CD h-LO
CO CD LO
!± <u
ON SOME KNOWN FIXED POINT %
RESULTS IN THE COMPLEX DOMAIN: SURVEY I
Tatjana M. Dosenovic3, Henk Koppelaar^, Stojan N. Radenovicc
ro
o
T3
X JD
University of Novi Sad, Faculty of Technology, E
o
<u
Novi Sad, Republic of Serbia, o
e-mail: [email protected], ORCID ID: http://orcid.org/0000-0002-3236-4410 b Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, Netherlands, e-mail: [email protected], ORCID ID: https://orcid.org/0000-0001-7487-6564
' University of Belgrade, Faculty of Mechanical Engineering, °
Belgrade, Republic of Serbia, -a
e-mail: [email protected], x
ORCID ID: ©http://orcid.org/0000-0001-8254-6688 ^
DOI: 10.5937/vojtehg66-17103; https://doi.org/10.5937/vojtehg66-17103
FIELD: Mathematics ^
ARTICLE TYPE: Review Paper E
ARTICLE LANGUAGE: English
Abstract: O
In this survey paper, we consider some known results from the fixed ^
point theory with complex domain. The year 1926 is very significant for 0 this subject. This is the beginning of the research and application of the
fixed point theory in complex analysis. The Denjoy-Wolf theorem, |
o
•o
together with the Banach contraction principle, is one of the main tools in the mathematical analysis. o
Keywords: fixed point, Jordan curve, analytic function, complex D Banach space.
Introduction and preliminaries
Let f be an analytic map of the unit disk D = {z e C: |z| < l} into
ACKNOWLEDGMENT: The first author is grateful for the financial support from the Ministry of Education and Science and Technological Development of the Republic of Serbia (Matematicki modeli nelinearnosti, neodredenosti i odlucivanja, 174009) and from the Provincial Secretariat for Higher Education and Scientific Research, Province of Vojvodina, Republic of Serbia, project no. 142-451-2838/2017-01.
itself. Now, we want to consider the fixed point of f and especially a lemma implies that f has at most one fixed point in D and some § maps have no fixed point. If f : D ^ D isa continuous map, then f
> must have a fixed point in D. From now on, we make the assumption that f is an analytic function on the open disk D .
o CM
w Definition 1.1 Suppose that f is an analytic map of the unit disk D
^ into itself. We say that a e D is a fixed point of f if f (a) = a. Also, a e 3D is a fixed point of f if lim^r f (ra) = a.
<
o z
X
o
The Julia-Caratheodory theorem implies that if a gSD is a fixed
w point of f, then limr^r f (ra) exists (we call it f '(a)) and 0< f '(a)<œ. >-
a:
¡< Theorem 1.2 ( The Denjoy-Wolf theorem from 1926. ) If f is an
analytic map of D into itself, but not the identity map, there is a unique fixed point a of f in D such that |f ' (a) < 1.
<
The point a in the above theorem is called the Denjoy-Wolff point of f. g The Schwarz-Pick Lemma implies that f has at most one fixed
point in D and if f has a fixed point in D, it must be the Denjoy-Wolf point.
1
z + —
Example 1.3 1) The mapping f (z) =-2 is an automorphism of
1 + -2
D with the fixed points 1 and -1, but the Denjoy-Wolff point is a = 1 because f '() = 1 (f (-1) = 3)
2) The mapping f : D ^ D given by f (z) = —^^ has three fixed
X LU I—
o
o
V
2 - z
points: 0, 1, and -1. The Denjoy-Wolff point is a = 0 since f'(o) = 2 and f ' ( 1)=3.
/ x 2 z3 +1
3) The mapping f (z ) =-— is an inner function fixing 1 and -1,
2 + z
with the Denjoy-Wolff point a = 1 because f '(l) = 1 ( note that
f '(-1) = 9).
4) The inner function f(z) = expjj^—-jj has a fixed point in D
which is the Denjoy-Wolff point (a « .21365), and infinitely many fixed points on ÔD.
Definition 1.4 Let f : D ^ D be an analytic map. The set F = j z g D : lim f (rz )= z J is called the fixed point set of f .
Theorem 1.5 If f is an analytic function that maps the unit disk into itself, then there exists E c F which has linear measure zero.
Example 1.6 Let K be a compact set of measure zero in ÔD. There is a function f analytic in D and continuous on D such that f (D)c D and the fixed point set of f is {0}o> K.
Theorem 1.7 Let f be a univalent analytic function that maps the unit disk into itself. Then the set F has capacity zero.
Example 1.8 For a given compact set K in ÔD of capacity zero and a point a gôD \ K, there exists an analytic and univalent function in D ( say f ) such that f (D)c D and F = {a}^ K.
In the next theorem, it is required that the Denjoy-Wolff point a = b0 be normalized, i.e., b0 = 0 or b0 = 1.
Theorem 1.9 Let f be an analytic function with f (D)c D and suppose that b0,b^...,bn are fixed points of f.
3 e
6 6 ol
>
0
2 R,
IE RI
U
O
C
L
A
IC NI
X
C E T
Y R
A
S A L
O >o
X
E T O
O
>
• If b0 = 0, then
V 1 < R 1 + f (0)
• If b0 =1 and f' (l) = 1, then
V 1 < f (1) j=1 f (bj)-1"1 - f (1)'
If b0 =1 and 0< f (1) <1, then
-1
1 -b,\ / \ ( 1 >
J^ U — u A / \
(bj )-1 < 2 Re
j=1 J
f (0)
Moreover, the equality holds if and only if f is the Blaschke product of order n +1 in case 1) or of order n in cases 2) and 3).
If f has infinitely many fixed points, then the appropriate inequality holds for any choice of finitely many fixed points. In particular, only countably many fixed points of f can have a finite angular derivative.
If b0, b1, b2,... are countably many fixed points for which f (bj) <
then the corresponding infinite sum converges and the appropriate inequality holds.
With the assumption that an analytic function f is univalent and that the Denjoy-Wolff point is b0 = 0 or b0 = 1, we have the next assertion.
Theorem 1.10 Let f be a univalent analytic function with f (D) tz D and suppose b0, b1,..., bn are fixed points of f.
If b0 = 0, then
V(log f (bj)) < 2 Re B 1
j=1
f
where B = limr log
A
f (b )
J' (°)rbiy
< f'(1) <
and lim z ^logf^l = log f (0).
If bo =0 and 0 < f (1) <1, then ¿(log f ()) <-(log f (l)) .
j=1
a> tm co CD m
!± Ci
<u
Moreover, the equality holds if and only if f is embeddable in a semigroup and f (D) = D with n analytic arcs removed in case 1) or n -1 in case 2).
• If ¿0=1 and f (1) = 1, then ¿cj(log f () < 2log1 -f-f(°)) ,
where
ci = limr Im
( (
log
V v~j
1 f K)- f (o) 1 - f (0)fr
bj 1 - f (0)f (rbj ) f (r )- f(0)
Remark 1.11 In (Anderson & Vasil'ev, 2008, pp.101-110), the authors proved for b0 = 0, case 1), the inequality
n/ (bj )
1
j >
j=1
f (0)
where ccj > 0 and ¿c = 1. The equality holds only for the unique
j=1
solution of a given complex differential equation with a given initial condition.
Considering b0 = 0, case 3) and the assumption that f is
embeddable in a continuous semigroup, in (Contreras et al, 2006, pp.125-142) was proved that
ro E o
T3
X JD Ci
E o o <u
o
Ci T3
<u X
<u E o
o m
(D
■O >
o
o Q
^ 1 - Re b 1 ,, v
¿f < Re G® = ReCT(0)'
where G is the infinitesimal generator of the semi-group and a is the map from the linear fractional model.
z
CO <1>
CD CD
"o >
O CM
on
In case 3), an equality condition is not included and maybe this inequality is not the best possible. Also, a sharp inequality to describe the general case has not yet been obtained.
Main results
It is known that a continuous mapping of a simply connected, closed, bounded set of the Euclidean plane into itself has at least one fixed point. w Let F be an analytic function in some domain S of the complex
=3 plane. Standard results in real numerical analysis show that the equation o z = F(z) has at least one solution, called a fixed point of F. If S is
y bounded and simply connected, F is continuous on the closure S of S,
and F(s)e S. If the mapping F is a contraction, then there is a unique
fixed point, and the iteration sequence defined by zn+1 = F(zn),
ct —
¡< n = 0,1,2,... converges to the fixed point for every choice of z0 eS. If S
is convex, then a necessary and sufficient condition for the mapping to
be a contraction is that the derivative F' of F satisfies |f'(z)< k,
Q z e S, where k < 1.
d The purpose of the next theorem is to show that the conclusion is
* not affected if we replace the assumption that F is a contraction by the condition that F is an analytic function.
LU
o Theorem 2.1 (Henrici, 1969)
q We first prove a reduced form of the theorem. Let S denote the
X
o
LU
>
interior of a Jordan curve r, let F be analytic in S and continuous on S ur, and let F(S u r) e S. Then F has exactly one fixed point, and the iteration sequence defined by zn+1 = F(zn), n = 0,1,2,... converges to the fixed point for arbitrary z0 e S u r.
Note that the function F (z ) = 2 z100 in |z| < 1 satisfies the hypothesis and |f' (z) is arbitrary large.
Proof. First let S be the unit disk. By the hypothesis, we have
CD
r :=max lF (z I <1. (i) s?
|Z|<1 V ' CO
t (z ) =
Let w = t (zn). Since
= t (zn+1 ) = f (F (zn )) = t (F (t-1 (wn))) = G (wn), we conclude from (2) that |wn+1| < k|wn hence that |wn| < kn|w0|, and
finally that wn ^ 0.
From the above, it follows that the iteration sequence converges to the fixed point, i.e., zn = t -1 (wn t -1 (0) = s.
We now turn to the case where S is an arbitrary Jordan domain. By the Osgood-Caratheodory theorem (Caratheodory, 1960), there exists a function q that maps S conformally onto Izl <1 and S uT continuously
CD LO
!±
<u £
To prove the existence of a zero of z = F (z), we apply the Rouche
theorem (Ahlfors, 1953) with z in the role of the 'big' function and F(z)
in the role of the 'small' function. Then, using (1), we can conclude that
z - F (z) and z have the same number of zeros inside |z| = 1, namely
exactly one. d
With s denote the unique fixed point and let d
z - S j|
o o <1J
1 - zs
This is a linear transformation which maps |z| < 1 onto itself and
sends s into 0. Hence, the function G = t o F o t-1 has the fixed point 0 and it is continuous mapping of |z| < 1 onto a closed subset of |z| <1. Hence, p
k := sup |G (z) <1.
|z| <1
We can certainly assume that k > 0 , since otherwise, G and F are constant and the proof is straightforward. The function k -1G vanishes at 0 and is bounded by 1, hence by the Schwarz lemma (Ahlfors, 1953) we |
CO
have k-1 |G(z )< |z| and consequently, o
G(z )< k|z| (2)
<u
for all z such that |z| < 1.
O
o Q
CO <1J
CD CD
"o >
o CM
X LU
>
and one-to-one onto |z| < 1. It is easily seen that the function H = g o F o g-1 satisfies the hypotheses of the theorem for the unit disk. Furthermore, if the points zn are defined by zn+1 = F(zn), n = 0,1,2,... and wn = g(zn), then wn+1 = H(wn). Consequently, the validity of the theorem for the unit disk implies the validity for the general case.
a:
— We add some problems related to the previous theorem.
=3 , 2r
o • It can be shown that k <-■„
° 1 + r2
o • If S is the unit disk, than |zn - s| <(1 + r)kn, n = 0,1,2
5 • Let F'(s) = F''(s) = - = F(m-1)(s) = 0, F(m)(sW 0, for some
LU H
integer m >1. If S is the unit disk, show that
£ |zn -s <(1 + r))1 + k2 +••• + mn-1, n e N.
• A research problem is whether similar results can be established for systems of analytic equations.
^^ A set S is said to lie strictly inside a subset D of a Banach space if
d there is some s>0 such that D whenever xeS. The following
>c3 theorem may be viewed as a holomorphic version of the Banach's
contraction mapping theorem.
° Theorem 2.2 (Earle & Hamilton, 1970, pp.61-65)
o Let D be a nonempty domain in a complex Banach space X and
h: D ^ D a bounded holomorphic function. If h(D) lies strictly inside D, then h has a unique fixed point in D.
Proof. Let us construct a metric p, called the CFR-pseudometric, with the contraction h. Define
a(x, v) = sup|g'(.x)v|: g: D ^ Aholomorphic} for x e D and v e X and set
i
L(y) = \a(y(t ),/(t))
for y in the set r of all curves in D with piecewise continuous ^ derivative. Clearly a specifies a seminorm at each point of D. We view L(y) as the length of the curve y measured with respect to a. Define
p(x, y) = inf (L(y): y e T, y(o) = x, y(1) = y} for x, y e D. It is easy to verify that p is a pseudometric on D. |
Let x e D and v e X. By the chain rule, we have
(g o h)(x) = g'(h(x))h'(x)v |
for any holomorphic function g: D ^ A. Hence, x
a(h(x), h' (x)v) < a(x, v). (3) |
By integrating this and applying the chain rule, we obtain L(hoy)<L(y) for all yeT and thus the Schwarz-Pick inequality p(h(x), h(y)) < p(x, y) holds for all x, y e D.
Now, by hypothesis, there exists an — >0 such that B—(x)cD whenever xe D. We may assume that D is bounded by replacing D by
{BE(h(x)): x e D}
oi CD LO
ci <u
T3
x
E o o <u
o
the subset xed
O tn a
(D
Fix t with 0< t < —, where 8 denotes the diameter of h(D). Given ^
5 E
xe D, define
h (y ) = h(y) + t[h(y)- h(x)] and note that h x: D ^ D is holomorphic. Given x e D and v e X, it follows from h 1 (x)v = (1 +1)h'(x)v and (3) with h replaced by h 1 that
a(h(x), h' (x )v) < a(x, v). Integrating this as before, we obtain
p(h(x ^ h(y)) < P(x, y)
for all x, y e D.
Now pick a point x0 e D and let {xn} be the sequence of iterates given by xn = hn(x0). Then {xn} is a p -Cauchy sequence by the proof of the contraction mapping theorem.
■o ■>
o
o Q
^ Since X is complete in the norm metric, it suffices to show that
there exists a constant m >0 such that
<§ p(x, y )> m\\x- y|| (4)
o 1
for all x, y e D. Since D is bounded, we may take m = —, where d is
o d
the diameter of D. Given x e D and v e X, define p(y) = ml(y - x)
LU * II II
E where l e X with ||l| = 1. Then g: D ^A is holomorphic and o Dg(x) = ml(v). Hence a(x,v)> m||v|| by the Hahn-Banach theorem.
< Integrating as before, we obtain (4). The previous result, so called the Earle-Hamilton theorem, is still
CH applied in cases where the holomorphic function does not necessarily E map its domain strictly inside itself. The following fixed point theorem is a
£ consequence of two applications of the Earle-Hamilton theorem.
<
Theorem 2.3 (Khatskevich et al, 1995, pp.305-316, S. Reic et al, 1996, pp.1-44)
Let D be a nonempty bounded convex domain in a Banach space < and h: D ^ D a holomorphic function having a uniformly continuous
extension to D. If there exists an s > 0 such that ||h(x)- x|| > s whenever
x e 5D, then h has a unique fixed point in D .
X LU
° The hypothesis that ||h(x)—x|| > s for all x e SD is satisfied when D
" IM <,.
contains the origin and supxeSD" <1. Considerably stronger results
have been obtained for the case where D is the open unit ball of a Hilbert space.
Theorem 2.4 (Goebel et al, 1980, pp.1011-1021) Let D be the open unit ball of a Hilbert space and h: B ^ B a holomorphic function. If there is a point x0 in B such that the sequence
|hn (x0)} of iterates lies strictly inside B, then h has a fixed point in B . If x e SD, then h has a unique fixed point in D .
It is more complicated to obtain fixed points for nonexpansive mappings which are not contractive. One important result is that a nonexpansive self-mapping of a closed bounded convex set in a uniformly convex Banach space has a fixed point. In (Goebel et al, 1980, pp.1011—1021), it was shown that the CRF-metric p in the open unit ball B of a Hilbert space is uniformly convex and the fixed point theorem for holomorphic self-mappings of B was obtained.
Theorem 2.5 Let B be the open unit ball of a Hilbert space and h : B ^ B an arbitrary function satisfying the Schwarz-Pick inequality:
p(h(4 h(y ))<p(x, y ) for all x, y e B. If h has a continuous extension to B, then h has a fixed point in B.
Corollary 2.6 If h : B ^ B isa holomorphic function that has a continuous extension to B, then h has a fixed point in B.
For a treatment of the Cartesian products of the Hilbert balls, we refer the reader to ( Kuczumow et al, 2001, pp.437-515).
Szhwarz lemma and its application in the fixed point theory
In this section, we will restrict our attention to the paper (Xu et al, 2016, 2016:84) where the sharp estimates of a boundary fixed point is obtained using the Schwarz lemma. This lemma provides a very powerful tool for studying several research fields in complex analysis. For example, almost all results in the geometric function theory rely heavily on the Schwarz lemma (Ahlfors, 1953), (Anderson & Vasil'ev, 2008, pp.101-110), (Beardon, 1990, pp.41-150), (Beardon, 1997, pp.12571266), (Budzynska et al, 2012, pp. 504-512), (Budzynska et al, 2013a, 621-648), (Budzynska et al, 2013b, pp.747-756), (Burckel, 1981, pp.396-407), (Caratheodory, 1960), (Contreras et al, 2006, pp.125-142), (Cowen, 2010), (Cowen, 1981, pp.69-95), (Cowen & Pommerenke, 1982, pp.271-289), (Denjoy, 1926, pp. 255-257), (Earle & Hamilton, 1970, pp.61-65), (Goebel et al, 1980, pp.1011-1021), (Goebel, 1982, pp.1327-1334), (Harris, 2003, pp.261-274), (Hayden & Suffridge, 1971, pp.419-422), (Hayden & Suffridge, 1976, pp.95-105), (Henrici, 1969), (Julia, 1918, pp.47-295), (Khatskevich et al, 1995, pp.305-316),
CD h-LO
CO CD m
ci
CD £
CO
E o
T3
cp E o o
CD
CD
'o cp
T3 CD X
M—
c
o c
CD
E o tn a
o
CO CD I-
•o >
o c CD ></) o Q
CO
(Kuczumow, 1984, pp.417-419), (Kuczumow et al, 2001, pp.437-515), (Lemmens et al, 2016), (Mateljevic, 1998, pp. 1-4), (Reich & Shoikhet, 1996, pp.1-44), (Rudin, 1978, pp.25-28), (Suffridge, 1974, pp.309-314), 8 (Wolff, 1926), (Xu et al, 2016, 2016:84). On the other hand, the Schwarz ° lemma at the boundary is also useful in complex analysis, and various interesting results have been obtained (Ahlfors, 1953), (Anderson & Vasil'ev, 2008, pp.101-110), (Beardon, 1990, pp.41-150), (Beardon, dc 1997, pp.1257-1266), (Budzynska et al, 2012, pp. 504-512), (Budzynska et al, 2013a, pp.621-648), (Budzynska et al, 2013b, pp.747-g 756), (Burckel, 1981, pp.396-407), (Caratheodory, 1960), (Contreras et o al, 2006, pp.125-142), (Cowen, 2010), (Cowen, 1981, pp.69-95), (Cowen
< & Pommerenke, 1982, pp.271-289), (Denjoy, 1926, pp.255-257). ° We will summarize without proofs the relevant material on (Xu et al, g 2016, 2016:84). First we set up the notation and the terminology. h Let D denote the unit disk in C. With the notion H(D, D), we have oc the class of holomorphic self-mappings of D. Here, N stands for the set
of all positive integers. The boundary point E e 8D is called a fixed point
of f e H (D, D) if
f (E) = lim f (rE) = E
<
^ The classification of the boundary fixed points is given at the
2 begging of this survey. This classification can be done via the value of the angular derivative
. f E)= Z lim^
O z^E z - E
o which belongs to (0, œ) due to the Julia-Caratheodory theorem (see Julia, 1918, pp.47-295). This theorem also asserts that the finite angular derivative at the boundary fixed point E exists if and only if the
holomorphic function f (z) has the finite angular limit Zlim^ f (z). For a boundary fixed point E of f, if f (E)e(0, œ), then E is called a regular fixed point. The regular fixed point is attractive if f (E)e(0,1),
neutral if f (E) = 1, or repulsive if f (E)e(1, œ).
By the Julia-Caratheodory theorem (Julia, 1918, pp.47-295) and the Wolf lemma (Wolff, 1926), if f e H (D, D) with no interior fixed point, then there exists a unique regular boundary fixed point E such that
>o
f (g) e (0,1] and if f e H(D, D) with an interior fixed point, then ^ f (g) > 1 for any boundary fixed point g e 3D. S
The following known results are very significant.
Theorem 3.3 If f e H (d, d) with % = 1 as its regular boundary fixed point, then
2
f' (1) >
R f 1 - f2 (0)+f (0)1 Re V (1 -f (0))2 y
For a fuller treatment and a deeper discussion of fixed point results in complex domain, we refer the reader to (Xu et al, 2016, 2016:84) and the references given there.
Theorem 3.1 Assume that f e H(D, D) has a regular boundary | fixed point 1 and f (0) = 0. Then
o
+ 1 f (0 ) J
a
'»f 1
Moreover, the equality holds if and only if f is of the form
f(z) = -z-pL, z e D, 1 - az
for some constant a e (-1,0].
The next theorem is the improvement of the previous ones. It was announced 60 years later and showed how to dispense with the assumption f (0) = 0. J
o
Ci T3
Theorem 3.2 If f e H (d, d) with % = 1 as its regular boundary fixed point, then
/(,)> 2(1 -f(°ff " f W"1 -If(0)2 +|f (0).
Finally, the previous result has been improved and the better estimate has been obtained.
> o
o Q
CO <D
CD CD
"5 >
03
o CM
of
UJ
a.
Z) O
o <
o
X
o
UJ
H >-
OH <
H
<
CD >o
X UJ
H O
O >
References
Ahlfors, L. 1953. Complex Analysis. New York: McGraw-Hill, 1st ed.
Anderson, J.M., & Vasil'ev, A. 2008. Lower Schwarz-Pick Estimates and Angular Derivatives. Ann. Acad. Sci. Fennicae Math., 33, pp.101-110. Available at: http://www.acadsci.fi/mathematica/Vol33/AndersonVasilev.html. Accessed: 10.03.2018.
Beardon, A.F. 1990. Iteration of contractions and analytic maps. J. Lond. Math. Soc., s2-41(1), pp.141-150. Available at: https://doi.org/10.1112/jlms/s2-41.1.141.
Beardon, A.F. 1997. The dynamics of contractions. Ergodic Theory and Dynamical Systems, 17(6), pp.1257-1266. Available at: https://doi.org/10.1017/s0143385797086434.
Budzynska, M., Kuczumow, T., & Reich, S. 2012. A Denjoy-Wolff theorem for compact holomorphic mappings in reflexive Banach spaces. J. Math. Anal. Appl. 396(2), pp.504-512. Available at:
https://doi.org/10.1016/jjmaa.2012.06.044.
Budzynska, M., Kuczumow, T., & Reich, S. 2013a. Theorems of Denjoy-Wolff type. Annali di Matematica Pura ed Applicata, 192(4), pp.621-648. Available at: https://doi.org/10.1007/s10231-011-0240-z.
Budzynska, M., Kuczumow, T., & Reich, S. 2013b. A Denjoy-Wolff theorem for compact holomorphic mappings in complex Banach spaces. Annales Academiae Scientiarum Fennicae Mathematica, 38, pp.747-756. Available at: https://doi.org/10.5186/aasfm.2013.3846.
Burckel, R.B. 1981. Iterating analytic self-maps of discs. Am. Math. Monthly, 88(6), pp.396-407. Available at: https://doi.org/10.2307/2321822.
Caratheodory, M. 1960. Theory of functions of a complex variable. Chelsea, New York. Vol. 2, English edition.
Contreras, M.D., Diaz-Madrigal, S., & Pommerenke, C. 2006. On boundary critical points for semigroups of analytic functions. Mathematica Scandinavica, 98(1). Available at: https://doi.org/10.7146/math.scand.a-14987.
Cowen, C.C. 1981. Iteration and the Solution of Functional Equations for Functions Analytic in the Unit Disk. Trans. Amer. Math. Soc., 265, pp.69-95. Available at: https://doi.org/10.1090/S0002-9947-1981 -0607108-9.
Cowen, C.C. 2010. Fixed points of functions analytic in the unit disk. In: Conference on complex analysis, University of Illinois, May 22. University of Illinois.
Cowen, C.C., & Pommerenke, Ch. 1982. Inequalities for the Angular Derivative of an Analytic Function in the Unit Disk. J. London Math. Soc., s2-26(2), pp.271-289. Available at: https://doi.org/10.1112/jlms/s2-26.2.271.
Denjoy, A. 1926. Sur l'itération des fonctions analytiques, C.R. Acad. Sci. Paris, Serie 1, 182, pp.255-257 (in French).
Earle, C.J., & Hamilton, R.S. 1970. A fixed point theorem for holomorphic mappings. In S. Chern & S. Smale Eds., Proceeding of Symposia on Pure Mathematics. Providence, Rhode Island: American Mathematical Society (AMS), pp.61-65. Available at: https://doi.org/10.1090/pspum/016.
Goebel, K., Sekowski, T., & Stachura, A. 1980. Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis: Theory, Methods & Applications, 4(5), pp.1011-1021. Available at: https://doi.org/10.1016/0362-546X(80)90012-7.
Goebel, K. 1982. Fixed points and invariant domains of holomorphic mappings of the Hilbert ball. Nonlinear Analysis: Theory, Methods & Applications, 6(12), pp.1327-1334. Available at: https://doi.org/10.1016/0362-546X(82)90107-9.
Harris, L.A. 2003. Fixed points of holomorphic mappings for domains in Banach spaces. Abstract and Applied Analysis, 2003(5), pp.261-274. Available at: https://doi.org/10.1155/S1085337503205042.
Hayden, T.L., & Suffridge, T.J. 1971. Biholomorphic maps in Hilbert space have a fixed point. Pacific J. Math., 38(2), pp.419-422. Available at: https://doi.org/10.2140/pjm.1971.38.419.
Hayden, T.L., & Suffridge, T.J. 1976. Fixed points of holomorphic maps in Banach spaces. Proceedings of the American Mathematical Society, 60(1), pp.95-105. Available at: https://doi.org/10.1090/s0002-9939-1976-0417869-3.
Henrici, P. 1969. Fixed points of analytic functions. Technical report NO. CS 137.
Julia, G. 1918. Mémoire sur l'itération des fonctions rationelles. J. Math. Pures Appl., 8, pp.47-295 (in French).
Khatskevich, V., Reich, S., & Shoikhet, D. 1995. Fixed point theorems for holomorphic mappings and operator theory in indefinite metric spaces. Integral Equations and Operator Theory, 22(3), pp.305-316. Available at: https://doi.org/10.1007/bf01378779.
Kuczumow, T. 1984. Common fixed points of commuting holomorphic mappings in Hilbert ball and polydisc. Nonlinear Analysis: Theory, Methods & Applications, 8(5), pp.417-419. Available at: https://doi.org/10.1016/0362-546x(84)90081-6.
Kuczumow, T., Reich, S., & Shoikhet, D. 2001. Fixed Points of Holomorphic Mappings: A Metric Approach. In W.A. Kirk& B. Sims Eds., Handbook of Metric Fixed Point Theory. Dordrecht: Springer Nature, pp.437515. Available at: https://doi.org/10.1007/978-94-017-1748-9_14.
Lemmens, B., Lins, B., Nussbaum, R., & Wortel, M. 2016. Denjoy-Wolff theorems for Hilbert's and Thompson's metric spaces, arXiv: 1410.1056v4 [math. DS].
Mateljevic, M. 1998. Holomorphic fixed point theorem on Riemann surfaces. Math. Balkanica, 12(1-2), pp.1-4.
Reich, S., & Shoikhet, D. 1996. Generation theory for semigroups of holomorphic mappings in Banach spaces. Abstract and Applied Analysis, 1(1), pp.1-44. Available at: https://doi.org/10.1155/s1085337596000012.
Rudin, W. 1978. The fixed-point sets of some holomorphic maps. Bull. Malays. Math. Soc., 1, pp.25-28.
CD h-LO
CO CD m
ci
Ci
eu £ CO
CO
E o
T3
Ci
E o o
CD
CO
CO CD
'o
Ci T3
eu X
M—
c
o c
eu E o tn c
o
CO
eu I-
•o >
o c eu >co o Q
Suffridge, T.J. 1974. Common fixed points of commuting holomorphic maps of the hyperball. The Michigan Mathematical Journal, 21(4), pp.309-314. Aalable at: https://doi.org/10.1307/mmj/1029001354. § Wolff, J. 1926. Sur une généralization d'un théorème de Schwartz. C.R.
Hebd. Seanc. Acad, . 182, pp.918-920 and 183, pp.500-502 (in French).
Xu, Q., Tang, Y., Yang, T., & Srivastava, H.M. 2016. Schwarz lemma involving the boundary fixed point. Fixed Point Theory and Applications, 2016(1).
о
CN Available at: https://doi.org/10.1186/s13663-016-0574-8.
О НЕКОТОРЫХ ИЗВЕСТНЫХ РЕЗУЛЬТАТАХ О НЕПОДВИЖНОМ g ТОЧКЕ В КОМПЛЕКСНОМ ДОМЕНЕ: ИССЛЕДОВАНИЕ
° Татьяна М. Дошеновича, Хенк Копелар6, Стоян Н. Раденовичв
< а Университет в г. Нови-Сад, Технологический факультет, г. Нови-Сад, Республика Сербия
g 6 Делфтский технический университет, Факультет электротехники,
ш математики и информатики, г. Делфт, Нидерланды
Белградский университет, Машиностроительный факультет,
сс г. Белград, Республика Сербия
<
ОБЛАСТЬ: математика ВИД СТАТЬИ: обзорная статья ЯЗЫК СТАТЬИ: английский
й Резюме: <
о В данной обзорной статье представлены некоторые известные
2 результаты теорий о неподвижной точке над комплексным доменом. Надо подчеркнуть, что 1962 год является ключевым для
х данной области. Ведь именно тогда начали проводиться
и- исследования по применению теорий о неподвижной точке в
>
рамках комплексного анализа. Теорема единственности для рядов о Вольфа-Данжуа наряду с Банаховым принципом сжатия,
становятся главным методом (результатом) математического анализа.
Ключевые слова: неподвижная точка, кривая Жордана, аналитические функции, полное Банахово пространство.
НЕКИ ПОЗНАТИ РЕЗУЛТАТИ ИЗ НЕПОКРЕТНЕ ТАЧКЕ У КОМПЛЕКСНОМ ДОМЕНУ: ИСТРАЖИВА^Е
Тат]ана М. Дошенови^8, Хенк Копелар6, Сто^ан Н. Раденови^6 а Универзитет у Новом Саду, Технолошки факултет,
Нови Сад, Република Ср6и]а 6 Технолошки универзитет у Делфту, Факултет електротехнике,
математике и рачунарских наука, Делфт, Холанди]а в Универзитет у Београду, Машински факултет, Београд, Република Ср6и]а
Кл>учне речи: непокретна тачка, Жорданове криве, аналитичке
ОБЛАСТ: математика ВРСТА ЧЛАНКА: прегледни чланак
JЕЗИК ЧЛАНКА: енглески S
Ю
Сажетак: £
У овом прегледном раду разматрани су неки познати резултати ®
из теорбе непокретне тачке над комплексним доменом. ^ Истражива^е и примена теорбе непокретне тачке у
комплексноj анализи започети су 1926, године. Теорема Denjoy- ъ
Wolf, заjедно са Банаховим принципом контракц^е, jедно jе од о
главних ору^а (резултата) математичке анализе. *
функц^е, комплексан Банахов простор. о
<u
Paper received on / Дата получения работы / Датум приема чланка: 10.02.2018. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 11.04.2018.
Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 12.04.2018.
© 2018 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier o^
(www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).
© 2018 Авторы. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией «Creative Commons» oi
(http://creativecommons.org/licenses/by/3.0/rs/). ^
© 2018 Аутори. Обjавио [^нотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се у О
складу са Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/). Ъ
®
e
■о
vi o
o
Q