Научная статья на тему 'On some known fixed point results in the complex domain: survey'

On some known fixed point results in the complex domain: survey Текст научной статьи по специальности «Математика»

CC BY
167
75
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Vojnotehnički glasnik
Scopus
Область наук
Ключевые слова
НЕПОДВИЖНАЯ ТОЧКА / FIXED POINT / КРИВАЯ ЖОРДАНА / JORDAN CURVE / АНАЛИТИЧЕСКИЕ ФУНКЦИИ / ANALYTIC FUNCTION / ПОЛНОЕ БАНАХОВО ПРОСТРАНСТВО / COMPLEX BANACH SPACE

Аннотация научной статьи по математике, автор научной работы — Dosenovic Tatjana M., Koppelaar Henk, Radenovic Stojan N.

In this survey paper, we consider some known results from the fixed point theory with complex domain. The year 1926 is very significant for this subject. This is the beginning of the research and application of the fixed point theory in complex analysis. The Denjoy-Wolf theorem, together with the Banach contraction principle, is one of the main tools in the mathematical analysis.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On some known fixed point results in the complex domain: survey»

CD h-LO

CO CD LO

!± <u

ON SOME KNOWN FIXED POINT %

RESULTS IN THE COMPLEX DOMAIN: SURVEY I

Tatjana M. Dosenovic3, Henk Koppelaar^, Stojan N. Radenovicc

ro

o

T3

X JD

University of Novi Sad, Faculty of Technology, E

o

<u

Novi Sad, Republic of Serbia, o

e-mail: [email protected], ORCID ID: http://orcid.org/0000-0002-3236-4410 b Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, Netherlands, e-mail: [email protected], ORCID ID: https://orcid.org/0000-0001-7487-6564

' University of Belgrade, Faculty of Mechanical Engineering, °

Belgrade, Republic of Serbia, -a

e-mail: [email protected], x

ORCID ID: ©http://orcid.org/0000-0001-8254-6688 ^

DOI: 10.5937/vojtehg66-17103; https://doi.org/10.5937/vojtehg66-17103

FIELD: Mathematics ^

ARTICLE TYPE: Review Paper E

ARTICLE LANGUAGE: English

Abstract: O

In this survey paper, we consider some known results from the fixed ^

point theory with complex domain. The year 1926 is very significant for 0 this subject. This is the beginning of the research and application of the

fixed point theory in complex analysis. The Denjoy-Wolf theorem, |

o

•o

together with the Banach contraction principle, is one of the main tools in the mathematical analysis. o

Keywords: fixed point, Jordan curve, analytic function, complex D Banach space.

Introduction and preliminaries

Let f be an analytic map of the unit disk D = {z e C: |z| < l} into

ACKNOWLEDGMENT: The first author is grateful for the financial support from the Ministry of Education and Science and Technological Development of the Republic of Serbia (Matematicki modeli nelinearnosti, neodredenosti i odlucivanja, 174009) and from the Provincial Secretariat for Higher Education and Scientific Research, Province of Vojvodina, Republic of Serbia, project no. 142-451-2838/2017-01.

itself. Now, we want to consider the fixed point of f and especially a lemma implies that f has at most one fixed point in D and some § maps have no fixed point. If f : D ^ D isa continuous map, then f

> must have a fixed point in D. From now on, we make the assumption that f is an analytic function on the open disk D .

o CM

w Definition 1.1 Suppose that f is an analytic map of the unit disk D

^ into itself. We say that a e D is a fixed point of f if f (a) = a. Also, a e 3D is a fixed point of f if lim^r f (ra) = a.

<

o z

X

o

The Julia-Caratheodory theorem implies that if a gSD is a fixed

w point of f, then limr^r f (ra) exists (we call it f '(a)) and 0< f '(a)<œ. >-

a:

¡< Theorem 1.2 ( The Denjoy-Wolf theorem from 1926. ) If f is an

analytic map of D into itself, but not the identity map, there is a unique fixed point a of f in D such that |f ' (a) < 1.

<

The point a in the above theorem is called the Denjoy-Wolff point of f. g The Schwarz-Pick Lemma implies that f has at most one fixed

point in D and if f has a fixed point in D, it must be the Denjoy-Wolf point.

1

z + —

Example 1.3 1) The mapping f (z) =-2 is an automorphism of

1 + -2

D with the fixed points 1 and -1, but the Denjoy-Wolff point is a = 1 because f '() = 1 (f (-1) = 3)

2) The mapping f : D ^ D given by f (z) = —^^ has three fixed

X LU I—

o

o

V

2 - z

points: 0, 1, and -1. The Denjoy-Wolff point is a = 0 since f'(o) = 2 and f ' ( 1)=3.

/ x 2 z3 +1

3) The mapping f (z ) =-— is an inner function fixing 1 and -1,

2 + z

with the Denjoy-Wolff point a = 1 because f '(l) = 1 ( note that

f '(-1) = 9).

4) The inner function f(z) = expjj^—-jj has a fixed point in D

which is the Denjoy-Wolff point (a « .21365), and infinitely many fixed points on ÔD.

Definition 1.4 Let f : D ^ D be an analytic map. The set F = j z g D : lim f (rz )= z J is called the fixed point set of f .

Theorem 1.5 If f is an analytic function that maps the unit disk into itself, then there exists E c F which has linear measure zero.

Example 1.6 Let K be a compact set of measure zero in ÔD. There is a function f analytic in D and continuous on D such that f (D)c D and the fixed point set of f is {0}o> K.

Theorem 1.7 Let f be a univalent analytic function that maps the unit disk into itself. Then the set F has capacity zero.

Example 1.8 For a given compact set K in ÔD of capacity zero and a point a gôD \ K, there exists an analytic and univalent function in D ( say f ) such that f (D)c D and F = {a}^ K.

In the next theorem, it is required that the Denjoy-Wolff point a = b0 be normalized, i.e., b0 = 0 or b0 = 1.

Theorem 1.9 Let f be an analytic function with f (D)c D and suppose that b0,b^...,bn are fixed points of f.

3 e

6 6 ol

>

0

2 R,

IE RI

U

O

C

L

A

IC NI

X

C E T

Y R

A

S A L

O >o

X

E T O

O

>

• If b0 = 0, then

V 1 < R 1 + f (0)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

• If b0 =1 and f' (l) = 1, then

V 1 < f (1) j=1 f (bj)-1"1 - f (1)'

If b0 =1 and 0< f (1) <1, then

-1

1 -b,\ / \ ( 1 >

J^ U — u A / \

(bj )-1 < 2 Re

j=1 J

f (0)

Moreover, the equality holds if and only if f is the Blaschke product of order n +1 in case 1) or of order n in cases 2) and 3).

If f has infinitely many fixed points, then the appropriate inequality holds for any choice of finitely many fixed points. In particular, only countably many fixed points of f can have a finite angular derivative.

If b0, b1, b2,... are countably many fixed points for which f (bj) <

then the corresponding infinite sum converges and the appropriate inequality holds.

With the assumption that an analytic function f is univalent and that the Denjoy-Wolff point is b0 = 0 or b0 = 1, we have the next assertion.

Theorem 1.10 Let f be a univalent analytic function with f (D) tz D and suppose b0, b1,..., bn are fixed points of f.

If b0 = 0, then

V(log f (bj)) < 2 Re B 1

j=1

f

where B = limr log

A

f (b )

J' (°)rbiy

< f'(1) <

and lim z ^logf^l = log f (0).

If bo =0 and 0 < f (1) <1, then ¿(log f ()) <-(log f (l)) .

j=1

a> tm co CD m

!± Ci

<u

Moreover, the equality holds if and only if f is embeddable in a semigroup and f (D) = D with n analytic arcs removed in case 1) or n -1 in case 2).

• If ¿0=1 and f (1) = 1, then ¿cj(log f () < 2log1 -f-f(°)) ,

where

ci = limr Im

( (

log

V v~j

1 f K)- f (o) 1 - f (0)fr

bj 1 - f (0)f (rbj ) f (r )- f(0)

Remark 1.11 In (Anderson & Vasil'ev, 2008, pp.101-110), the authors proved for b0 = 0, case 1), the inequality

n/ (bj )

1

j >

j=1

f (0)

where ccj > 0 and ¿c = 1. The equality holds only for the unique

j=1

solution of a given complex differential equation with a given initial condition.

Considering b0 = 0, case 3) and the assumption that f is

embeddable in a continuous semigroup, in (Contreras et al, 2006, pp.125-142) was proved that

ro E o

T3

X JD Ci

E o o <u

o

Ci T3

<u X

<u E o

o m

(D

■O >

o

o Q

^ 1 - Re b 1 ,, v

¿f < Re G® = ReCT(0)'

where G is the infinitesimal generator of the semi-group and a is the map from the linear fractional model.

z

CO <1>

CD CD

"o >

O CM

on

In case 3), an equality condition is not included and maybe this inequality is not the best possible. Also, a sharp inequality to describe the general case has not yet been obtained.

Main results

It is known that a continuous mapping of a simply connected, closed, bounded set of the Euclidean plane into itself has at least one fixed point. w Let F be an analytic function in some domain S of the complex

=3 plane. Standard results in real numerical analysis show that the equation o z = F(z) has at least one solution, called a fixed point of F. If S is

y bounded and simply connected, F is continuous on the closure S of S,

and F(s)e S. If the mapping F is a contraction, then there is a unique

fixed point, and the iteration sequence defined by zn+1 = F(zn),

ct —

¡< n = 0,1,2,... converges to the fixed point for every choice of z0 eS. If S

is convex, then a necessary and sufficient condition for the mapping to

be a contraction is that the derivative F' of F satisfies |f'(z)< k,

Q z e S, where k < 1.

d The purpose of the next theorem is to show that the conclusion is

* not affected if we replace the assumption that F is a contraction by the condition that F is an analytic function.

LU

o Theorem 2.1 (Henrici, 1969)

q We first prove a reduced form of the theorem. Let S denote the

X

o

LU

>

interior of a Jordan curve r, let F be analytic in S and continuous on S ur, and let F(S u r) e S. Then F has exactly one fixed point, and the iteration sequence defined by zn+1 = F(zn), n = 0,1,2,... converges to the fixed point for arbitrary z0 e S u r.

Note that the function F (z ) = 2 z100 in |z| < 1 satisfies the hypothesis and |f' (z) is arbitrary large.

Proof. First let S be the unit disk. By the hypothesis, we have

CD

r :=max lF (z I <1. (i) s?

|Z|<1 V ' CO

t (z ) =

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Let w = t (zn). Since

= t (zn+1 ) = f (F (zn )) = t (F (t-1 (wn))) = G (wn), we conclude from (2) that |wn+1| < k|wn hence that |wn| < kn|w0|, and

finally that wn ^ 0.

From the above, it follows that the iteration sequence converges to the fixed point, i.e., zn = t -1 (wn t -1 (0) = s.

We now turn to the case where S is an arbitrary Jordan domain. By the Osgood-Caratheodory theorem (Caratheodory, 1960), there exists a function q that maps S conformally onto Izl <1 and S uT continuously

CD LO

<u £

To prove the existence of a zero of z = F (z), we apply the Rouche

theorem (Ahlfors, 1953) with z in the role of the 'big' function and F(z)

in the role of the 'small' function. Then, using (1), we can conclude that

z - F (z) and z have the same number of zeros inside |z| = 1, namely

exactly one. d

With s denote the unique fixed point and let d

z - S j|

o o <1J

1 - zs

This is a linear transformation which maps |z| < 1 onto itself and

sends s into 0. Hence, the function G = t o F o t-1 has the fixed point 0 and it is continuous mapping of |z| < 1 onto a closed subset of |z| <1. Hence, p

k := sup |G (z) <1.

|z| <1

We can certainly assume that k > 0 , since otherwise, G and F are constant and the proof is straightforward. The function k -1G vanishes at 0 and is bounded by 1, hence by the Schwarz lemma (Ahlfors, 1953) we |

CO

have k-1 |G(z )< |z| and consequently, o

G(z )< k|z| (2)

<u

for all z such that |z| < 1.

O

o Q

CO <1J

CD CD

"o >

o CM

X LU

>

and one-to-one onto |z| < 1. It is easily seen that the function H = g o F o g-1 satisfies the hypotheses of the theorem for the unit disk. Furthermore, if the points zn are defined by zn+1 = F(zn), n = 0,1,2,... and wn = g(zn), then wn+1 = H(wn). Consequently, the validity of the theorem for the unit disk implies the validity for the general case.

a:

— We add some problems related to the previous theorem.

=3 , 2r

o • It can be shown that k <-■„

° 1 + r2

o • If S is the unit disk, than |zn - s| <(1 + r)kn, n = 0,1,2

5 • Let F'(s) = F''(s) = - = F(m-1)(s) = 0, F(m)(sW 0, for some

LU H

integer m >1. If S is the unit disk, show that

£ |zn -s <(1 + r))1 + k2 +••• + mn-1, n e N.

• A research problem is whether similar results can be established for systems of analytic equations.

^^ A set S is said to lie strictly inside a subset D of a Banach space if

d there is some s>0 such that D whenever xeS. The following

>c3 theorem may be viewed as a holomorphic version of the Banach's

contraction mapping theorem.

° Theorem 2.2 (Earle & Hamilton, 1970, pp.61-65)

o Let D be a nonempty domain in a complex Banach space X and

h: D ^ D a bounded holomorphic function. If h(D) lies strictly inside D, then h has a unique fixed point in D.

Proof. Let us construct a metric p, called the CFR-pseudometric, with the contraction h. Define

a(x, v) = sup|g'(.x)v|: g: D ^ Aholomorphic} for x e D and v e X and set

i

L(y) = \a(y(t ),/(t))

for y in the set r of all curves in D with piecewise continuous ^ derivative. Clearly a specifies a seminorm at each point of D. We view L(y) as the length of the curve y measured with respect to a. Define

p(x, y) = inf (L(y): y e T, y(o) = x, y(1) = y} for x, y e D. It is easy to verify that p is a pseudometric on D. |

Let x e D and v e X. By the chain rule, we have

(g o h)(x) = g'(h(x))h'(x)v |

for any holomorphic function g: D ^ A. Hence, x

a(h(x), h' (x)v) < a(x, v). (3) |

By integrating this and applying the chain rule, we obtain L(hoy)<L(y) for all yeT and thus the Schwarz-Pick inequality p(h(x), h(y)) < p(x, y) holds for all x, y e D.

Now, by hypothesis, there exists an — >0 such that B—(x)cD whenever xe D. We may assume that D is bounded by replacing D by

{BE(h(x)): x e D}

oi CD LO

ci <u

T3

x

E o o <u

o

the subset xed

O tn a

(D

Fix t with 0< t < —, where 8 denotes the diameter of h(D). Given ^

5 E

xe D, define

h (y ) = h(y) + t[h(y)- h(x)] and note that h x: D ^ D is holomorphic. Given x e D and v e X, it follows from h 1 (x)v = (1 +1)h'(x)v and (3) with h replaced by h 1 that

a(h(x), h' (x )v) < a(x, v). Integrating this as before, we obtain

p(h(x ^ h(y)) < P(x, y)

for all x, y e D.

Now pick a point x0 e D and let {xn} be the sequence of iterates given by xn = hn(x0). Then {xn} is a p -Cauchy sequence by the proof of the contraction mapping theorem.

■o ■>

o

o Q

^ Since X is complete in the norm metric, it suffices to show that

there exists a constant m >0 such that

<§ p(x, y )> m\\x- y|| (4)

o 1

for all x, y e D. Since D is bounded, we may take m = —, where d is

o d

the diameter of D. Given x e D and v e X, define p(y) = ml(y - x)

LU * II II

E where l e X with ||l| = 1. Then g: D ^A is holomorphic and o Dg(x) = ml(v). Hence a(x,v)> m||v|| by the Hahn-Banach theorem.

< Integrating as before, we obtain (4). The previous result, so called the Earle-Hamilton theorem, is still

CH applied in cases where the holomorphic function does not necessarily E map its domain strictly inside itself. The following fixed point theorem is a

£ consequence of two applications of the Earle-Hamilton theorem.

<

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Theorem 2.3 (Khatskevich et al, 1995, pp.305-316, S. Reic et al, 1996, pp.1-44)

Let D be a nonempty bounded convex domain in a Banach space < and h: D ^ D a holomorphic function having a uniformly continuous

extension to D. If there exists an s > 0 such that ||h(x)- x|| > s whenever

x e 5D, then h has a unique fixed point in D .

X LU

° The hypothesis that ||h(x)—x|| > s for all x e SD is satisfied when D

" IM <,.

contains the origin and supxeSD" <1. Considerably stronger results

have been obtained for the case where D is the open unit ball of a Hilbert space.

Theorem 2.4 (Goebel et al, 1980, pp.1011-1021) Let D be the open unit ball of a Hilbert space and h: B ^ B a holomorphic function. If there is a point x0 in B such that the sequence

|hn (x0)} of iterates lies strictly inside B, then h has a fixed point in B . If x e SD, then h has a unique fixed point in D .

It is more complicated to obtain fixed points for nonexpansive mappings which are not contractive. One important result is that a nonexpansive self-mapping of a closed bounded convex set in a uniformly convex Banach space has a fixed point. In (Goebel et al, 1980, pp.1011—1021), it was shown that the CRF-metric p in the open unit ball B of a Hilbert space is uniformly convex and the fixed point theorem for holomorphic self-mappings of B was obtained.

Theorem 2.5 Let B be the open unit ball of a Hilbert space and h : B ^ B an arbitrary function satisfying the Schwarz-Pick inequality:

p(h(4 h(y ))<p(x, y ) for all x, y e B. If h has a continuous extension to B, then h has a fixed point in B.

Corollary 2.6 If h : B ^ B isa holomorphic function that has a continuous extension to B, then h has a fixed point in B.

For a treatment of the Cartesian products of the Hilbert balls, we refer the reader to ( Kuczumow et al, 2001, pp.437-515).

Szhwarz lemma and its application in the fixed point theory

In this section, we will restrict our attention to the paper (Xu et al, 2016, 2016:84) where the sharp estimates of a boundary fixed point is obtained using the Schwarz lemma. This lemma provides a very powerful tool for studying several research fields in complex analysis. For example, almost all results in the geometric function theory rely heavily on the Schwarz lemma (Ahlfors, 1953), (Anderson & Vasil'ev, 2008, pp.101-110), (Beardon, 1990, pp.41-150), (Beardon, 1997, pp.12571266), (Budzynska et al, 2012, pp. 504-512), (Budzynska et al, 2013a, 621-648), (Budzynska et al, 2013b, pp.747-756), (Burckel, 1981, pp.396-407), (Caratheodory, 1960), (Contreras et al, 2006, pp.125-142), (Cowen, 2010), (Cowen, 1981, pp.69-95), (Cowen & Pommerenke, 1982, pp.271-289), (Denjoy, 1926, pp. 255-257), (Earle & Hamilton, 1970, pp.61-65), (Goebel et al, 1980, pp.1011-1021), (Goebel, 1982, pp.1327-1334), (Harris, 2003, pp.261-274), (Hayden & Suffridge, 1971, pp.419-422), (Hayden & Suffridge, 1976, pp.95-105), (Henrici, 1969), (Julia, 1918, pp.47-295), (Khatskevich et al, 1995, pp.305-316),

CD h-LO

CO CD m

ci

CD £

CO

E o

T3

cp E o o

CD

CD

'o cp

T3 CD X

M—

c

o c

CD

E o tn a

o

CO CD I-

•o >

o c CD ></) o Q

CO

(Kuczumow, 1984, pp.417-419), (Kuczumow et al, 2001, pp.437-515), (Lemmens et al, 2016), (Mateljevic, 1998, pp. 1-4), (Reich & Shoikhet, 1996, pp.1-44), (Rudin, 1978, pp.25-28), (Suffridge, 1974, pp.309-314), 8 (Wolff, 1926), (Xu et al, 2016, 2016:84). On the other hand, the Schwarz ° lemma at the boundary is also useful in complex analysis, and various interesting results have been obtained (Ahlfors, 1953), (Anderson & Vasil'ev, 2008, pp.101-110), (Beardon, 1990, pp.41-150), (Beardon, dc 1997, pp.1257-1266), (Budzynska et al, 2012, pp. 504-512), (Budzynska et al, 2013a, pp.621-648), (Budzynska et al, 2013b, pp.747-g 756), (Burckel, 1981, pp.396-407), (Caratheodory, 1960), (Contreras et o al, 2006, pp.125-142), (Cowen, 2010), (Cowen, 1981, pp.69-95), (Cowen

< & Pommerenke, 1982, pp.271-289), (Denjoy, 1926, pp.255-257). ° We will summarize without proofs the relevant material on (Xu et al, g 2016, 2016:84). First we set up the notation and the terminology. h Let D denote the unit disk in C. With the notion H(D, D), we have oc the class of holomorphic self-mappings of D. Here, N stands for the set

of all positive integers. The boundary point E e 8D is called a fixed point

of f e H (D, D) if

f (E) = lim f (rE) = E

<

^ The classification of the boundary fixed points is given at the

2 begging of this survey. This classification can be done via the value of the angular derivative

. f E)= Z lim^

O z^E z - E

o which belongs to (0, œ) due to the Julia-Caratheodory theorem (see Julia, 1918, pp.47-295). This theorem also asserts that the finite angular derivative at the boundary fixed point E exists if and only if the

holomorphic function f (z) has the finite angular limit Zlim^ f (z). For a boundary fixed point E of f, if f (E)e(0, œ), then E is called a regular fixed point. The regular fixed point is attractive if f (E)e(0,1),

neutral if f (E) = 1, or repulsive if f (E)e(1, œ).

By the Julia-Caratheodory theorem (Julia, 1918, pp.47-295) and the Wolf lemma (Wolff, 1926), if f e H (D, D) with no interior fixed point, then there exists a unique regular boundary fixed point E such that

>o

f (g) e (0,1] and if f e H(D, D) with an interior fixed point, then ^ f (g) > 1 for any boundary fixed point g e 3D. S

The following known results are very significant.

Theorem 3.3 If f e H (d, d) with % = 1 as its regular boundary fixed point, then

2

f' (1) >

R f 1 - f2 (0)+f (0)1 Re V (1 -f (0))2 y

For a fuller treatment and a deeper discussion of fixed point results in complex domain, we refer the reader to (Xu et al, 2016, 2016:84) and the references given there.

Theorem 3.1 Assume that f e H(D, D) has a regular boundary | fixed point 1 and f (0) = 0. Then

o

+ 1 f (0 ) J

a

'»f 1

Moreover, the equality holds if and only if f is of the form

f(z) = -z-pL, z e D, 1 - az

for some constant a e (-1,0].

The next theorem is the improvement of the previous ones. It was announced 60 years later and showed how to dispense with the assumption f (0) = 0. J

o

Ci T3

Theorem 3.2 If f e H (d, d) with % = 1 as its regular boundary fixed point, then

/(,)> 2(1 -f(°ff " f W"1 -If(0)2 +|f (0).

Finally, the previous result has been improved and the better estimate has been obtained.

> o

o Q

CO <D

CD CD

"5 >

03

o CM

of

UJ

a.

Z) O

o <

o

X

o

UJ

H >-

OH <

H

<

CD >o

X UJ

H O

O >

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

References

Ahlfors, L. 1953. Complex Analysis. New York: McGraw-Hill, 1st ed.

Anderson, J.M., & Vasil'ev, A. 2008. Lower Schwarz-Pick Estimates and Angular Derivatives. Ann. Acad. Sci. Fennicae Math., 33, pp.101-110. Available at: http://www.acadsci.fi/mathematica/Vol33/AndersonVasilev.html. Accessed: 10.03.2018.

Beardon, A.F. 1990. Iteration of contractions and analytic maps. J. Lond. Math. Soc., s2-41(1), pp.141-150. Available at: https://doi.org/10.1112/jlms/s2-41.1.141.

Beardon, A.F. 1997. The dynamics of contractions. Ergodic Theory and Dynamical Systems, 17(6), pp.1257-1266. Available at: https://doi.org/10.1017/s0143385797086434.

Budzynska, M., Kuczumow, T., & Reich, S. 2012. A Denjoy-Wolff theorem for compact holomorphic mappings in reflexive Banach spaces. J. Math. Anal. Appl. 396(2), pp.504-512. Available at:

https://doi.org/10.1016/jjmaa.2012.06.044.

Budzynska, M., Kuczumow, T., & Reich, S. 2013a. Theorems of Denjoy-Wolff type. Annali di Matematica Pura ed Applicata, 192(4), pp.621-648. Available at: https://doi.org/10.1007/s10231-011-0240-z.

Budzynska, M., Kuczumow, T., & Reich, S. 2013b. A Denjoy-Wolff theorem for compact holomorphic mappings in complex Banach spaces. Annales Academiae Scientiarum Fennicae Mathematica, 38, pp.747-756. Available at: https://doi.org/10.5186/aasfm.2013.3846.

Burckel, R.B. 1981. Iterating analytic self-maps of discs. Am. Math. Monthly, 88(6), pp.396-407. Available at: https://doi.org/10.2307/2321822.

Caratheodory, M. 1960. Theory of functions of a complex variable. Chelsea, New York. Vol. 2, English edition.

Contreras, M.D., Diaz-Madrigal, S., & Pommerenke, C. 2006. On boundary critical points for semigroups of analytic functions. Mathematica Scandinavica, 98(1). Available at: https://doi.org/10.7146/math.scand.a-14987.

Cowen, C.C. 1981. Iteration and the Solution of Functional Equations for Functions Analytic in the Unit Disk. Trans. Amer. Math. Soc., 265, pp.69-95. Available at: https://doi.org/10.1090/S0002-9947-1981 -0607108-9.

Cowen, C.C. 2010. Fixed points of functions analytic in the unit disk. In: Conference on complex analysis, University of Illinois, May 22. University of Illinois.

Cowen, C.C., & Pommerenke, Ch. 1982. Inequalities for the Angular Derivative of an Analytic Function in the Unit Disk. J. London Math. Soc., s2-26(2), pp.271-289. Available at: https://doi.org/10.1112/jlms/s2-26.2.271.

Denjoy, A. 1926. Sur l'itération des fonctions analytiques, C.R. Acad. Sci. Paris, Serie 1, 182, pp.255-257 (in French).

Earle, C.J., & Hamilton, R.S. 1970. A fixed point theorem for holomorphic mappings. In S. Chern & S. Smale Eds., Proceeding of Symposia on Pure Mathematics. Providence, Rhode Island: American Mathematical Society (AMS), pp.61-65. Available at: https://doi.org/10.1090/pspum/016.

Goebel, K., Sekowski, T., & Stachura, A. 1980. Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis: Theory, Methods & Applications, 4(5), pp.1011-1021. Available at: https://doi.org/10.1016/0362-546X(80)90012-7.

Goebel, K. 1982. Fixed points and invariant domains of holomorphic mappings of the Hilbert ball. Nonlinear Analysis: Theory, Methods & Applications, 6(12), pp.1327-1334. Available at: https://doi.org/10.1016/0362-546X(82)90107-9.

Harris, L.A. 2003. Fixed points of holomorphic mappings for domains in Banach spaces. Abstract and Applied Analysis, 2003(5), pp.261-274. Available at: https://doi.org/10.1155/S1085337503205042.

Hayden, T.L., & Suffridge, T.J. 1971. Biholomorphic maps in Hilbert space have a fixed point. Pacific J. Math., 38(2), pp.419-422. Available at: https://doi.org/10.2140/pjm.1971.38.419.

Hayden, T.L., & Suffridge, T.J. 1976. Fixed points of holomorphic maps in Banach spaces. Proceedings of the American Mathematical Society, 60(1), pp.95-105. Available at: https://doi.org/10.1090/s0002-9939-1976-0417869-3.

Henrici, P. 1969. Fixed points of analytic functions. Technical report NO. CS 137.

Julia, G. 1918. Mémoire sur l'itération des fonctions rationelles. J. Math. Pures Appl., 8, pp.47-295 (in French).

Khatskevich, V., Reich, S., & Shoikhet, D. 1995. Fixed point theorems for holomorphic mappings and operator theory in indefinite metric spaces. Integral Equations and Operator Theory, 22(3), pp.305-316. Available at: https://doi.org/10.1007/bf01378779.

Kuczumow, T. 1984. Common fixed points of commuting holomorphic mappings in Hilbert ball and polydisc. Nonlinear Analysis: Theory, Methods & Applications, 8(5), pp.417-419. Available at: https://doi.org/10.1016/0362-546x(84)90081-6.

Kuczumow, T., Reich, S., & Shoikhet, D. 2001. Fixed Points of Holomorphic Mappings: A Metric Approach. In W.A. Kirk& B. Sims Eds., Handbook of Metric Fixed Point Theory. Dordrecht: Springer Nature, pp.437515. Available at: https://doi.org/10.1007/978-94-017-1748-9_14.

Lemmens, B., Lins, B., Nussbaum, R., & Wortel, M. 2016. Denjoy-Wolff theorems for Hilbert's and Thompson's metric spaces, arXiv: 1410.1056v4 [math. DS].

Mateljevic, M. 1998. Holomorphic fixed point theorem on Riemann surfaces. Math. Balkanica, 12(1-2), pp.1-4.

Reich, S., & Shoikhet, D. 1996. Generation theory for semigroups of holomorphic mappings in Banach spaces. Abstract and Applied Analysis, 1(1), pp.1-44. Available at: https://doi.org/10.1155/s1085337596000012.

Rudin, W. 1978. The fixed-point sets of some holomorphic maps. Bull. Malays. Math. Soc., 1, pp.25-28.

CD h-LO

CO CD m

ci

Ci

eu £ CO

CO

E o

T3

Ci

E o o

CD

CO

CO CD

'o

Ci T3

eu X

M—

c

o c

eu E o tn c

o

CO

eu I-

•o >

o c eu >co o Q

Suffridge, T.J. 1974. Common fixed points of commuting holomorphic maps of the hyperball. The Michigan Mathematical Journal, 21(4), pp.309-314. Aalable at: https://doi.org/10.1307/mmj/1029001354. § Wolff, J. 1926. Sur une généralization d'un théorème de Schwartz. C.R.

Hebd. Seanc. Acad, . 182, pp.918-920 and 183, pp.500-502 (in French).

Xu, Q., Tang, Y., Yang, T., & Srivastava, H.M. 2016. Schwarz lemma involving the boundary fixed point. Fixed Point Theory and Applications, 2016(1).

о

CN Available at: https://doi.org/10.1186/s13663-016-0574-8.

О НЕКОТОРЫХ ИЗВЕСТНЫХ РЕЗУЛЬТАТАХ О НЕПОДВИЖНОМ g ТОЧКЕ В КОМПЛЕКСНОМ ДОМЕНЕ: ИССЛЕДОВАНИЕ

° Татьяна М. Дошеновича, Хенк Копелар6, Стоян Н. Раденовичв

< а Университет в г. Нови-Сад, Технологический факультет, г. Нови-Сад, Республика Сербия

g 6 Делфтский технический университет, Факультет электротехники,

ш математики и информатики, г. Делфт, Нидерланды

Белградский университет, Машиностроительный факультет,

сс г. Белград, Республика Сербия

<

ОБЛАСТЬ: математика ВИД СТАТЬИ: обзорная статья ЯЗЫК СТАТЬИ: английский

й Резюме: <

о В данной обзорной статье представлены некоторые известные

2 результаты теорий о неподвижной точке над комплексным доменом. Надо подчеркнуть, что 1962 год является ключевым для

х данной области. Ведь именно тогда начали проводиться

и- исследования по применению теорий о неподвижной точке в

>

рамках комплексного анализа. Теорема единственности для рядов о Вольфа-Данжуа наряду с Банаховым принципом сжатия,

становятся главным методом (результатом) математического анализа.

Ключевые слова: неподвижная точка, кривая Жордана, аналитические функции, полное Банахово пространство.

НЕКИ ПОЗНАТИ РЕЗУЛТАТИ ИЗ НЕПОКРЕТНЕ ТАЧКЕ У КОМПЛЕКСНОМ ДОМЕНУ: ИСТРАЖИВА^Е

Тат]ана М. Дошенови^8, Хенк Копелар6, Сто^ан Н. Раденови^6 а Универзитет у Новом Саду, Технолошки факултет,

Нови Сад, Република Ср6и]а 6 Технолошки универзитет у Делфту, Факултет електротехнике,

математике и рачунарских наука, Делфт, Холанди]а в Универзитет у Београду, Машински факултет, Београд, Република Ср6и]а

Кл>учне речи: непокретна тачка, Жорданове криве, аналитичке

ОБЛАСТ: математика ВРСТА ЧЛАНКА: прегледни чланак

JЕЗИК ЧЛАНКА: енглески S

Ю

Сажетак: £

У овом прегледном раду разматрани су неки познати резултати ®

из теорбе непокретне тачке над комплексним доменом. ^ Истражива^е и примена теорбе непокретне тачке у

комплексноj анализи започети су 1926, године. Теорема Denjoy- ъ

Wolf, заjедно са Банаховим принципом контракц^е, jедно jе од о

главних ору^а (резултата) математичке анализе. *

функц^е, комплексан Банахов простор. о

<u

Paper received on / Дата получения работы / Датум приема чланка: 10.02.2018. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 11.04.2018.

Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 12.04.2018.

© 2018 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier o^

(www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).

© 2018 Авторы. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией «Creative Commons» oi

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(http://creativecommons.org/licenses/by/3.0/rs/). ^

© 2018 Аутори. Обjавио [^нотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се у О

складу са Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/). Ъ

®

e

■о

vi o

o

Q

i Надоели баннеры? Вы всегда можете отключить рекламу.