Научная статья на тему 'ON THE SOLVABILITY OF A CLASS OF NONLINEAR URYSOHN INTEGRAL EQUATIONS ON THE POSITIVE HALF-LINE'

ON THE SOLVABILITY OF A CLASS OF NONLINEAR URYSOHN INTEGRAL EQUATIONS ON THE POSITIVE HALF-LINE Текст научной статьи по специальности «Математика»

CC BY
50
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
URYSOHN EQUATION / MONOTONICITY / CARATHEODORY CONDITION / ITERATIONS / BOUNDED SOLUTION

Аннотация научной статьи по математике, автор научной работы — Khachatryan Khachatur, Petrosyan Haykanush

The paper investigates the Urysohn’s nonlinear integral equation on the positive half-line. Some special cases of this equation have specific applications in different areas of modern natural science. In particular, such equations arise in the kinetic theory of gases, in the theory of p-adic open-closed strings, in mathematical theory of the spatio-temporal spread of the epidemic, and in theory of radiative transfer in spectral lines. The existence theorem for nonnegative nontrivial and bounded solutions is proved. Some qualitative properties of the constructed solution are studied. Specific applied examples of the Urysohn’s kernel satisfying all the conditions of the approved theorem are provided.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ON THE SOLVABILITY OF A CLASS OF NONLINEAR URYSOHN INTEGRAL EQUATIONS ON THE POSITIVE HALF-LINE»

% 1И..1..й11?

Серия «Математика»

2021. Т. 36. С. 57—68

Онлайн-доступ к журналу: http://mathizv.isu.ru

УДК 517.968.4 MSC 45G05

DOI https://doi.org/10.26516/1997-7670.2021.36.57

On the Solvability of a Class of Nonlinear Urysohn Integral Equations on the Positive Half-line*

Kh. A. Khachatryan1'2'3, H. S. Petrosyan1'4

1 Lomonosov Moscow State University, Moscow, Russian Federation

2 Yerevan State University, Yerevan, Republic of Armenia

3 Institute of Mathematics of NAS of Armenia, Yerevan, Republic of Armenia

4 Armenian National Agrarian University,Yerevan, Republic of Armenia

Abstract. The paper investigates the Urysohn's nonlinear integral equation on the positive half-line. Some special cases of this equation have specific applications in different areas of modern natural science. In particular, such equations arise in the kinetic theory of gases, in the theory of p-adic open-closed strings, in mathematical theory of the spatiotemporal spread of the epidemic, and in theory of radiative transfer in spectral lines. The existence theorem for nonnegative nontrivial and bounded solutions is proved. Some qualitative properties of the constructed solution are studied. Specific applied examples of the Urysohn's kernel satisfying all the conditions of the approved theorem are provided.

Keywords: Urysohn equation, monotonicity, Caratheodory condition, iterations, bounded solution.

* This work was supported by the Russian Scientific Foundation (project no. 19-1100223)

1. Introduction

We consider the following class of Urysohn's nonlinear integral equations

oo

f (%) = J u(x,t,f (t))dt, x e R+ := [0, (1.1)

0

with respect to unknown essentially bounded real function f (x). In equation (1.1) Urysohn's kernel u(x, t, z) is defined on set R+ x R+ x R, accepts real values, satisfies condition of criticality

u(x, t, 0) = 0, (x, t) e R+ x R+ (1.2)

and some other conditions (see formulation of main result).

Note that Urysohn's type nonlinear integral equations have a numerous applications in the most diverse areas of modern natural science. In particular under certain representations of the Urysohn's kernel, the equation (1.1) arises in kinetic theory of gases (in the framework of modified model of nonlinear Boltzmann equation), in mathematical theory of spatial-temporal spread of epidemics, in dynamic theory of p-adic closed-open strings, in radiative transfer theory of spectral lines (see [2-5; 15] and references there in).

In papers [8; 11-13] the equation (1.1) has been investigated in sufficient details in the case of monotone Urysohn's operator, for which as a linear minorant in the sense of M.A. Krasnoselskii is Wiener-Hopf conservative integral operator (or Wiener-Hopf-Hankell substochastic operator). Moreover for some "q > 0 Urysohn's kernel satisfies the following integral inequality

oo

J u(x,t,rj)dt < rj, x e R+. (1.3)

0

In this work under essentially weak constraints on the Urysohn's kernel, the existence of a nonnegative nontrivial solution is proved, as well as some qualitative properties of constructed solution is investigated.

Before proceeding to the formulation of the main result of this work, we introduce some notations.

Let K0 — is defined on the set R+, measurable function, satisfying conditions

Ko(x) > 0, ж e R+, Ко e Li(R+) П M(R+), (1.4)

o

J Ko(x)dx = 1, (1.5)

0

where M(R+) — is the space of essentially bounded on R+ functions with norm

||/1| = esssup \f (x)\. (1.6)

Let A(^) — is defined on R+ continuous function possesses the following properties

0 < eo := inf X(x) < X(x) < 1, x e R+, X(x) t on R+, (1.7)

lim X(x) = 1, (1 - X(x))x e Li(R+). (1.8)

Further, we introduce a function K1(x,y), that is definite and continuous on R+ x R+, and

0 < Ki(x,y) < Ko(y — x), 0 < x < y< (1.9)

oo

xJk i(x,y)dy e L?(R+), (1.10)

X

where L0(R+) — is the space of summable functions on R+, having zero limit at

The main result of this work is the following. Theorem. Let exist positive numbers £ and (0 < £ < rj) such that

a) the function u(x, t, z) for each fixed (x, t) e R+ x R+ monotonically

increases by z on interval [0,^],

b) the function u(x,t,z) satisfies Caratheodory's condition by argument z

on set R+ x R+ x [0, rj], i.e for each fixed z e [0, rj] the function u(x, t, z) is measurable by the set of arguments (x, t) on set R+ x R+, and almost for all (x,t) e R+ x R+ is continuous by z on interval [0,^],

c) for arbitrary measurable function f(x), such that 0 < <p(x) < x e R+

oo

the function J u(x,t,<p(t))dt is measurable by x on R+, o

d) for kernel u(x,t,z), the minorant in the sense of Krasnoselsky is the

function X(x)(K0(y — x) — (x,y))z at 0 < x < y < z e [0,£],

i.e

u(x,t,z) > X(x)(K0(y — x) — (x,y))z, 0 < x < y < z e [0,£].

Then under conditions (1.2), (1.3), the equation (1.1) possesses nonnegative nontrivial measurable and bounded .solution f (x), moreover, f (x) < r], x e R+.

At the end of the work, specific examples of the Urysohn's kernel are given, which have a direct application in natural science.

2. Proof of the theorem

First of all, along with the equation (1.1), consider the following auxiliary inhomogeneous Volterra integral equation with a variable lower limit

oo

F(x)= g(x) + \(x)j(Ko(y - x) - Ki(x,y))F(y)dy, x e R+ (2.1)

X

and with respect to the unknown measurable function F(x). Here the free term g(x) permits of the form

o

g(x) := 1 - X(x) + \(x) j Ki(x, y)dy, x e R+. (2.2)

X

Observe that from conditions (1.7)-(1.10) it follows that

o

J xjg(x)dx < j = 0,1, (2.3)

0

lim g(x) = 0. (2.4)

Direct checking can be verified that F0(x) = 1 is the solution of the equation (2.1).

Below we show that equation (2.1), in addition to the trivial solution F0(x) = 1, possesses nonnegative summable and bounded solution F1 (x). Furthermore F1(x) < F0(x) and lim F1(x) = 0. To this end, consider the

following Volterra conservative nonhomogeneous integral equation with the kernel depending on difference of arguments.

o

<p(x) = g(x) + J K0(y - x)ip(y)dy, x e R+ (2.5)

X

with respect to the sought function f(x). Due to the properties (2.3), (2.4),

(1.4) and (1.5) according to the results of the work [1] (see theorem 3.1 and lemma 3.6, pp. 191-193), the equation (2.5) has nonnegative summerable on R+ solution f(x). Taking into account (1.4), (1.7), (2.2) and (2.4) from

(2.5) we get

g(x) < ф) < g(x) + ( sup Ko(x)) <p(t)dt. (2.6)

жек+ J

Hence, it can be stated that

<p e Li(R+) n M(R+) and lim <p(x) = 0. (2.7)

We introduce the following simple iterations for equation (2.7)

F<«+1>(x)= ,(,) + A(x) fat — ,) — KiM)F<«■(,)*

X

F (0)(x) = g(x), n = 0,1, 2,..., x e R+.

(2.8)

Using (1.9), (1.7), (1.4), (1.5) and (2.5), by the method of mathematical induction it is not difficult to establish the validity of the following statements

F(n) (x) t by n, (2.9)

F(n)(x) < <p(x), n = 0,1,2,..., x e R+, (2.10)

F(n) (x) < 1, n = 0,1, 2,..., x e R+, (2.11)

where <p(x) — is the solution of integral equation (2.5) with the properties (2.7).

Therefore there exists pointwise limit of sequences

[F(n)(x)}o°=0 : lim F(n)(x) =: Fi(x),

n—too

moreover limit function in accordance to B. Levi's theorem (see [6]), satisfies the equation (2.1). In view of (2.7) from (2.9)-(2.11) it follows that

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

g(x) < Fi(x) < <p(x), x e R+, (2.12)

Fi e Li(R+), Fi(x) < 1, x e R+, lim Fi(x) = 0. (2.13)

Thus, due to (2.12) and (2.13), we can state that Fi(x) ^ 1, x e R+. It is obvious that S*(x) := 1 — Fi(x) > 0, S*(x) ^ 0 will be solution of the linear homogeneous equation

oo

S(x) = \(x) j(Ko(t — x) — Ki(x, t))S(t)dt, x e R+. (2.14)

X

Moreover, due to (2.12)-(2.13), the function S*(x) possesses the following properties

0 < 5*(x) < 1, S*(x)^ 0, x e R+, (2.15)

lim 5*(x) = 1, 1 — 5* e Li(R+). (2.16)

Now let's go back to the study of the initial nonlinear integral equation (1.1). We introduce the following special iterations for (1.1):

CO

fn+\(x) = u(x,t, fn(t))dt, X e R+, 0

1* (

(2.17)

fo(x)= £S*(x), n = 0,1, 2,.... By induction we prove that

fn(x) f by n, (2.18)

fn(x) < V, x e R+, n = 0,1,2,.... (2.19)

Observe that from (2.15) and £ < condition follows the inequality fo(x) < x e R+. Now we show fl(x) > fo(x). Indeed, due to monotonic-ity of Urysohn's kernel u(x, t, z) by z on [0, rf], and taking into consideration (1.7), (2.14), condition d) from (2.17) we gate

oo oo

fi(x) = ju(x,t,iS*(t))dt > ju(x,t,iS*(t))dt >

0 x

o

> &(x) J(Ko(t - x) - Ki(x,t))S*(t)dt = *(x) = fo(x).

x

Assume that fn(x) > fn-i(x) and fn(x) < ri, x e R+ for some natural n. Using monotonicity of the function u(x, t, z) by z, and also inequality (1.3), from (2.17) we obtain

o

fn+\(x) >ju(x,t, fn-i(t))dt = fn(x), x e R+,

fn+l(x) < ju(x,t,rj)dt < 'q, x e R+. 0

Thus (2.18) and (2.19) are proved. Using c) and the Caratheodory's conditions, taking into account M.A. Krasnoselskii theorem (see [7]), by induction in n it is easy to check that each element of sequence{/ra(^)}00Lo represents measurable function on R+.

Thus, due to (2.18) and (2.19) the sequence of measurable functions {fn(^)}0Lo has a pointwise limit: lim fn(x) = f (x), and

*(x) < f (x) < v, X e R+. (2.20)

Finally, based on the B. Levi's limit theorem and Caratheodory condition, we conclude that f (x) satisfies the equation (1.1). Theorem is proved.

Remark 1. We consider the following particular representation of Ury-sohn's kernel

u

(x,t,z) = A(x)(K(x-t) --Kl(x,y))G(z), (x,t,z) G R+ x R+ x R, (2.21)

where K(x) is defined on set R, even and bounded function, moreover

CO <

0 < K e Li (R), J K(x)dx = 1, J xK(x)dx <

K(x - y) > 2Ki(x,y), (x,y) e R+ x R+,

and function G is the monotonic increasing convex up and continuous function on interval [0,n], G(u) > u,u e [0,n], G(n) = n and G(£) = 2£, 0 <£ <n (see fig. 1).

Figure 1.

Note that with such a representation of the Urysohn's kernel, all conditions of the proved theorem are automatically satisfied.

If Urysohn's kernel admits representation (2.21), then from result of the work [14] follows that the solution of equation (1.1) possesses the following additional properties

(2.22)

lim f(x) = n,

n - f G Li(R+ ).

(2.23)

Remark 2. It should be also noted that the proved result generalizes and complements the existence theorems for the solution of the Urysohn's equation reported by the works [11]- [13].

KH. A. KHACHATRYAN, H. S. PETROSYAN 3. Application in p-adic string theory

In the dynamic theory of p-adic open-closed strings, the following nonlinear integral equation with Gaussian type kernel depending on sum and difference of arguments are encountered (see [16]):

BP(x) = I (e-(x-t)2 - e-(x+t)2)B(t)dt, x e R+ (3.1)

■к

with respect to sought bounded function B(x), where p > 2 - odd number. In this theory it becomes necessary to construct nonnegative nontrivial and bounded solution for equation (3.1), satisfying the limit relation lim B(x) = 1.

By simply substitution f (x) = Bp(x), the problem of finding such solution is reduced to solve the problem of Hammerstein type integral equation

f (x) = —^ f (e-(x-t)2 - e-(x+t)2)f p (t)dt, x e R+, (3.2)

v^ j 0

with boundary condition

lim f(x) = 1. (3.3)

By direct verification, one can state that the Urysohn's kernel u(x,t,z) = —1—(e-(x-t)2 - e-(x+t)2)zp

satisfies all the conditions of the theorem, which we have proved by choosing

p

as a ^ = 1, £ = (1)p-1 , and

K0(x) = e-x2, Ki(x,y) = e-(x+y)2, X(x) = 1, x G R+,y G R+. J-K Jn

Based on Remark 1 and on the above proved theorem we can assert that solution of the boundary value problem (3.2), (3.3) possesses property 1 - f e Li(R+).

At the end of the work, we still list some nontrivial examples of the Urysohn's kernels

1) u(x, t, z) = (K (x - t) - К (x + t))G(z), (x, t, z) e R+ x R+ x R,

where К and G satisfy conditions of Remark 1,

2) u(x, t, z) = \(x)K(x - t)G(z), (x, t, z) e R+ x R+ x R,

3) u(x,t,z) = (1 -\{x))K{x-t)G0(z) + \(x)(Ko(t-x) -Ki(x,t))zd(t-x),

(x, t, z) £ R+ x R+ x R, where d — Heaviside function, and Go £ C[0, rj], G0 t on [0, rj], Go(0) = 0, G0(rj) = rj,

4) u(x,t,z) = (1 - \(x))K(x - t)GQ(z) + \(x)K0(t - x)G(z)d(t - x),

(x,t,z) £ R+ x R+ x R.

4. Conclusion

In this paper, we have obtain sufficient conditions for the existence of a nonnegative and bounded solution for class of Urysohn type nonlinear integral equations on half line. The proved theorem of existence has a constructive character. For one particular representation of Urysohn's kernel the limit of constructed solution at infinite is found, as well as has been shown that difference between limit and solution represents summable function on positive part of numerical axis. The obtained results are applied in dynamic theory of p - adic open-closed strings. The proved results generalize and complement the theorems of existence from works [11] -[13]. Specific and applied examples of the Urysohn's kernel are given. The examples illustrate how all conditions of the proved theorem are fulfilled.

References

1. Arabadzhyan L.G., Engibaryan N.B. Convolution equations and nonlinear functional equations. J. Soviet Math., 1987, vol. 36, no. 6, pp. 745-791. https://doi.org/10.1007/BF01085507

2. Cercignani C. The Boltzmann equation and its applications. Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, 455 p.

3. Diekmann O. Thresholds and travelling waves for the geographical spread of infection. J.Math. Biology., 1978, vol. 6, no. 2, pp. 109-130. https://doi.org/10.1007/BF02450783

4. Diekmann O., Kaper. H.G. On the bounded solutions of a nonlinear convolution equation. Nonlinear Analysis, Theory Math., Appl., 1978, vol. 2, no. 6, pp. 721737. https://doi.org/10.1016/0362-546X(78)90015-9

5. Engibaryan N.B. On a problem in nonlinear radiative transfer. Astrophysics, 1966, vol. 2, no. 2. pp. 12-14. https://doi.org/10.1007/BF01014505

6. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Moscow, Nauka Publ., 1981. 544p. (in Russian)

7. Krasnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevsky P.E. Integral operators in Space of summerable functions. Moscow, Nauka Publ., 1966, 500 p. (in Russian)

8. Khachatryan A.Kh., Khachatryan Kh.A. A one parameter family of positive solutions of the nonlinear stationary Boltzmann equation (in the framework of a modified model).Russian Mathematical Surveys, 2017, vol. 72, no. 3, pp. 571-573. https://doi.org/10.1070/RM9775

9. Khachatryan A.Kh., Khachatryan Kh.A. On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread. Proceedings of the Steklov Institute of Mathematics, 2019, vol. 306, pp. 271-287. https://doi.org/10.1134/S0081543819050225

10. Khachatryan Kh.A. Solvability of Some Classes of Nonlinear Singular Boundary Value Problems in the Theory of p-Adic Open-Closed Strings. Theoretical and Mathematical Physics, 2019, vol.200, no. 1, pp. 1015-1025.https://doi.org/10.1134/S0040577919070067

11. Khachatryan Kh.A. Sufficient conditions for the solvability of the Urysohn integral equation on a half-line Doklady Mathematics, 2009, vol. 79, no. 2, pp. 246-249. https://doi.org/10.1134/S1064562409020264

12. Khachatryan A.Kh., Khachatryan Kh.A. On the construction of a nonnegative solution for one class of Urysohn-type nonlinear integral equations on a semiaxis. Ukrainian Mathematical Journal, 2011, vol.63, no. 1, pp. 134-145. https://doi.org/10.1007/s11253-011-0492-1

13. Khachatryan Kh.A. On a class of integral equations of Urysohn type with strong non-linearity. Izv. Math., 2012, vol. 76, no. 1, pp. 163-189. http://dx.doi.org/10.1070/IM2012v076n01ABEH002579

14. Khachatryan Kh.A., Petrosyan H.S. On a Class of Integral Equations with Convex Nonlinearity on Semiaxis. Journal of Contemporary Mathematical Analysis, 2020, vol. 55, no. 1, pp. 42-53. https://doi.org/10.3103/S1068362320010057

15. Sergeev A.G., Khachatryan Kh.A. On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic. Transactions of the Moscow Mathematical Society, 2019, vol. 80, no 1, pp. 95-111. https://doi.org/10.1090/mosc/286

16. Vladimirov V.S., Volovich Ya.I. Nonlinear Dynamics Equation in p-Adic String Theory. Theoret. and Math. Phys., 2004, vol. 138, no. 3, pp. 297-309.https://doi.org/10.1023/B:TAMP.0000018447.02723.29

Khachatur Khachatryan, Doctor of Sciences (Physics and Mathematics), Professor, Lomonosov Moscow State University, 1, Leninskiye Gory, GSP-1, Moscow, 119991, Russian Federation; Institute of Mathematics of NAS of Armenia, 24/5, Marshal Baghramyan pr., Yerevan, 0019, Republic of Armenia; Yerevan State University, 1, Alex Manoogian st., Yerevan, 0025, Republic of Armenia, tel.: (+374)91300251,

email: khachatur.khachatryan@ysu.am, ORCID iD https://orcid.org/0000-0002-4835-943X.

Haykanush Petrosyan, Candidate of Sciences (Physics and Mathematics), Associate Professor, Lomonosov Moscow State University, 1, Leninskiye Gory, GSP-1, Moscow, 119991, Russian Federation; Armenian National Agrarian University, 74, Teryana st., Yerevan, 0009, Republic of Armenia, tel.: (+374)55022007, email: Haykuhi25@mail.ru, ORCID iD https://orcid.org/0000-0002-7172-4730.

Received 01.02.2021

О разрешимости одного класса нелинейных интегральных уравнений Урысона на положительной полупрямой

Х. А. Хачатрян1'2'3, А. С. Петросян1'4

1 Московский государственный университет им. М. В. Ломоносова, Москва, Российская Федерация

2 Ереванский государственный университет, Ереван, Республика Армения

3 Институт математики НАН Армении, Ереван, Республика Армения

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4 Национальный аграрный университет Армении, Ереван, Республика Армения

Аннотация. Исследовано нелинейное интегральное уравнение Урысона на положительной полупрямой. Обозначено, что некоторые частные случаи данного уравнения имеют конкретные применения в различных направлениях современного естествознания. В частности, такие уравнения возникают в кинетической теории газов, в теории р-адических открыто-замкнутых струн, в математической теории пространственно-временного распространения эпидемии и в теории переноса излучения в спектральных линиях. Доказана теорема существования неотрицательных нетривиальных и ограниченных решений. Изучены некоторые качественные свойства построенного решения. Приведены конкретные прикладные примеры ядра Урысона, удовлетворяющие всем условиям доказанной теоремы.

Ключевые слова: уравнение Урысона, монотонность, условие Каратеодори, итерации, ограниченное решение.

Список литературы

1. Арабаджян Л. Г., Енгибарян Н. Б. Уравнения в свертках и нелинейные функциональные уравнения // Итоги науки и техники. Серия: Математический анализ / ВИНИТИ. 1984. Т. 22. С. 175-244.

2. Cercignani C. The Boltzmann equation and its applications // Appl. Math. Sci. New-York : Springer-Verlag, 1988. Vol. 67. 455 p.

3. Diekmann O. Thresholds and travelling waves for the geographical spread of infection // J. Math. Biology. 1978. Vol. 6, N 2. P. 109-130. https://doi.org/10.1007/BF02450783

4. Diekmann O., Kaper. H. G. On the bounded solutions of a nonlinear convolution equation // Nonlinear Analysis, Theory Math., Appl. 1978. Vol. 2, N 6. P. 721-737. https://doi.org/10.1016/0362-546X(78)90015-9

5. Енгибарян Н. Б. Об одной задаче нелинейного переноса излучения // Астрофизика. 1966. Т. 2, № 1. С. 31-36.

6. Колмогоров А. Н., Фомин В. С. Элементы теории функций и функционального анализа. 5-е изд. М. : Наука, 1981. 544 с.

7. Интегральные операторы в пространствах суммируемых функций / М. А. Красносельский [и др.]. М. : Наука, 1966. 500 с.

8. Хачатрян А. Х., Хачатрян Х. А. Однопараметрическое семейство положительных решений нелинейного стационарного уравнения Больцмана в рамках модифицированной модели // Успехи математических наук. 2017. Т. 72, № 3. С. 191-192. https://doi.org/10.4213/rm9775

9. Хачатрян А. Х., Хачатрян Х. А. О разрешимости некоторых нелинейных интегральных уравнений в задачах распространения эпидемии // Математическая физика и приложения : сб. ст. к 95-летию со дня рождения академика Ва-

силия Сергеевича Владимирова / Тр. МИАН. М. 2019, Т. 306. С. 287-303. https://doi.org/10.4213/tm4006

10. Хачатрян Х. А. О разрешимости некоторых классов нелинейных сингулярных краевых задач, возникающих в теории p-адических открыто-замкнутых струн // Теоретическая и математическая физика. 2019. Т. 200, № 1. С. 106-117. https://doi.org/10.4213/tmf9690

11. Хачатрян Х. А. Достаточные условия разрешимости интегрального уравнения Урысона на полуоси // Доклады РАН. 2009. Т. 425, № 4. С. 462-465.

12. Хачатрян А. Х., Хачатрян Х. А. О построении неотрицательного решения одного класса нелинейных интегральных уравнений типа Урысона на полуоси // Украинский математический журнал. 2011. Т. 63, № 1. С. 110-118.

13. Хачатрян Х. А. Об одном классе интегральных уравнений типа Урысона с сильной нелинейностью // Известия РАН. Серия математическая. 2012. Т. 76, № 1. С. 173-200. https://doi.org/10.4213/im5402

14. Khachatryan Kh. A., Petrosyan H. S. On a Class of Integral Equations with Convex Nonlinearity on Semiaxis // Journal of Contemporary Mathematical Analysis. 2020. Vol. 55. P. 42-53. https://doi.org/10.3103/S1068362320010057

15. Сергеев А. Г., Хачатрян Х. А. О разрешимости одного класса нелинейных интегральных уравнений в задаче распространения эпидемии // Труды ММО. 2019. Т. 80, № 1. С. 113-131.

16. Владимиров В.С., Волович Я.И. О нелинейном уравнении динамики в теории р-адической струны // Теоретическая и математическая физика. 2004.Т. 138, № 3. С. 355-368. https://doi.org/10.4213/tmf36

Хачатур Агавардович Хачатрян, доктор физико-математических наук, профессор, Московский государственный университет им. М. В. Ломоносова, Российская Федерация, г. Москва, 119991, ГСП-1, Ленинские горы, 1; Ереванский государственный университет, Республика Армения, 0025, г. Ереван, ул. Алека Манукяна, 1; Институт математики НАН Армении, Республика Армения, 0019, г. Ереван, пр. Маршала Баграмяна, 24/5, тел.: (+374)91300251,

email: khachatur.khachatryan@ysu.am, ORCID iD https://orcid.org/0000-0002-4835-943X.

Айкануш Самвеловна Петросян, кандидат физико-математических наук, доцент, Московский государственный университет им. М. В. Ломоносова, Российская Федерация, г. Москва, 119991, ГСП-1, Ленинские горы, 1; Национальный аграрный университет Армении, Республика Армения, 0009, г. Ереван, ул. Теряна, 74, тел.: (+374)55022007, email: haykuhi25@mail.ru, ORCID iD https://orcid.org/0000-0002-7172-4730.

Поступила в 'редакцию 01.02.2021

i Надоели баннеры? Вы всегда можете отключить рекламу.