Научная статья на тему 'On pulsating DD neutron yield under Inertial electrostatic confinement at miniature vacuum discharge'

On pulsating DD neutron yield under Inertial electrostatic confinement at miniature vacuum discharge Текст научной статьи по специальности «Химические науки»

CC BY
67
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On pulsating DD neutron yield under Inertial electrostatic confinement at miniature vacuum discharge»

Complex Systems of Charged Particles and their Interactions with Electromagnetic Radiation 2018

ON PULSATING DD NEUTRON YIELD UNDER INERTIAL ELECTROSTATIC

CONFINEMENT AT MINIATURE VACUUM DISCHARGE

Yu. K. Kurilenkov

Joint Institute for High Temperatures of RAS, Moscow, Russia kurilenkovyuri@gmail.com

Inertial electrostatic confinement (IEC) fusion represents rather old branch of controlled thermonuclear synthesis study (see [1-3] and references therein). Earlier, in particular, the yield of DD neutrons in a compact IEC scheme based on miniature nanosecond vacuum discharge (NVD) of low energy with deuterated Pd anode have been observed [4]. Further, detailed PIC simulation by the electrodynamic code KARAT have confirmed [5] that experiment with NVD is the realization of the IEC scheme [3]. The goal of this work is to present and discuss in detail the available experimental results on deuteron oscillations in the field of virtual cathode in NVD followed by pulsating DD neutron yield [6]. PIC simulations for some experimental regimes of pulsating neutron yield are shown, and comparison with available scheme of periodical oscillating plasmas spheres (POPS) [7] suggested earlier in Los Alamos for fusion at ICF scheme is given. The requirements needed to achieve a positive energy output for IEC scheme with oscillating ions (analogue of Lawson criterion [8] for breakeven) are discussed also [9].

This work was supported by a grant No. 14-50-00124 of the Russian Science Foundation.

1. Lavrent'ev O A 2012 On the History of Thermonuclear Synthesis in USSR (Kharkov: Kharkov Phys.-Tech.Inst.) 2nd ed.

2. Miley G and Murali S K 2014 Inertial Electrostatic Confinement (IEC) Fusion (Springer, New York)

3. W. C. Elmore, J. L. Tuck, and K. M. Watson. 1959 Phys. Fluids 2, 239.

4.Yu.K. Kurilenkov, M. Skowronek and J.Dufty. 2006 J.Phys.A:Math&Gen 39 4375.

5. Yu.K. Kurilenkov, VP.Tarakanov, M.Skowronek et al. 2009 J. Phys. A:Math.Theor. 42 214041.

6. Yu.K. Kurilenkov, VP.Tarakanov, S.YuGus'kov et al. et al. 2018 Contribution to Plasma Physics (SCCS 2017 Special issue) in press; ibid 2011 51 pp 427-443.

7. Park J, Nebel R A, Stange S and Murali S K 2005 Phys. Plasmas 12 056315-6

8. Lawson J D 1957 Proc. Phys. Soc. B70 6-10.

9. S.YuGus'kov and Yu.K. Kurilenkov 2016 J. Phys.: Conf Ser 774 (2016) 012132

i Надоели баннеры? Вы всегда можете отключить рекламу.