Научная статья на тему 'On the projections of mutual Lq,t-spectrum'

On the projections of mutual Lq,t-spectrum Текст научной статьи по специальности «Физика»

CC BY
98
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Проблемы анализа
WOS
Scopus
ВАК
MathSciNet
Область наук
Ключевые слова
ORTHOGONAL PROJECTION / DIMENSION SPECTRA / MUTUAL MULTIFRACTAL ANALYSIS

Аннотация научной статьи по физике, автор научной работы — Selmi B., Svetova N. Yu.

In this paper we are interested in the mutual Lq,t-spectrum relatively to two Borel probability measures having the same compact support and also in the study of their behavior under orthogonal projections.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On the projections of mutual Lq,t-spectrum»

94

Probl. Anal. Issues Anal. Vol. 6(24), No. 2, 2017, pp. 94-108

DOI: 10.15393/j3.art.2017.4231

UDC 517.518.1, 517.518.126, 517.518.13

B. Selmi, N. Yu. SvETQYA

ON THE PROJECTIONS OF MUTUAL Lq t-SPECTRUM

Abstract. In this paper we are interested in the mutual Lq,t-spectrum relatively to two Borel probability measures having the same compact support and also in the study of their behavior under orthogonal projections.

Key words: orthogonal 'projection, dimension spectra, m,utua,l multifractal analysis

2010 Mathematical Subject Classification: 28A20, 28A80

1. Introduction. The notion of singularity exponents or spectrum and generalized dimensions are the major components of the multifractal analysis. They were introduced to characterize the geometry of measure and are linked with the multifractal spectrum. The multifractal spectrum is the map that affects the Hausdorff or packing dimension of the isoHolder set

EY m J ^ C o C I" lQg /jBr (x) A i• log vBr (x) a

E(a, p)=\ x G Sß n Sv; lim —--=a and lim —--=ß

r^Q log r r^Q log r

for a given a,0 > 0. Here S^ is the topological support of the probability measure ^ on Rn and Br (x) is the closed ball of center x and radius r. For (q, t) E R2 the mutual Lq,t-spectrum of v) is defined as the mapping

log ( sup { E^(Br (Xi))qv(Br (Xi))

(q,t) = lim-i--- ,

r^o log r

where the supremum is taken over all centered packing of S^ if Sv by balls of radius r. It is easy to check that (q, t) is a concave function [24] of (q, t) over R2; for q, t > 1 it has an integrand expression.

©Petrozavodsk State University, 2017 [MiiI!H|

For q, t > 1 and for equal compact supports S^, Sv we have r^(q, t) = liminf logr lo^/ ^(x))q-1 v(Br(y))t-1d^(x)dv(y).

This equation unifies the mutual multifractal spectra to the mutual Lq,t-spectrum (q, t) via the Legendre transform [22, 23], i.e.,

dimH (E ( a, ft)) = inH qa + t^ — r^v(q, t)

In this paper we provide the mutual Lq,t-spectrum relatively to two compactly supported Borel probability measures on Rn. We write Pn for the set of compactly supported Borel probability measures on Rn. Let v E Pn be such that S^ = Sv = K. For (q, t) E R2 define

l^v(q, t) = lin^inf logr log Jj ^(Br (x))qv(Br (y)№(x)dv(y),

K2 nBr (D2)

and

l„,*(q, t) = limsup log j j n(Br(x))qv(Br(y))*d^(x)dv(y),

r^0 log r J J

K2 n Br (D2)

where D2 = {(x, x) E R2 : x E R} is the diagonal ray in R2 and Br(D2) = = {x E Rn : dist(x, D2) < r} is the closed r-neighborhood of D2.

If l (q, t) = l(q, t), then their common value at (q, t) is denoted by (q, t) and called the mutual Lq,t-spectrum of ^ and v. Note that these quantities are strictly related to the mutual multifractal analysis [22], [25] - [27] and the mixed multifractal analysis [18], introduced by Olsen.

In the recent decade there has been a great interest in understanding the fractal dimensions of projections of sets and measures. Recently, the projectional behavior of dimensions and multifractal spectra of sets and measures have generated a large interest in the mathematical literature [1] - [4], [7] - [13], [15, 19, 20]. The first significant work in this area was the result by Marstrand [15] who proved a well-known theorem: the Hausdorff dimension of a planar set is preserved under orthogonal projections.

S n X

Let us mention that Falconer and Mattila [8] and Falconer and Howroyd [7] have proved that the packing dimension of the projected set or measure will be the same for almost all projections. However, despite these substantial advances for fractal sets, only very little is known about the multifractal structure of projections of measures, except a paper by O'Neil [19] and some more recent papers by Barral and Bhouri [2]. The result of O'Neil was later generalized by Selmi et al. in [4]-[6], [21].

We continue of this research studying the behavior of the upper and lower mutual Lq,t-spectra under orthogonal projections onto a lower dimensional linear subspace. We employ theoretical methods first used in this context by Kaufman in [14] and later generalized in [16].

2. Preliminaries. Let m be an integer with 1 < m < n and Gn,m represent the Grassmannian manifold of all m-dimensional linear subspaces of Rn. By Yn,m denote the invariant Haar measure on Gn mm such that Yn,m (Gn,m) = 1. The projection map : Rn ^ V for V E Gn,m is the usual orthogonal projection onto V. Then {nV, V E Gn,m} is compact in the space of all linear maps from Rn to Rm, and identification of V with induces a compact topology for Gn,m. Also, for a Borel probability measure ^ with compact support supp ^ on Rn and for V E Gn,m define the projection of ^ onto V by

(A) = Mn-1 (A)) VA c V.

Note that ^ is compactly supported and supp = (supp for all V E Gn,m, then for any continuous function f : V —> R

J fd^v = J f (nv (x))d^(x)

provided that these integrals exist (for more details see [9]). The convolution is defined for 1 < m < n and r > 0 by

: Rn —> R,

x ——> Tn,m{V E Gn,m : |nv(x)| < rj, where Yn,m is the rotation-invariant probability measure on Gn,m. Define

: Rn —> R,

x ——> min|1 , rm|x|-m|.

This ^^(x) is equivalent to (x). We write this equivalence as 0r(x) x (x). For a probability measure ^ and V E Gn,m we have

ßr'm* (x) = ß * ^m(x) x ß * = J ßVBr(xv)dV,

and

(x) = J min |1 , rm|x -So, integrating by parts and converting into spherical coordinates (see [9])

ßrm (x)= mr'"/ u-m-1 ßB.(x)du.

r

The following straightforward estimates concern the behaviour of ßr'm* (x) as r ^ 0.

Lemma 1. [9] Let 1 < m < n and ß eP„. For all x G Rn

crm < ßr'm* (x)

for all sufficiently small r, where c > 0 is independent of r. Lemma 2. [9] Let ß G Pn.

1) For all x G Rn and r > 0

ßBr (x) < ßr'n* (x).

2) Let £ > 0. For ß-almost all x

r"eßBr (x) > ßr'n* (x),

if r is sufficiently small.

We use the properties of ßr,m* (x) to obtain a relationship between the kernels and projected measures.

Lemma 3. [9] Let 1 < m < n, ß G Pn, £ > 0, and r be sufficiently small. 1) For all V G Gn,m and for ß-almost all x G Rn

reßr'm* (x) < ßvBr (xv).

2) For jn,m-almost all V E Gn,m and all x E Rn

r"e^r,m*(x) > Br(xv).

3. Projection results. In this section we need an alternative characterization of the upper and lower mutual Lq,t-spectra in terms of convolution. We specify this to the mutual (q, t)-dimensions relatively to ^ and v using appropriate definitions in terms of kernels.

From now on 1 < m < n are two integers and the measures v E Pn are such that S^ = Sv = K. For q, t > 0 we define

l^v(q, t) = liminf Iogr log // (^r,m* (x))q (vr,m* (y))* d^(x)dv(y),

K2nBr (D2)

I^v(q,t) =limsupl-g- log if (x))q (vrm (y))4 d^(x)dv(y).

log - J J

K2 nBr (D2)

Note that for all x, y G K and - > 0

(x) > ^Br (x) and vr'm* (y) > vBr (y). It is clear that for q > 0 and t > 0 and for a sufficiently small -

I^v(q,t) < (q,t) and (q,t) < (q,t). (1)

From Lemma 1 we see that for all x, y G Rn and for any sufficiently small -

c-m < (x) and cC-m < vr'm* (y), where c, cC > 0 are independent of -. This leads to

Imv(q,t) < Im(q,t) < m(q + t). (2)

Proposition 1. Let e > 0, v G Pn.

1) Let q, t > 0. For all V G Gn,m we have

J J (Br (x v ))q vv (Br (yv ))4d^v (xv )dvv (yv ) >

> (x))q(vr'm*(y))'d^(x)dv(y)

for all sufficiently small -.

2) Let 0 < q, t < 1. For Y;;,m-almost all V x W E G;,m we have JJ (Br(xv))qVW(Br(yw))4d^v(xv)dvw(yw) <

< cJJ (^r,r(x))q(vr,m*(y))4d^(x)dv(y)

for all sufficiently small r and C > 0 independent of r. Proof. 1) For all V E Gn,m and x, y E K

(x) < ^T*(xv) and Vrr (y) < vJT*(yv).

Take e > 0 and r > 0. From Lemma 3 we see that for all V E Gn,m and -almost all xv E V

^v Br (xv) > re (xv), and for vv-almost all yv E V

Vv Br (yv ) > reV£m* (yv ).

This means that

Ij(^r,r (x))q(Vr,m* (y))4d^(x)dv(y) <

<JJ^ (xv))q^ (yv))4d^v(xv)dvv(yv) <

< r-e(q+i^y ^v(Br (xv))qVv (Br (yv)№v(xv)dvv(yv). 2) For 0 < q, t < 1, using Lemma 3.11 in [17], we obtain

I = U (^r,m* (x))q(Vr,r (y))4d^(x)dv(y) =

K2nBr (D2)

min {1, rm|x - u|-m} dju(u)^ x

K 2 nBr (D2)

t

x ^y min {1, rm|y - v| m} dv(v)^ d^(x)dv(y) >

> C J J (^J 7n,m {V e : |nv (x) - nv (u)| < r} d|(u)^ x

K2nBr (D2)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

x ^y Yn,m {W e : |nw(y) - nw(v) | < r} dv(v)^ d|(x)dv(y) >

> C JJ (^j | {u e Rn : |nv (x) - nv (u)| < r} d7n,m (V)) x K 2nBr (D2)

x v {v e Rn : |nw(y) - nw(v)|< r} d7„,m(W^ d|(x) dv(y). The Jensen inequality and the Fubini Theorem imply

I > ci ^(Br(xv))qvw(Br(yw))*d|v(xv)dvw(yw)

for some c and Ci independent of r. □

Corollary 1. For all q, t > 0 and V e Gn m we have

liminf -- ( log

r—log r

// (|r'm* (x))q (vrm (y))id^(x)dv (y) // |v (Br (xv ))q vv (Br (yv ))* d|v (xv )dvv (yv )_

> 0.

For 0 < q, t < 1, y;; m-almost all V x W G and sufficiently small

r > 0

lim -- ( log

r—^o log r

ff (|r'm* (x))q (vr'm* (y))*d|(x)dv (y)

// |v (Br (xv ))q vw (Br (yw ))*d|v (xv )dvw (yw )_ Proof. Follows directly from Proposition 1. □ Theorem 1. Let v G

1) For all q, t > 0 and V G Gn,m

(i) (q,t) < I^v(q,t) < min (m(q + t),/^(q,t)),

(ii) ,vv(q,t) <1 i^v(q,t) < min (m(q +t),z(q,t^.

2) For all 0 < q, t < 1 and y^ m-almost all V x W G

(i) ,vw (q,t) = I^v (q, t), '

(ii) z^v ,vw (q,t) = ^v (q,t).

= 0.

Proof. This follows from (1), (2) and Corollary 1. □

Take an r > 0 and denote the set of r-mesh cubes in Rn by Cr. These cubes have the form

n

H [kjr, (kj + 1)r[, j=i

where kj G Z.

Proposition 2. If q > —1 and t > — 1, then

iminf --

r^Q log r

4,*(q,t)=liminfl0g- log £ v(C)t+\

Cec

r

1

(q,t)=limsup--log V ^(C)q+1 v(C)t+1.

r^Q log r CeCr

Proposition 2 is a consequence from the following lemma. Lemma 4. Let v G Pn. If q > 0 and t > 0, then

Jf ^(B^nr(x))qV(B^r(y))'d^(x)dv(y) > £ MC)q+1 v(C)i+1 >

K2nBr (D2) CeCr

> C (n,q,t) y[ ^(Br (x))q v (Br (y))' d^(x)dv (y).

K2 nBr (D2)

Proof. Let q > 0 and t > 0, then

MC )q+1v (C )t+1 = £ MC )q v (C y J J dM*)dv (y) =

r CeCr C2

= £ U MC)qv(C)'d^(x)dv(y) <

CeCr C2

< £ II ^(B^nr(x))q(vB^nr(y))'d^(x)dv(y) =

CeCr C2nBr(D2)

= // (x))q v (BVnr (y))td^(x)dv (y).

K 2 nBr (D2 )

For the other inequality we have

MBr(x))qv(Br(y))'dMx)dv(y) <

K2nBr (D2)

< £ J J ^(Br (x))q v (Br (y))' d^(x)dv (y) <

CeCr C2nBr(D2)

< £ U MC)qv(C)'d^(x)dv(y) =

CeCr C2nBr(D2)

II U^(X)Uv(y) <

c ecr

t+1

£ v(C)' /f Mx)dv(y) < £ M^1 v(C)

C eCr C2nBr (D2) C eCr

v (C)^1 <

< £ £ mcO

cecr \i=1

q+1 /

£ v(Cj )

<

v=

< 3n(q+t) £ £ ^(Ci)q+1v(Cj)t+1 < c(n,q,t) £ MC)q+1v(C)t+1, Cecr i,j=1 cecr

where C is the cube of side 3r, concentric with C. □

Proposition 3. Let v G Pn. For all q, t > 0 and V G Gn,m we have

1) (q,t) < (q,t),

2) I^v ,vv (q,t) < I(q, t).

Proof. Assume that S^ = Sv C BR(0) with R > 0. Let V E Gn,m be given, 0 < r < 1 and (C^ be a set of r-mesh sub-cubes of V that cover the unit cube in V with center at the origin. For each i let (Cjj be a column of cubes of side r above Cj, so that (Ci,^ij. are a set of r-mesh cubes which cover the unit cube with center at the origin. Let q > 0 and t > 0; then

£]>>(Ci,j )q+1v (Ci,j )i+1 <

i j

( \ (

£ MCi,j )q+1 j

£v (Ci,j ) j

t+1

<

(

9+1/ \ t+1

<E Ei(Ci,j)) Ev(Ci,j)

v j

V j

So,

EEl(Ci,j)9+1 v(Ci,j)t+1 < E|v(Ci)9+1vv(C)

t+i

Taking the lower and upper limits gives the desired result. □

Definition. For a measure | on Rn and for p > 1 we say that | e Lp (Rn) if there is a function f e Lp (Rn) such that f is the Radon-Nikodym derivative of | with respect to Ln for i-a.e. x.

Now let us obtain conditions that projections of a measure belong to Lp for some p > 1. Consider a compactly supported Borel probability measure | on Rn. For s, m < s < n define the s-energy of | by

/s (i) = II|x - y|-s di(x)di(y).

Mattila [17] proved that if Is (|) is finite for m < s < n, then for almost all V e Gn,m the measure |v is absolutely continuous with respect to the m-dimensional Lebesgue measure Ly on V (denoted by Rm), where Ly(E) = Lm(E n V) for E C Rn, and |v e L2(V).

Proposition 4. [9] Let | be a compactly supported Radon measure on Rn. Let m < s < n. Suppose that Is(|) < to. Then |v is absolutely continuous with respect to Cy, with |v in L2(V) for jn,m-almost all V e Gn,m. Moreover, for jn,m-almost all V e Gn,m

2m

1) if m < s < 2m then |v e Lp (V) for all p satisfying 1 < p <

2m - s

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2) if 2m < s < n then the Radon-Nikodym derivative of I V with respect to Ly is bounded and essentially continuous.

Theorem 2. Let m < s < n, Is(|) < to and Is(v) < to. Then for Yn,m-almost all V e Gn,m 1) if 2m < s < n then

I^v(q,t) = ^W,vv (q,t) = m(q +t) for 0 <q,t< to;

2) if m < s < 2m then

(i) for 0 < q, t <

2m 2m — s

- 1

,vv (q,t) = 7 ?v ,vv (q,t) = m(q +1),

(ii) for q, t > ^^ - 1

/ 2m—s

s(q +1 + 2)

< ,vv (q,t) < 7,vv (q,t) < m(q + ^

(m) for q > 2m-s - 1 >t

m (q + t + 1 - (2m -2m < ,vv(q, t) < V,vv(q, t) < m(q+t),

(iv)

for t> 2mms -1 > q,

m (q + t + 1 - (2m 2m + < ,vv(q,t) < V,VV(q, t) < m(q+t).

Proof. It is a simple consequence of Theorem 1, Proposition 4, and the following Lemma. □

Lemma 5. Fix a p > 1. Suppose that ß, v G Lp(Rn), q, t > 0. Then n(q + t + 2) (1 - ^ , if q +1 > p and t + 1 > p;

n I q

(q + t +1 - ^p1 ) , if q +1 > p and t + 1 < p;

(q,t) > <

_ t+i\

n(q + t +1 - ^ J , if q +1 <p and t + 1 > p;

n(q +1),

if p > q + 1 and p > t + 1 .

Proof. Let f = E Lp (Rn) and g = E Lp (Rn). The Holder

dLn v 7 y dLn v 7

inequality gives

2

9+1

t+1

E l(C)9+1v (C)t+1 = En fdLn ) ( i

gdLn

<

< rn(9+1)(1-P)rn(t+1)(1-P) E

q+i

P

t+i p

fp dLn

Cecr \C

gpdLn | <

C

< rn(9+t+2)(1-P)

Ce£r

q+i

P

t+i p

fp dLn

C

E

C e£r

<

C

fr«(9+t+2)(1-p )x

x

I \CeC

E /fPdLn

q+i . P /

C

E /gpdcn

\CGCr C

t+i p

if q +1 > p, t + 1 > p;

C1 r /

x

n(q+t+2)(1-P )r-n(1-^ )

p r p

q+i P

I VC^r C

f pdLn)

E /gpdcn \ce£r C

t+i p

<<

C2r /

x

n(q+t+2)(1-P) r-n(1-q+i)

E /f'dC

i C

p y r

q+i P

p ^ X

E /gpdcn

\cecr C

t+i p

if q +1 > p, t + 1 < p;

if q +1 < p, t + 1 > p;

C3 r /

x

n(9+t+2)(1-P)r-n(1-q+i) r-n(1-m)

E fPdC

i C

p r p r

q+i P (

px

t+i

\ce£r C

if p > q + 1 , p > t + 1

r

p

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

<

' C1rn(q+t+2)(l-p), if q +1 > p, t + 1 > p; C2rn(q+t+1-^), if q +1 > p, t +1 < p;

C3rn(q+4+1-^), if q +1 <p, t +1 > p;

C4rn(q+4), ifp > q +1,p>t + 1,

where C1, C2, C3, and C4 are independent of r. Since r is sufficiently small, we obtain the required inequality taking the lower limit. □

References

[1] Bahroun F., Bhouri I. Multifractals and projections. Extracta Mathemati-cae, 2006, vol. 21, pp. 83-91.

[2] Barral J., Bhouri I. Multifractal analysis for projections of Gibbs and related measures. Ergodic Theory and Dynamic systems, 2011, vol. 31, pp. 673701. DOI: 10.1017/S0143385710000143.

[3] Bhouri I. On the projections of generalized upper Lq-spectrum. Chaos, Solitons and Fractals, 2009, vol. 42, pp. 1451-1462. DOI: 10.1016/j.chaos.2009.03.056.

[4] Douzi Z., Selmi B. Multifractal variation for projections of measures. Chaos, Solitons and Fractals, 2016, vol. 91, pp. 414-420. DOI: 10.1016/j.chaos.2016.06.026.

[5] Douzi Z., Selmi B. On the projections of mutual multifractal spectra.. Preprint, 2017.

[6] Douzi Z., Selmi B. On the projections of the mutual multifractal Reyni dimensions. Preprint, 2017.

[7] Falconer K. J., Howroyd J. D. Packing Dimensions of Projections and Dimensions Profiles. Math. Proc. Cambridge Philos. Soc., 1997, vol. 121, pp. 269-286. DOI: 10.1017/S0305004196001375

[8] Falconer K. J., Mattila P. The Packing Dimensions of Projections and Sections of Measures. Math. Proc. Cambridge Philos. Soc., 1996, vol. 119, issue 4, pp. 695-713. DOI: 10.1017/S0305004100074533

[9] Falconer K. J., O'Neil T. C. Convolutions and the geometry of multifractal measures. Mathematische Nachrichten, 1999, vol. 204, pp. 61-82. DOI: 10.1002/mana.19992040105.

[10] Hu X., Taylor J. Fractal properties of products and projections of measures in Rn. Math. Proc. Cambridge Philos. Soc., 1994, vol. 115, issue 3, pp. 527544. DOI: 10.1017/S0305004100072285.

[11] Hunt B. R., Kaloshin V. Y. How projections affect the dimension spectrum of fractal measures. Nonlinearity, 1997, vol. 10, pp. 1031-1046. DOI: 10.1088/0951-7715/10/5/002

[12] Jarvenpaa E., Jarvenpa M., Ledrappier F., Leikas M. One-dimensional families of projections. Nonlinearity, 2008, vol. 21, pp. 453-464. DOI: 10.1088/0951-7715/21/3/005.

[13] Jarvenpaa E., Jarvenpa M., Keleti T. Hausdorff Dimension and Non-degenerate Families of Projections. The Journal of Geometric Analysis, 2014, vol. 24, issue 4, pp. 2020-2034. DOI: 10.1007/s12220-013-9407-8.

[14] Kaufman R. On Hausdorff dimension of projections. Mathematika, 1968, vol. 15, pp. 153-155. DOI: 10.1112/S0025579300002503.

[15] Marstrand J.M. Some fundamental geometrical properties of plane sets of fractional dimensions. Proceedings of the London Mathematical Society, 1954, vol. 4, pp. 257-302. DOI: 10.1112/plms/s3-4.1.257.

[16] Mattila P. Hausdorff dimension, orthogonal projections and intersections with planes. Annales Academiae Scientiarum Fennicae. Series A Mathe-matica, 1975, vol. 1, pp. 227-244.

[17] Mattila P. The Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambrdige, 1995. DOI: 10.1017/CBO9780511623813.

[18] Olsen L. Mixed generalized dimensions of self-similar measures. Journal of Mathematical Analysis and Applications, 2005, vol. 306, issue 2, pp. 516539. DOI: 10.1016/j.jmaa.2004.12.022.

[19] O'Neil T. C. The multifractal spectra of projected measures in Euclidean spaces. Chaos, Solitons and Fractals, 2000, vol. 11, pp. 901-921. DOI: 10.1016/S0960-0779(98)00256-2.

[20] Selmi B. A note on the effect of projections on both measures and the generalization of q-dimension capacity. Probl. Anal. Issues Anal., 2016, vol. 5, pp. 38-51. DOI: 10.15393/j3.art.2016.3290.

[21] Selmi B. Multifractal dimensions for projections of measures. Preprint, 2017.

[22] Svetova N. Yu. Mutual multifractal spectra II: Legendre and Hentschel-Procaccia spectra, and spectra defined for partitions. Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2004, vol. 11, pp. 47-56.

[23] Svetova N. Yu. Numerical algorithm of the mutual multifractal analysis. Electronic Journal "Investigated in Russia", 2004, pp. 1971-1980.

[24] Svetova N. Yu. The property of convexity of mutual multifractal dimension. Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2010, vol. 17, pp. 15-24.

[25] Svetova N. Yu. Mutual multifractal spectra I: Exact spectra. Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2004, vol. 11, pp. 41-46.

[26] Svetova N. Yu. An estimate for exact mutual multifractal spectra. Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2008, vol. 14, pp. 59-66.

[27] Svetova N. Yu. The relative Renyi dimension, Probl. Anal. Issues Anal., 2012, vol. 1, pp. 15-23.

Received August 29, 2017. In revised form, November 27, 2017. Accepted November 29, 2017. Published online December 27, 2017.

Faculty of sciences of Monastir Department of mathematics 5000 Monastir, Tunisia E-mail: bilel.selmi@fsm.rnu.tn

Petrozavodsk State University

33, Lenina st., Petrozavodsk 185910, Russia

E-mail: nsvetova@petrsu.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.