Научная статья на тему 'ОПЕРАЦИИ НА ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВАХ'

ОПЕРАЦИИ НА ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВАХ Текст научной статьи по специальности «Математика»

CC BY
49
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО / ХАУСДОРФОВО ПРОСТРАНСТВО / РЕГУЛЯРНОЕ ПРОСТРАНСТВО / TOPOLOGICAL SPACE / HAUSDORFF SPACE / REGULAR SPACE

Аннотация научной статьи по математике, автор научной работы — Бешимова Дилором Рузиназаровна

Одним из важнейших разделов современной общей топологии является теория кардинальнозначных инвариантов топологических пространств. Среди этих инвариантов вторым по значимости является плотность. В определяемой плотностью иерархии пространств центральное место занимают пространства наименьшей бесконечной плотности, т.е. пространства, которые содержат счетные всюду плотные подпространства. Исторически сложилось так, что эти пространства называются сепарабельными. В этой статье изучаются T ноль топологическое пространство, T один топологическое пространство, пространство Хаусдорфа, регулярные пространства, полное регулярное пространство, нормальные пространства.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

OPERATIONS ON TOPOLOGICAL SPACES

One of the most important sections of modern general topology is the theory of cardinal-valued invariants of topological spaces. Among these invariants, the second most important is density. In the hierarchy of spaces determined by the density, the spaces of the least infinite density occupy the central place, i.e. spaces that contain countable everywhere dense subspaces. Historically, these spaces are called separable. In this paper T zero topological space, T one topological space, Hausdorff space, regular spaces, full regular space, normal spaces are studied.

Текст научной работы на тему «ОПЕРАЦИИ НА ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВАХ»

13. Меражова Ш.Б. Теорема об устойчивости разностной модели для первой краевой задачи поставленную в уравнению смешанного типа // Ученый XXI века. № 5-3, 2018. С. 49-51.

14. Меражова Ш.Б., Мардонова Ф.Я. Эквивалентность задачи для уравнения смешанного типа и задачи Коши для уравнений симметрической системе // Учёные XXI века. № 6-1 (53), 2019. С. 20-23.

15. Меражова Ш.Б., Маматова Н.Х. Постановка обратных задач в математической физике // Ученый XXI века № 5-3,(2018), 43-45.

16. Меражова Ш.Б., Мадатова Г.А. Использование метода Фурье для решения смешанной задачи для гиперболической системы // "Молодой учёный", 2017. 15. ЧАСТЬ II. Стр. 106-109.

17. Маматова НХ., Норова М. Решение задачи для нормы функционала погрешности интерполяционной формулы в пространстве // Молодой ученый, 2016. № 12 (116). С. 31-32.

18. Маматова Н.Х., Меражова Ш.Б. Постановка задачи для построения оптимальной интерполяционной формулы в пространстве С.Л. Соболева непериодических функций // Молодой ученый, 2016. № 10 (114). С. 13-14.

OPERATIONS ON TOPOLOGICAL SPACES Beshimova D.R. Email: Beshimova697@scientifictext.ru

Beshimova Dilorom Ruzinazarovna - Teacher, DEPARTMENT OF DIFFERENTIAL EQUATION, FACULTY OF PHYSICS AND MATHEMATICS, BUKHARA STATE UNIVERSITY, BUKHARA, REPUBLIC OF UZBEKISTAN

Abstract: one of the most important sections of modern general topology is the theory of cardinal-valued invariants of topological spaces. Among these invariants, the second most important is density. In the hierarchy of spaces determined by the density, the spaces of the least infinite density occupy the central place, i.e. spaces that contain countable everywhere dense subspaces. Historically, these spaces are called separable. In this paper T zero topological space, T one topological space, Hausdorff space, regular spaces, full regular space, normal spaces are studied.

Keywords: topological space, Hausdorff space, regular space.

ОПЕРAЦИИ НА ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВАХ

Бешимова Д.Р.

Бешимова Дилором Рузиназаровна - преподаватель, кафедра дифференциальных уравнений, физико-математический факультет, Бухарский государственный университет, г. Бухара, Республика Узбекистан

Аннотaция: одним из важнейших разделов современной общей топологии является теория кардинальнозначных инвариантов топологических пространств. Среди этих инвариантов вторым по значимости является плотность. В определяемой плотностью иерархии пространств центральное место занимают пространства наименьшей бесконечной плотности, т.е. пространства, которые содержат счетные всюду плотные подпространства. Исторически сложилось так, что эти пространства называются сепарабельными. В этой статье изучаются T ноль топологическое пространство, T один топологическое пространство, пространство Хаусдорфа, регулярные пространства, полное регулярное пространство, нормальные пространства.

Ключевые слова: топологическое пространство, Хаусдорфово пространство, регулярное пространство.

YffK 517.12

Definition 1. For any two different points x and y, at least one point had a neighborhood that did not contain another point.

Topological spaces satisfying the zero separability axiom are called 70 -spaces [1-9].

Proposition 1. A topological space X satisfies the first separability axiom 7, if and only if every one-point subset of it is closed.

Remark 1. There is a space that is an 70 -space, but is not a 7, -space.

Example 1. Let X = {a, b} be a set consisting of two elements a and b. In the set X, we define the topology as follows: t = { emp tys e t, { a} , X } One can easily check that (X, t) is a topological space. The topological space (X, t) is a 70 -space, but not a 7, -space [6-7].

Definition 2. It is said that the topological space (X, t) satisfies the second separability axiom if, for each pair of distinct points there are neighborhoods of and

0 x2 such that Ox, D 0 x2 = 0.

Topological spaces that satisfy this condition are called 72 -spaces or Hausdorff spaces.

Obviously, every 72 -space is a 7, -space.

Remark 2. There is a space that is an -space, but is not a -space.

Example 2. Let be the set of all natural numbers . The set of all

natural numbers is introduced by the topology as follows:

. One can easily see that is a topological

space on N. We claim that ( N, t ) is a 7, -space. Let xx ^ x2 £ N be two different points in the space . The sets and are the neighborhoods of the points

and x2 respectively. It is clear that x2 £ A, and xx £ A2, ( N, t ) is a 7, -space.

Now we show that ( N , t ) is not a 72 -space. Assume the contrary that there are such different points, x, ^ x2 £ N have disjoint neighborhoods A x, and A x2, that is, A x, n A x2 = 0. Consider the additions

N\( A x, D A x2 ) = ( N \Ax,) U ( N\Ax,) = N.

By hypothesis, N\A xx and N\A x2 are finite sets, and the union of finite sets is finite. We have obtained a contradiction that the set of all natural numbers is infinite.

Definition 3. It is said that a topological space satisfies the 73 axiom of separability if for any point and any closed set not containing this point there are

neighborhoods and such that .

If a space satisfies both the and -separation axioms, then we call such spaces regular.

It is clear that every regular space is Hausdorff.

Remark 3. There is a Hausdorff space that is not regular.

Consider the set of all real numbers and define the topology in using the system of neighborhoods of all points x ^ 0 the same as on the number line; neighborhoods of the point are obtained by subtracting from any interval containing this point all points of the form - that fall into this interval, where n is a positive integer. The space R is Hausdorff; the set of all points of the form - is closed in R; every neighborhood of this closed set

intersects every neighborhood of the point 0.

Theorem 1. A topological space (X, t) is regular if and only if for every point x £ X and any neighborhood such a neighborhood of this point that .

Definition 4. It is said that the topological space (X, t) satisfies the 73 i -separability

2

axiom if for any point x £ X and any closed set not containing this point F su b s e tX there is a continuous function / : X -> [ 0 ,1 ] , such that

/ (x) = 0 and / (x) = 1 for x £ F.

If a space satisfies both 7,^ and 73 i -separable axioms, then such spaces are called

2

Tikhonov, or completely regular, or 73 i -spaces.

It is clear that any regular space is completely regular. Indeed, let x e X and x nо tinF be an arbitrary nonempty closed subset of X. Since X is a completely regular space, there exists a continuous function f : X tо [ 0 , 1 ] , such that f (x) = 0 and f (x) = 1 for the set

x e F. Then the neighborhoods Ox = f ~ 1 ^ [ 0,^ ^ and OF = f ~ 1 ^ Q, 1 j ^ have an empty

intersection, which means that any regular space is completely regular.

Theorem 2. The T1 -space X is a completely regular space if and only if for every point x e X and any neighborhood U from a fixed prebase P there is a continuous function f : X t о [ 0 , 1 ] , such that f (x) = 0 and f (у) = 1 for ye X\ U.

Definition 5. It is said that a topological space (X,t) satisfies the T4-axiom of separability if, for each pair of disjoint closed sets A,ScX, there are open sets U, V such that

А с U,В с V and Uf\V Ф 0 If a space also satisfies the -axiom of separability, then we call such spaces normal or -space. It is clear that every normal space is a regular space.

Proposition 1. For any two disjoint open sets, the closure of either of them does not intersect with the other.

The study of spaces helps the tasks set in them [10-15].

References / Список литературы

1. Engelking R. Basic topology // Moscow: Mir, 1986. 752 P.

2. Beshimova D.R. Weak density of the weakly additive functionals // Young Scientist. 8:112 (2016).

3. Beshimova D.R. Weakly separable spaces // Young scientist. 12:116 (2016).

4. Beshimova D.R. Compact spaces // Young scientist. 13:117 (2016).

5. Beshimova D.R. Hyperspase and cs-network // Journal of Global Research in Mathematical Archives. Volume 6. № 10. October, 2019.

6. Turaeva N.A., Beshimova D.R. Methodological recommendations for teaching mathematics // "Pedagogical skill". № 5, 2019. Р. 146-148.

7. Arxangelskiy A.V., Ponomarev V.I. Basics of general topology in Problems and Exercises // Moscow: Nauka, 1974. 424 P.

8. Fedorchuk V. V., Fillipov V. V. Basic topology. Basic constructions // Moscow: Fizmatlit, 2006. 332 P.

9. Aleksandrov P.S., Pasinkov B.A. Introduction to dimension theory // Moscow: Nauka, 1973. 576 P.

10. Merajova Sh.B., Mamatova N.Kh. Statement of the problem of finding the optimal coefficients of the optimal interpolation formula in space // Scientists of the XXI century. № 5-3 (53), 2018. P. 45-47.

11. Durdiev U.D. Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory // Sib. Elektron. Mat. Izv. 17 (2020). P. 179-189.

12. Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation // Eurasian journal of mathematical and computer applications, 7:2 (2019). Pp. 4-19.

13. Merajova Sh.B. Solution by the method of continuation of problems of mathematical physics in semi-bounded areas // Young scientists, 12 (116), 2016, P. 43-45.

14. Merajova Sh.B. Difference boundary problem for a mixed type equation // "Young scientists". 8 (112), 2016. P. 21-23.

15. Merajova Sh.B., Mamatova N.Kh. A priori estimate for the solution of the first boundary value problem for an equation of mixed type // "Young scientists". 12 (116), 2016. P. 42-43.

i Надоели баннеры? Вы всегда можете отключить рекламу.