести модифицированного материала определяется энтропийным вкладом.
При температуре 750 °С изменяли атмосферу деструкции древесины на окислительную и определяли кинетические параметры окисления кокса, рис. 3, табл. 3.
-- скорость нагрева 20 "С'мин; -- скорость нагрева 10 "С/мин; -- скорость нагрева 5 сС/мин
Рис. 3. Зависимость степени конверсии от температуры и скорости нагревания для образцов немодифицированной (а) и модифицированной (б) древесины сосны (2-й этап - деструкция кокса в
окислительной атмосфере)
Таблица 3
Кинетические параметры термодеструкции немодифицированной и модифицированной древесины сосны (2-й этап - деструкция кокса в окислительной атмосфере)
Конверсия, % Немодифицированная древесина Модифицированная древесина
Энергия активации Е, кДж/моль Lоg Z, 1/мин Энергия активации Е, кДж/мол Lоg Z, 1/мин
5.0 495.5 23.38 447.9 20.96
10.0 455.0 21.59 397.3 18.64
15.0 437.0 20.83 364.4 17.11
20.0 432.4 20.71 339.0 15.92
30.0 403.8 19.43 300.0 14.08
40.0 388.5 18.77 272.1 12.77
50.0 383.1 18.6 250.1 11.75
60.0 376.0 18.33 232.2 10.92
70.0 367.9 19.02 217.7 10.28
Полученные данные указывают на смещение температурного интервала окислительной термодеструкции кокса в высокотемпературную область, особенно при скоростях нагревания 5 и 10 °С/мин. Верхняя граница температурного интервала для модифицированной древесины составляет 850 °С; для немодифицированной -785 °С.
С увеличением степени конверсии модифицированной древесины величины преэкспоненты и энергии активации уменьшаются. Увеличение величины предэкспоненты при смене атмосферы, вероятно связано с высокой скоростью удаления летучих продуктов окислительной термодеструкции в узком интервале температур. Это приводит к существенному уменьшению прочности поверхностного слоя кокса - появлению трещин,
отслоению отдельных частей, разрыву химических связей. При его выгорании - значение log Z увеличивается.
Значение энергии активация термодеструкции кокса модифицированной древесины ожидаемо ниже контроля, под воздействием высокой температуры и кислорода химически связанные в поверхностном слое компоненты антипирена подвергаются эндотермическому распаду в первую очередь, образуя негорючие газообразные и твердые материалы [15, 16].
Таким образом, огнезащитное действие исследуемого модификатора связано с меньшим значением энергии активации процесса термодеструкции привитого модификатора по сравнению с энергией активации термодеструкции древесного материала; влияние энтропийного вклада
в константу скорости термодеструкции незначи- Огнезащитную эффективность модифика-
тельно. тора определяли по ГОСТ 16363-98. Полученные
результаты представлены в табл. 4.
Таблица 4
Результаты испытаний по ГОСТ 16363-98 (п. 4.2) модифицированной древесины
№ образца Масса образца, г Потер об >я массы разца Средняя потеря массы образца
до обработки перед сжиганием после сжигания г % г %
1 118,8 123,8 97,7 26,1 21,1
2 116,5 121,4 98,3 23,1 19,0 23,4 19,6
3 107,9 112,5 91,4 21,1 18,8
Средняя потеря массы модифицированными образцами составила 19,6 % (остаточное горение образцов - 1 мин 40 сек; в конце 2-й минуты -максимальная температура горения газообразных продуктов - 500 °С), это соответствует II группе огнезащитной эффективности.
Выводы. Полученные результаты позволяют сделать следующие выводы. Поверхностное модифицирование древесины боразотным антипиреном обеспечивает материалу II группу огнезащитной эффективности. Aнтипиренный эффект исследуемого модификатора связан с более низким значением энергии активации процесса его термодеструкции. Под воздействием высокой температуры в окислительной атмосфере химически связанные в поверхностном слое компоненты антипирена подвергаются эндотермическому распаду в первую очередь, образуя негорючие газообразные и твердые продукты, которые снижают концентрацию горючих газов и изолируют поверхность древесины от кислорода. Вклад энтропийного фактора в снижении горючести модифицированной древесины менее выражен. Применение моноэтанола-мин^^-В)тригидроксибората в качестве анти-пирена древесины целесообразно в окислительной атмосфере.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Aксенов A.A., Малюков С.В. Способы модифицирования древесины // Aктyальные направления научных исследований XXI века: теория и практика. 2015. Т. 3. №9-3(20-3). С. 1418.
2. Береговой B.A., Егунов ДА. Строительная древесина: параметры модификации и свойства // Региональная архитектура и строительство. 2017. №1 (30). С. 25-29.
3. Pokrovskaya E. Increasing the strength of destroyed wood of wooden architecture monuments by surface modification // MATEC Web of Conferences 2018.01034.
4. Шейкман Д.В., Кошелева Н.А. Исследование физико-механических свойств модифицированной древесины березы и осины // Вестник Технологического университета. 2016. Т.19. №15. С.110-112.
5. Kumar A., Adamopoulos S., Richter J., Tywoniak J., Hajek P., Segedin U., Petric M. // Surface modification of norway spruce wood by octade-cyltrichlorosilane (ots) nanosol by dipping and water vapour diffusion properties of the ots-modified wood // Holzforschung. 2017. Т. 72. № 1. С. 45-56.
6. Kondratyeva E., Safiullin K., Motygullin I., Klochkov A., Tagirov M., Reita V. Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods // Wood Science and Technology. 2016. Т. 50. № 5. С. 895916.
7. Покровская Е.Н. Огнезащита деревянных конструкций модификацией в тонком поверхностном слое // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. 2018. №2. С. 86-90.
8. Греков Л.И., Селезнева Н.А., Калашникова Н.Ю., Желтобрюхов В.Ф., Беляева Ю.Л. Фосфоразотсодержащие антипирены для древесины // Известия Волгоградского государственного технического университета. 2017. № 11 (206). С. 67-72.
9. Кляченкова О.А., Степина И.В. Термоокислительная деструкция древесины, модифицированной аминфенилборатами // Успехи современной науки. 2017. Т.1. №6. С. 247-252.
10.Bekhta P., Bryn O., Sedliacik J., Novak I. Effect of different fire retardants on birch plywood properties // Acta Facultatis Xylologiae. 2016. Т. 58. № 1. С. 59-66.
11.Xu Z., Chu Z., Yan L. Enhancing the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings by introducing boric acid as synergistic agent // Journal of Thermal Analysis and Calorimetry. 2018. Т. 133. №3. С. 1241-1252.
12.Hakki I., Baysal E., Toker H., Deveci I., Turkoglu T., Peker H. Thermal analysis of oriental
beech wood treated with some borates as fire retardants // Maderas: Ciencia y Tecnologia. 2016. Т. 18. № 2. С. 293-304.
13.Кошелева О.Э., Паули И.А., Логвиненко В.А. Кинетика термодеструкции древесины сосны с антипиренами // Известия вузов. Строительство. 2016. №5. С. 119-126.
14.Котлярова И.А., Степина И.В. Изменение надмолекулярной структуры целлюлозы при ан-
тисептировании древесины моноэтанола-мин(К^-В)-тригидроксиборатом // Строительство: наука и образование. 2018. №2. С. 61-72.
15.Кошелева О.Э., Логвиненко В.А. Термический анализ древесины. Часть I. Известия высших учебных заведений. Строительство. 2016. №
2 (686). С. 98-103.
16. Кошелева О.Э., Логвиненко В.А. Термический анализ древесины. Часть II. Известия высших учебных заведений. Строительство. 2016. №
3 (687). С. 95-99.
Информация об авторах
Котлярова Ирина Александровна, кандидат технических наук, доцент кафедры «Машиностроение и материаловедение». E-mail: [email protected] Брянский государственный технический университет. Россия, 241035, Брянск, бул. 50 лет Октября, д.7.
Степина Ирина Васильевна, кандидат технических наук, доцент кафедры «Строительные материалы и материаловедение». E-mail: [email protected] Национальный исследовательский Московский государственный строительный университет. Россия, 129337, Москва, Ярославское шоссе, д.26.
Поступила в ноябре 2019 г. © Котлярова И.А., Степина И.В., 2020
1 *Kotlyarova I.A., 2Stepinа I.V.
1Bryansk State Technological University.
2National Research Moscow State University of Civil Engineering *E-mail:[email protected]
DETERMINATION OF KINETIC PARAMETERS OF THERMODESTRUCTION AND GROUPS OF FIREPROOF EFFICIENCY OF PINE WOOD, MODIFIED BY BORON NITROGEN FLAME RETARDANT
Abstract. Wood is a combustible material. To reduce combustibility, wood is modified with functional compounds ofphosphorus, boron and nitrogen, inoculation of which changes the chemical composition of the surface layer of wood and its structure. The mechanism of action offlame retardants is related to their influence on the energy and entropy characteristics of the thermodestruction process. Considering that boron nitrogen compounds are effective flame retardants and react with wood components under «mild» conditions, the effect of grafting of a borax modifier on the kinetic parameters of wood thermal decomposition is studied. The kinetic parameters (activation energy and preexponent value) are determined by thermal analysis using TGA curves (integral method). A 50% aqueous solution of monoethanolamine(N^B)trihydroxyborate is used as a modifier; samples of unmodified pine wood are used as controls. The experimental data obtained indicate that the surface modification ofpine wood with boron nitrogen fire retardant provides the material with group II fire protection efficiency (modifier consumption-150g/m2). The flame retardant effect of the boron nitrogen modifier is associated with a lower value of the activation energy of its thermal destruction process. The contribution of the entropy factor in reducing the combustibility of modified wood is less expressed. The use of monoethanolamine(N^B)trihydroxyborate as a wood flame retardant is advisable in an oxidizing atmosphere.
Keywords: wood, modifying, boron nitrogen connections, fire retarding agents, kinetic parameters of thermodestruction, thermal analysis.
REFERENCES
1. Aksenov A.A., Malyukov S.V. Methods of wood modification [Sposoby modificirovaniya drevesiny]. Aktual'nye napravleniya nauchnyh issle-dovanij XXI veka: teoriya i praktika. 2015. Vol. 3. No. 9-3(20-3). Pp. 14-18. (rus)
2. Beregovoj V.A., Egunov D.A. Construction wood: modification parameters and properties [Stroitel'naya drevesina: parametry modifikacii i svojstva]. Regional'naya arhitektura i stroitel'stvo. 2017. No. 1 (30). Pp. 25-29. (rus)
3. Pokrovskaya E. Increasing the strength of destroyed wood of wooden architecture monuments
by surface modification. MATEC Web of Conferences 2018.01034.
4. Shejkman D.V., Kosheleva N.A. Investigation of physical and mechanical properties of modified birch and aspen wood [Issledovanie fiziko-mek-hanicheskih svojstv modificirovannoj drevesiny be-rezy i osiny]. Vestnik Tekhnologicheskogo universi-teta. 2016. Vol. 19. No. 15. Pp. 110-112. (rus)
5. Kumar A., Adamopoulos S., Richter J., Tywoniak J., Hajek P., Segedin U., Petric M. Surface modification of norway spruce wood by octade-cyltrichlorosilane (ots) nanosol by dipping and water vapour diffusion properties of the ots-modified wood. Holzforschung. 2017. Vol. 72. No. 1. Pp. 4556.
6. Kondratyeva E., Safiullin K., Motygullin I., Klochkov A., Tagirov M., Reita V. Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods. Wood Science and Technology. 2016. Vol. 50. No. 5. Pp. 895-916.
7. Pokrovskaya E.N. Fire protection of wooden structures modification in a thin surface layer [Ognezashchita derevyannyh konstrukcij modi-fikaciej v tonkom poverhnostnom sloe]. Pozhary i chrezvychajnye situacii: predotvrashchenie, likvida-ciya. 2018. No 2. Pp. 86-90.(rus)
8. Grekov L.I., Selezneva N.A., Kalashnikova N.Yu., ZHeltobryuhov V.F., Belyaeva Yu.L. Phosphor-nitrogen flame retardants for wood [Fosforazot-soderzhashchie antipireny dlya drevesiny]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. No. 11 (206). Pp. 67-72. (rus)
9. Klyachenkova O.A., Stepina I.V. Thermo-oxidative degradation of wood modified with aminfenylborates [Termookislitel'naya destrukciya drevesiny, modificirovannoj aminfenilboratami].
Uspekhi sovremennoj nauki. 2017. Vol. 1. No. 6. Pp. 247-252. (rus)
10.Bekhta P., Bryn O., Sedliacik J., Novâk I. Effect of different fire retardants on birch plywood properties. Acta Facultatis Xylologiae. 2016. Vol. 58. No. 1. Pp. 59-66.
11.Xu Z., Chu Z., Yan L. Enhancing the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings by introducing boric acid as synergistic agent. Journal of Thermal Analysis and Calorimetry. 2018. Vol. 133. No. 3. Pp. 1241-1252.
12.Hakki I., Baysal E., Toker H., Deveci I., Turkoglu T., Peker H. Thermal analysis of oriental beech wood treated with some borates as fire retardants. Maderas: Ciencia y Tecnologia. 2016. Vol. 18. No. 2. Pp. 293-304.
13.Kosheleva O.E., Pauli I.A., Logvinenko V.A. Kinetics of thermal degradation of pine wood with flame retardants [Kinetika termodestrukcii drevesiny sosny s antipirenami]. Izvestiya vuzov. Stroitel'stvo. 2016. No. 5. Pp. 119-126. (rus)
14.Kotlyarova I.A., Stepina I.V. The change in supramolecular structure of cellulose in the wood preservative monoethanolamine(N^B)-trihydroxy-purine [Izmenenie nadmolekulyarnoj struktury cellyulozy pri antiseptirovanii drevesiny monoetano-lamin(N^B)-trigidroksiboratom]. Stroitel'stvo: nauka i obrazovanie. 2018. No. 2. Pp.61-72. (rus)
15.Kosheleva O.E., Logvinenko V.A. Thermal analysis of wood. Part I. [Termicheskij analiz drevesiny. Chast' I.] Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo. 2016. No. 2 (686). Pp. 98103. (rus)
16. Kosheleva O.E., Logvinenko V.A. Thermal analysis of wood. Part II. [Termicheskij analiz drevesiny]. Chast' II. Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo. 2016. No. 3 (687). Pp. 95-99.(rus)
Information about the authors
Kotlyarova, Irina A. PhD, Assistant professor. E-mail: [email protected] Bryansk State Technological University. Russia, 241035, Bryansk, bul 50 October, 7.
Stepina, Irina V. PhD, Assistant professor. E-mail: [email protected]. National Research Moscow State University of Civil Engineering. Russia, 129337, Moscow, Yaroslavl highway, 26
Received in November 2019
Для цитирования:
Котлярова И.А., Степина И.В. Определение кинетических параметров термодеструкции и группы огнезащитной эффективности древесины сосны, модифицированной боразотным антипиреном // Вестник БГТУ им. В.Г. Шухова. 2020. № 1. С. 70-77. DOI: 10.34031/2071-7318-2020-5-1-70-77
For citation:
Kotlyarova I.A., Stepi^ I.V. Determination of kinetic parameters of thermodestruction and groups of fireproof efficiency of pine wood, modified by boron nitrogen flame retardant. Bulletin of BSTU named after V.G. Shukhov. 2020. No. 1. Pp. 70-77. DOI: 10.34031/2071-7318-2020-5-1-70-77