Научная статья на тему 'ON PHASE-FIELD EQUATIONS OF PENROSE-FIFE TYPE WITHTHE NON-CONSERVED ORDER PARAMETER UNDER FLUX BOUNDARY CONDITION.I: GLOBAL-IN-TIME SOLVABILITY'

ON PHASE-FIELD EQUATIONS OF PENROSE-FIFE TYPE WITHTHE NON-CONSERVED ORDER PARAMETER UNDER FLUX BOUNDARY CONDITION.I: GLOBAL-IN-TIME SOLVABILITY Текст научной статьи по специальности «Математика»

CC BY
29
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
NON-CONSERVED PHASE-FIELD EQUATIONS / PENROSE-FIFE TYPE / FLUX BOUNDARY CONDITION / STRONG SOLUTION IN SOBOLEV-SLOBODETSKI SPACES

Аннотация научной статьи по математике, автор научной работы — Tani A.

We study the initial-boundary value problem for the non-conserved phase-field model proposed by Penrose and Fife in 1990 [1] under the flux boundary condition for the temperature field in higher space dimensions, which is obliged to overcome additional di culties in the mathematical treatment. In all the existing works concerning this problem, only one due to Horn et al. [2] was discussed under the correct form of the flux boundary condition. Here we prove that the same correctly formulated problem as theirs is well-posed globally-in-time in Sobolev-Slobodetski spaces. Moreover, it is shown that the temperature keeps positive through the time evolution.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ON PHASE-FIELD EQUATIONS OF PENROSE-FIFE TYPE WITHTHE NON-CONSERVED ORDER PARAMETER UNDER FLUX BOUNDARY CONDITION.I: GLOBAL-IN-TIME SOLVABILITY»

Математические заметки СВФУ Январь—март, 2022. Том 29, № 1

UDC 517.95

ON PHASE-FIELD EQUATIONS OF PENROSE—FIFE TYPE WITH THE NON-CONSERVED ORDER PARAMETER UNDER FLUX BOUNDARY CONDITION. I: GLOBAL-IN-TIME SOLVABILITY A. Tani

Abstract. We study the initial-boundary value problem for the non-conserved phase-field model proposed by Penrose and Fife in 1990 [1] under the flux boundary condition for the temperature field in higher space dimensions, which is obliged to overcome additional difficulties in the mathematical treatment. In all the existing works concerning this problem, only one due to Horn et al. [2] was discussed under the correct form of the flux boundary condition. Here we prove that the same correctly formulated problem as theirs is well-posed globally-in-time in Sobolev—Slobodetskii spaces. Moreover, it is shown that the temperature keeps positive through the time evolution.

DOI: 10.25587/SVFU.2022.97.11.008 Keywords: non-conserved phase-field equations, Penrose—Fife type, flux boundary condition, strong solution in Sobolev—Slobodetskii spaces.

Dedicated to Professor Ivan E. Egorov on his seventieth birthday

1. Introduction

In this paper we are concerned with the non-conserved phase-field equation proposed by Penrose and Fife [1,3] which is a continuum model for the description of dynamics of order-disorder phase transition taking into account of both the relaxation and the balance laws based on the second law of thermodynamics:

where p is an order parameter, 0 is an absolute temperature, M1, M2 and K are positive constants, e = e(p, 0) is the internal energy defined by

e = f~0% (1.2)

with the free energy density f = f (p, 0), and g = g(x, t) is a heat supply. The free energy density f (p, 0) assumed in [1, 3] is of the form

f{ip, e) = -cv(e\ne + s)-^tp2-btp + c- eso(v) (1.3)

© 2022 Tani A.

with given constants CV > 0, a > 0, S > 0, b, c and a concave function s0(p). The most commonly used form of s0 is the double equal-well potential,

1 2

*>(¥>)=(l-V2) . (1-4)

Inserting (1.2)-(1.4) into (1.1), we have

% = + v + Cvft-(a<P+b)d^ = -M2(1.5)

We consider (1.5) in a bounded domain Q c RN (N = 2, 3), with a smooth boundary T. The boundary conditions imposed on T are:

where n = n(x) is an outward unit normal vector to T at x G T, fl is a heat conductivity on the boundary T and de(> 0) is an external temperature. The latter condition for 6 is the so-called flux boundary condition.

A phase transition in two-phase system has been theorized as a continuum in which two phases may coexist, so that the transition between them is considered to occur smoothly within an appropriate layer or diffuse interface. The use of diffuse interface models in describing the phase transition is traced back to van der Waals [4,5], Landau [6] for the second order phase transitions by introducing the notion of order parameter, and Devonshire [7] for the first order transitions. Then, the theory has been extended as continuum models for the description of dynamics of order-disorder phase transition by Cahn [8-10] (Models A and B in [11]; see also [12,13]), Caginalp [14], Penrose and Fife [1,3] and so on.

In the sequel, without loss of generality, we assume that CV = M1 = 1, M2 = M and fl is a positive constant. And it is more convenient to use u =1/6 instead of 6, so that our problem is formulated as follows:

" §f = KAip - (p3 + Lp + (atp + b)u, x G tt, t > 0,

|| + (aip + b)u2^ = Mu2Au-gu2, x G il, t > 0,

i£ = o, = x&r,t> o,

^ (tp, u)|t=o = (<^o,uo)(x), x G Q.

Concerning the mathematical results related to problem (1.6) with fl = 0 the existence of a unique strong solution was proved by Zheng [15] and Sprekels and Zheng [16] (see also [17]). In the framework of weak solutions of (1.6) and its generalization there are many papers (see, [18-22] and the references therein). However, for problem (1.6) with fl > 0, as was pointed out in [13], all results except [2] were reported under the physically incorrect flux conditions, for example, in [21]

and in [22]

d6

The aim of the present paper is to show the unique existence of a strong solution in Sobolev-Slobodetskii spaces in higher space dimensions, which are different from [2]. Moreover, a boundedness of the solution is shown up to an arbitrary finite time.

In what follows, we focus our study on the most important case, N = 3. Let us describe our results.

Theorem 1.1. Let T be any positive number, and ft be a bounded domain in R3 with a boundary r belonging to W23/2+l, l > 1/2. Suppose that g G W2'l/2(QT) (Qt = ft x (0,T)), (9e G W21/2+l,1/4+l/2(rT) (Ft = r x (0,T)), and po,«o G W2x+l(ft) satisfy inf uq(x) = Mq > 0, and the compatibility conditions up to order max{[Z —

3/2], 0}. Then problem (1.6) has a unique solution (p, u) G W22+l'(2+l)/2(QT») x W2+1,(2+0/2(Qt-) for some T* G (0,T] such that

\\(lP,u)\\w22+l,{2+l)'2(QT - )

+ \\^e\Wi/2+1,1/4+1/2 (pT)), (1.7)

and 1

u(x,t) > -u0 for any (x,t) G Qt*- (1-8)

Theorem 1.2. Assume that the hypotheses in Theorem 1.1 with I = 2, and

inf 0e(x,t)^0e>O, SUP ^GL2(r;^(0,T)) (1.9)

MerT te{o,T] Q.e lrl ot

hold, where |ft| is a volume of ft. Then the solution in Theorem 1.1 is extended on [0,T ]:

\(p,u)\w24.2(QT) < C(T), u(x,t) > C*(T) for any (x, t) G Qt.

Here C(T) and C*(T) are positive constants depending non-decreasingly on both the data and T.

Remark 1.3. Our proof is applicable to the similar problems with more general f, for example,

/(¥>, e) = -Cvidind + s1e + s2) + ^(d- rv - ^p3 + ^-V + ^V

2 3 4 6

with positive constants CV, a1, d* and nonnegative constants 51, ¿2, a3, a4, a6

satisfying a4 + a6 > 0 proposed by Alt and Pawlow [23]. The corresponding results

to Theorems 1.1 and 1.2 still hold for such an f.

Throughout this paper we use the standard Sobolev-Slobodetskii spaces WJ(ft) with norms \H\r(\\-\\ = ||-\\o) and the anisotropic ones Wj's(Qt) = L((0,T; W2r(ft))n L2(ft; W2s(0,T)) for non-negative real numbers r, s and T(< By W|(0,T;

WJ(ft)) we denote the function space of u(t) defined on (0, T) with values in WJ(ft) such that u(t) G W|(0, T). In particular, the case s = r/2,

W(J't/2(Qt) = L((0,T; WJ(ft)) n L((ft; W(J/2(0,T)),

is mainly used. For a smooth manifold dQ = T, the spaces WJ(T) of functions defined on T are introduced in a standard manner by means of the local coordinates and the partition of unity, and W2"'s(TT), TT = T x (0, T), can be defined in the same way as above. The spaces of vector fields whose components belong to, for example, W2's(QT) are denoted by the same notation as the scalar case, W;T's(QT), and their norms are supposed to be equal to the sum of norms of all its components. In detail, see [24-26].

In what follows, we also denote by c the universal positive constants which may vary in different places; by Ci and Ci(T) (i = 1,2, 3,...) the positive constants depending non-decreasingly on the data but not on T, and may depend non-decrea-singly on both the data and T, respectively; besides some constants depend on the indicated quantities.

We give proofs of Theorems 1.1 and 1.2 in Sections 2 and 3, respectively.

2. Local-in-time existence: Proof of Theorem 1.1

((Step 1)) For simplicity let us assume 1 > l > 1/2, and consider a linear problem

dv dt

d(x, t)Av + f (x, t) (x G n, t > 0),

f- = h(x, t) (ier,t> 0), v\t=0 = 0 (x G iî)

(2.1)

where d(x,t) G w1'1/2(Qt), f (x,t) G W1//2(Qt) and h(x,t) G W21/2+M/4+i/2(TT) are given functions satisfying d(x,t) > d = const > 0 and the compatibility condition.

The theory of linear partial differential equations of parabolic type [25, 27] implies that problem (2.1) has a unique solution v G W^+i'1+i/2(QT) satisfying

(2.2)

Let us denote the extension of (p0,u0) by (p0,u0) G w2,+1,1+1/2(Qt) satisfying ll(p0, "0)||w2+i,i+I/2(Qt ) < c|(P0 J u0)| W21+l (n).

When we choose in (2.1)

d = K, h(x, t) = —= hi, d n

dp

f(x, t) = -p3 + p + (ap + b)u--— + KApo = /i(p, u),

the unique solution v gives p — p0; we choose in (2.1)

d = Mul = =

M \u

f{x, t) = -(ap + b)u- gu2 - ^ + M(u2 - u20)Au + Mu2Au0 = /2(p, u),

dt * dt the unique solution v gives u — ïïo.

In order to estimate fi, f2, hi, h2, we rely on the following lemma:

Lemma 2.1 [26, Lemma 3.5]. If wi G W2m'm/2(Qr), G W2m''m'/2(QT) with m > 5/2, m > to' > 0, then wiw2 G W2" 'm /2(QT) and

||WiW2|

W2

/2(QT) - l|wi|lWTm/2(QT)^W2^W2m'-m/2(QT)•

By using Lemma 2.1 and interpolation inequalities it is easy to obtain

llf

ill™ rl<l/2t

- OM^+M + I^Q,) + a|u|W22+I'1 + I/2(Qt) +1) l^lW2-'/2

(Qt)

(Qt)

U|W2''/2(Qt) + (K + 1)l<^o|W2 + I'1 + I/2

W22

2(Qt)

- C^ ||p||

(Qt)'

,1 + I/2

(Qt)

+ |b|(e2 + CE2t)lulW22+I'1+I/2(Q) + c(K + 1)|^0|w21+i(O) ,

(2.3)

llf2lw2',/2(Qt) - ((al^lW22+'-1+'/2(Qt) + |b|)

dp

dt

+

/;,;/2(

Iw2,I/2(qt )

X |u|W2+l',1 + l'/2 <n.\ + M l|Au|lW2-'/2(Qt)Hu2 - MÜ|w.2+''1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2(Qt)

w2'I/2(Qt)l

n',1+; '/2

(Qt)

+ (M II + 1)ll u0y W2+i,1 + i/2(Qt)

< C3(|p|w22+l'1+l/ 2(Qt), |u|W22+l'1 + l/2(Qt), I|g|IWll/2(QT), ||u0|W21+l(n)) x (^3 + Ce3 i)|u|w22+l'1+l/2(Qt) + c(M I|u011 W2+l (n) + 1)ll u0|W21 + l(n)'

(2.4)

Here l' is any number, l' G (1/2, l); C2 and C3 are positive constants depending on each indicated argument monotonically non-decreasingly; ei is any positive number; CEi is a positive constant which increases monotonically as ei tends to 0 (i = 1,2, 3).

Trace theorem leads to

|h1^W 1/2+l,1/4+l/2(n) < C4|P?0|w2+l,1+l/2(Q ) < cC4 1P0 1 w1 +

(2.5)

|h2|W21/2+i,1/4+i/2(pt)

<

A

M

W21/2 + I,1/4+I/2(Pt)

ß

+ T7llöellw3/2+!'1/4+!/2(rT) + C4||mo||w2+m+V2

M1

(Qt)

1

^ C5 ( \\U\\W2+I,l + 1/2(0^V — ) (£4+Ce4t)\\u\\w2 + l,l + l/2

ÜO

(Qt)

(Qt ) ¡3

+ ]\^ll6'ellw21/2+M/4+!/2(rT) + cC-i\\uo\\w^+l(n)' (2-6)

where C5, e4 and CE4 have the same properties as C3, e1 and CE1, respectively. Let A1 and A2 be any positive constants satisfying

Ai > 2c(1 + Ci(K + 1 + C4)) ||po||Wi+I(n)

and

A2 > 2c(1 + Ci(M|uo|w21+i(o) +1+ C4))|uolw21+'(n) +

2ßCi M

II*

e|Wl/2+l,1/4+'/2

(Ft )'

respectively.

Now we define the successive approximate solution {(p(m), u(m))}^=0 as follows:

(p(0) ,u(0)) = (po,ïïo),

p(m) - po is a solution to (2.1) with d = K, h = hi, / = /x(p(m-1),u(m-1)), u(m) — ÏÏ0 is a solution to (2.1) with

d = h = h2(u(m-1)), / = /2(p(m-1),u(m-1)) (m =1, 2, 3,... ),

provided

(p(m-1),u(m-1)) G W2+M+l/2(QT) x W2+M+l/2(QT), IP(m-1)|w22 + - + "2(QT ) < A1, H«(m-1)Hw2 + ,.1 + ,/2(QT ) < A2. Estimates (2.2), (2.3), (2.5) imply

A

\\^m>\\w2+l,1+l/2(Qt) < -f+ClC2(Al,A2)Al(el+Ceit) + \b\ClA2(e2 + Ce2t), (2.7) and (2.2), (2.4), (2.6) imply

A2

Hw22+!'1+!/2(Qt) < —+CiC3(A1,A2, \\g\\w^/2(Qty llMo||H/2i+!(0))A2(e3+C'e3i)

+ A2CiC5(A2,l/w0)(e4+Ce4i). (2.8)

First we choose e1-e4 so small that

Ci (C2(A1; A2)Ai£i + |6|A2e2) < Ci(C3(AI,A2, ||ff||wM/2(QT), lko||ww(n))£3 +C5(A2, l/wo)e4) <

1

hold, and then choose T0 G (0,T] to satisfy

C1(C2(A1,A2)A1Cei + \b\A2Ce2)T0 <

Ci (c3(Ai, A2, ||ff||w.,./2(QT), ||«o||wi+.(n))Ce3 + C5 ^A2, To < i.

1

¿o,

Thus, from (2.7) and (2.8) we conclude by induction \\¥>(m)\\w22+'.i+i/2(QTo) <Ai, \u(m)\w22+i ,i+i/2(QTo) <A( (m = 0,1, 2,...). (2.9)

((Step 2)) We show that |(p(m),u(m))}~=0 is a Cauchy sequence in W22+1'1+1/2(Qt-) x W22+1'1+1/2(Qt-)

for some T* G (0,T0]. For that we begin with the estimates f1(p, u) — f1(p', u'), f2(p, u) — f2(p',u') and h2(u) — h2(u'), where p, p' and u, u' satisfy (2.9)1 and

(2.9)2, respectively. In the similar manner as (2.3), (2.4) and (2.6) by the help of Lemma 2.1 and (2.9) we have

u) - /l(p', u')IIW2'l/2(Qt) < (3A2 + oA2 + + C£5 t)||p - P'|W22+l'1 + l/2(Qt) + (0A1 + |b|)(e6 + Ceet)||u - u'|| (2.10)

|/2(p,u) - /2(p',u')|W2,l/2(Qt)

< A2(3aA1 + |b|)(e7 + CE7t)||p - ^'|wHi,1+i/2(Qt)

+ (A2(2aA1 + 2|b| + 2||g||w2,l/2(QT) + (2 + M + Mc||u,||

x (es + Ce8T)|u - u'1 1+l/2(Qt), (2.11)

1 h2 (u) - h2(u')|W_l/2 + l,1/4+l/2(rt)

<C5(a2,-^ (£9+CE9t)\\u-u'\\w2+lll+l/2(Qt) (2.12)

for any t G (0, T0]. Here again ei is any positive number; CEi is a positive constant increasing monotonically as ei tends to 0 (i = 5, 6,... , 9). As in ((Step 1)) p(m) - p(m-1) satisfies (2.1) with

d = K, h(x, t) = 0, /(x,t)= /1(p(m-1) ,u(m-1)) - /1(p(m-2) ,u(m-2)), and u(m) - u(m-1) satisfies (2.1) with

d = Mu0, h(x,t) = h2(u(m-1)) - h2(u(m-2)),

/(x,t) = /2(p(m-1),u(m-1)) - /2(p(m-2),u(m-2)). Hence, inequalities (2.2) and (2.10) yield

|p(m) - p(m-1)|w22+l,1+l/2(Qt)

< C1 (3A2 + aA2 + 1) (es + CE5t)|p(m-1) - p(m-2) ||W2+l,1+l/2(Qt)

+ C1(oA1 + |6|)(ee + Ceet)||u(m-1) - u^H^+m+i^, (2.13)

and inequalities (2.2), (2.11) and (2.12) yield

|u(m) - u(m-1)|w22+l,1 + l/2(Qt)

< C1A2(3oA1 + |b|)(e7 + CE7t)||p(m-1) - p(m-2) |w22+M+I/!(Qt) + C1 [(A2(2oA1 + 2|b| + 2|g| w i,I/2(„t ) + (2 + M )A2) + Mc|«clW 1+l(

'w2'1/2(qt) ' "" >^2> W21+'(0)j

X (e8 + Ceat) + C5 (a2, (s9 + Cegt)

x\\u^-r>-u^-2'>\\wr,1+l/2{Qt). (2.14)

2

2

Now we take £5-69 first and then T1 G (0, T0] as

1

4Ci:

(3A? + 0A2 + 1)£5 + A((3aA1 + |bj)eT <

(0A1 + jbj)£6 + (A((2aA1 +2jbj + 2\\g\\w2. '/2(qt ) + (2 + M )A() + Mc\\u0\\W2i+'(n)) 68

+ c5 £9 < 7i-;

TI((3A? + oA2 + 1)C£b +A2(3aAi + |6|)Ce7) <

4C1

«0/ 4Ci 1

T1

(0A1 + jbj)Cee + (A( (20A1 + 2jbj + 2\\g\\w2 , ./2(qt ) + (2 + M )A()

+ Mc||U0||^2l+,(o))Ce8 + C5 U2, - ) Ce

12

1

< 4Ci:

so that (2.13) and (2.14) lead to

\P(m) — P(m-1)\W22 + 1 ■ 1 + 1/2(qt1 ) + — u(m-1)\w22+1 ■ 1 + 1/2(qt1 )

2vmv^ r IIw2 (qt1 )

(m-1) — u(m-2))i ^

+ \\u(m-1) — u(m-2))\w22+i , i+i/2(QTi)). (2.15)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

This means that there exists a limit function (p,u) of (p(m),u(m)) on [0,T1] in the topology of W2+l,1+l/2(QTl) x W2+l,1+l/2(QTl), which satisfies

wpww^1 , 1 + 1/2 (qt1 ) < A1, \u\w22+1 • 1+1/2(qt1 ) < A2. (2.16)

The uniqueness of the solution follows from inequality (2.15) with (p(m), u(m)) = (p,u) and (p(m-1),u(m-1)) = (p',u') by assuming that (p,u) and (p',u') are two solutions of problem (1.6).

As for (1.8) it is easy to see that

t

/'du 1

— (x,r) dr > u0 — VtA2 > —Uq (2-17)

0

holds if t (>)0 is smaller than T2 = (u0/(2A2))2.

Set T* = min{T1,T2}, so that the proof of Theorem 1.1 is complete.

3. Global-in-time existence: Proof of Theorem 1.2

Assume that solution (p, u ) to problem (1.6) belongs to W24'2(Qt) x W24'2(Qt) and has properties (1.7), (1.8) for any T > 0. First we derive a priori estimates of (p, u) on [0, T]. Some calculations in the following are certainly formal, because the regularity of the solution is not sufficient. However, as usual we can easily derive the rigorous results by using the arguments of mollifiers and passing to the limit.

Lemma 3.1. For any t G [0, T]

l|Vp(i)||2 + Mi)||l4(0)+ J (¿+logu) (x,t)dx

n

t 2 t + /( +||V«(t)||2)dt + J dr J (oeu + ^j(x,T)dT <Ce(T). (3.1)

0 r

Proof. Add (1.6)1 multiplied by dp/dt and (1.6)2 multiplied by 1/u, and integrate it over Q. Then we have

Jt (f l|Vp(i)||2 + \Mmltm -\Mm2 + /logudx

+

dp ~dt

(t)

+ M || Vu(t) |2 + J gudx + /3 J ee u dr = / |r |. (3.2)

Integrating (3.2) over (0, t), we easily see that 1

K 1 r

Yl|Vp(i)||2 + -||p(i)||l4(0)iir + J logu(x,t)dx

n

t t + M || Vu(r )||2^ dr + J dr J gudx + / J dr J 0eudr 0 n 0 r

<fl|Vpo||2 + i||po||l4(o)+ y"log«o(a;)da; + ^|r|i + i|ii|. (3.3)

Poincare inequality

Kt)ll<c||Vu(t)||+^ Ju(x,t)dT

(3.4)

implies

J dr J gu dx 0n

< |g(T )||u(T )|| dT

< Y j l|V«(r)|| I \\g(r)rdr + ^ I \\g(r)\\dr J 6eu(x,T) dT.

2

t

t

t

t

t

Therefore, we have

K 1 t

Yl|Vp(i)||2 + -||p(i)||l4(0) + J logu(x,t)dx

t 2 t dp

' —1| vm^tj ||" | cit + p' i cit i t/eu i

+ yl|vu(r)||^jdr + fi' j dr j 6eudT

0 0 r

<fl|Vpo||2 + i||po||l4(o)+ J loguo(x) dx + p\T\t + ^\i

with /3'= /3- sup ||<7(t)||vW(2e|r|) >0.

0<t<T

Next, multiply (1.6)2 by u-2 and integrate it over ft. Then one get

Jtj (u ~ ~ dx + 13 J udT = f gdx + 13 J 9edT>

n r n r

from which it readily follows

t t u(x,t)dx + (3 / dr -{x,t)d,T < —\\<p(t)\\li{n) + I dr / \q{x

j\{x,t) dx + 13 j dr j\{x,r) dT < ^Mt)\\i4{n] + j dr j | g(x,T)\dx

n 0 r 0 n

t

+ /3 j dr j 6e(x, t) dT + ^(o + \b\)2 + ^ |ft| + j 1- dx. (3.6)

ye(x, t) ai + | [a - , ^

0 r n

Since logu + 1/u > 0 holds, adding (3.5) to (3.6) leads to (3.1). □ Lemma 3.2. For any t G [0, T]

1

CVCrr1 < f -(x,t)dx<C7(T). (3.7)

u

n

Proof. The upper bound is derived from (3.6) and (3.1) with the elementary inequality — log u < 1/u. Moreover, (3.1) leads to

u

j log u(x,t) dx + j —(x,t) dx<Ce{T),

nn so that the lower bound is derived from Jensen's inequality

"108(m / ludx) - -M/log ludx = MIlogutdx- D

n n n

Put

u(t) = minu(x,t), u(t) = max u(x,t).

x£Q x£Q

Then (3.7) implies

u(t) < C7(T)\il\, u(t)>

|Q|

c7(ty

It is easily seen from Poincare inequality that for any t G [0,T]

(3.8)

IKi) - w(i)H + \\u(t)-u(t)\\ < c(||Vw(i)|| + 1).

(3.9)

Lemma 3.3. For any t G [0, T]

dp ~dt

(t)

+ II Vu(t)|2 + J(u0e - log(u0e)) dr

+

dVp

dT

(T)

+

1 du. u dT

+

dp, ,

dT < Cg(T). (3.10)

Proof. Adding (d/dt)(1.6)1 multiplied by dp/dt and (1.6)2 multiplied by u-2du/dt, and integrating it over Q, we have

1 d Ydt

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

dp ~dt

(t)

+ MII Vu(t) I 2 + 3 J (u0e - log(u^e)) dr r

+ K

dVp

dt

(t)

+ 3j |p|2

dp

dt

dx +

1 du . . u dt

dX + i nn

< au(t)

dp

dt

+

dp

dt

+

1 du u dt

d0e

dt

+ (3.11)

L2(r) V ^e,

Insert the inequality

u(t) <

|Ki)-Tl(i)|| + |Ki)-M(i)||+2i(

<

3

(c| Vu(t)| + c + C7(T) | Q |3/2) = c| Vu(t)| + C7 (T),

which is derived from (3.8) and (3.9), into the right most hand side of (3.11), and

t

2

2

2

2

2

2

2

2

2

2

1

2

3

integrate the rewritten (3.11) over (0,t). We have

dp ~dt

(t)

+ M||Vu(t)||2 + ß j(u0e - log(u0e)) dr

t

+ 2/1 K

0

dVp

ör t

(t )

< c(o + 1)/(

dp

+ 3

(t )

P

dp

+

1 du u dt

(t)

dT

+ ||Vu(t)||2J dT + C9(T)

= c(o + 1)Y (t) + Cg(T). (3.12)

Solving the differential inequality

we obtain

c(o + 1) V min{1, M}2 Thanks to (3.13), (3.10) immediately follows from (3.12). □ From (3.10) it easily follows

(3.13)

du

(t)

dt

1 du u dT

Z(t)2 dT < Cs(T)u*(T)2

(3.14)

u(t) < u*(T) = c\JC$(T) + C'7(T).

From (1.6)1 and its differentiation with respect to x

KVAip = ^^ + 3p2Vp - Vp - cwVp - (ap + 6)Vu,

it is clear to derive by the help of (3.1), (3.10) and (3.14) t

l|p(t)|lw22(fi) + / (||P(

t )|3 +

dp dr

(t )

dT < Cio(T) for any t G [0,T]. (3.15)

Lemma 3.4.

> Cn(T) for any t G [0,T],

(3.16)

Proof. Multiply (1.5)2 with Cy = 1, M2 = M by 0p-1 (p > 4) and integrate it over ft. By integration by parts and Young's inequality, we get

d_

dt

||0(t)HLp(n) + Mp(p - 1)| 0p-4|V0|2 dx + ppßI dr

n r

= pß J OP-^edT+p J eP-^acp + b^dx+p J g&P~x dx

2

2

2

1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

2

2

t

t

2

2

1

n

a<p + b)^ep/2y/5 dx^j5/3 + C12M(^Je3(-p-2) dx^j

4C12M

1/3

+

4C12M

5/3

Using Nirenberg-Gagliardo inequality, the embedding theorem from W2(Q) in L6(Q) with a constant C0, |v|L6(n) < |M|W_1(n)/C0, (3.10) and (3.15), we find that

0p-1 |V0|2 dx

p - 2

V0(P-2)/2

dx

>

p - 2

\ 1/3

CJ / 03(p-2) dx - 0p-2 dx

0x

nn

6/5 x 5/3

(j + *)

< (oC10(T) + |b|)5

dp

dt

6\ 1/3

<

(oC10(T) + |b|)2

C0

(/*Sp/1 dx)1/3

n

2 /f \ 1/3

( I 03p/1 dx

W1(n)

dp

dt

5/3

<

cHlffllw^n)

03p/1 dx

n

1/3

p(p - 1) (j^T^j J 0P~2 dx < PiP ~ !) (^2) ^ / dP l d'X

for any positive constant C12.

Therefore, choosing C12 < C0, we obtain

03p/1 dx

1/3

d_

dt

II0(t)ILp(n) + (C0 - c^M^ 03(p-2) d^ V3 +

p

Lp(r)

1/3

< 3INILp(r) + P2C13(t^ 03p/1 dxj , (3.17)

n

p

2

2

2

2

2

p

since p > 4 and p(p - 1)/(p - 2)2 > 1. Here

dVp

_ (oCio(r) + H)2

Cl3(t) - 4MC0C12

dt

w^n)

1 —2 + 9M'°|1/3^)2.

^ 4MC0C12lmV)nwiW ^ 4^7x2 First letting p = 4 in (3.17), we have

d \1/3

*)ll(n) < mil(r) +42C13(t^ 03 dx

< 3|0eH4(r) +42C13(t)|Q|1/3||0(t)Hl4(n),

from which by virtue of Gronwall's lemma, (3.1), (3.10) and (3.12) it follows

I|0(t)lL4(n) < C1i(T) for any t G [0,T]. (3.18)

Now let us introduce the sequence {pk}£=0 defined by p0 = 4, pk = 4pk-1/3 (k = 1, 2,3,...). Integrating (3.17) with p = pk over (0, t), we obtain

II№Pfc(n) < l«0ispk(n)

t t

+ // |0e(T)ip;fc(r) dT + plf C13(T)|0(T)ip;k_1 (n) dT. (3.19)

00

Set

Bfe(t) = max{1, |00|i„(n), II^||WrT), sup ||0(t)||l(n)}.

T e(0,t) k

Then (3.19) becomes

Bk (t)Pk < ^1 + |Q| + 3|r |t + J C13(T) dT^ p2efe-1(t)Pk < C15(T)pkBk-1(t)Pk, and thus by induction

Bfc(i) < c15(T)1/p^2/PfeBfc_1(i) < ... < C15(iy* npf^W. № = E--

j=1 j=1p

Since it is easily seen that

- v-< vT-V---

"¿i w PO ~4'

2 /2 2 1 2

n p2/Pi = exp —^exp [Y,—

j=1 \ j=1pj / \j=1p

~ exp\R) ^ 00 0io^+iogpo])<+o°'

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

one can conclude

This means

lim Bk(t) < Cia(T).

k

lim sup ||0(T)||L (n) < Cia(T), o<r<t

or equivalently, (3.16) with CU(T) = 1/Cia(T). □ Lemma 3.5. For any t G [0, T]

t

||VAp(t)||2 +

dVp

dt

(t)

+

9V

dr2

(t)

+

dAp

ÖT

(t)

+ ||A2P(T)||2j dT

< Cir(T). (3.20)

Proof. Differentiate (1.6)1 with respect to t, and multiply it by d2p/dt2. Then by integration by part we have

KT

dt

dVp

<

d2p di2

dt

(t)

(t)

+2

9V di2

(t)

"feir-s

= 2 J lv("3^2 +1 + au)% + +

n

dp ~dt

(t)

2

+2(o||p||w22(n)

du di

(t)

Hence, integrating this over (0, t), we have by virtue of (3.10), (3.12), (3.14) and (3.15)

dVp

dt

(t)

+

d2y dr2

(t )

dT < Cis(T).

From this it easily follows that

|| VAp(t)||2 +

dAp

dT

(t )

+ ||A2p(T)||2 dT < Ci8(T)

by using the equations of (1.6)1 operated by V, d/dt and A. For the last estimate in (3.20) we use the inequality

||Au(T)||2 dT < Ciq(T),

(3.21)

which results from integrating (1.6)2 multiplied by u 2Au over Qt by the help of (3.14)-(3.16). □

oo

2

2

2

2

2

2

t

2

2

t

2

t

Lemma 3.6. For any t G [0, T]

du ~dt

(t)

+

+

dVu

dt

(t)

dVu

dr

+

(r )

1 du d6>e . . .

L2(r)

+

dr2

(r )

2

+

dAu

dr

(t)

+ II A2u(r)

+

1 du u d0e .

+ 2 ' ^

L2(r)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

dr < C20(T). (3.22)

Proof. Recall the following equation derived from differentiating (1.6)2 multiplied by u-2 with respect to t:

1 d 2u dAu 2 M—— + —

i2 dt2

dt

du 0t

-{aip + b)—-al-

dt'

(3.23)

First, multiply (3.23) by du/dt and then integrate it over ft. We get by integration by part and Young's inequality

1 d 2di

1 du u dt

(t)

+M

dVu

dt

(t)

+ 0

1 du u d0e ,

+ 2~dt ' (t)

1 du\ * (, , ^d2p , / dp\2 , d^du «atJ + + +

dt 7 dt

L2(r) 0 i. 2 / d0e

<

1 du\ 3 u*(T )2 u dr J 2

daH— u —— I dr

4 J V dt r

2

2

dt

+

2

1 du u dt

¡3u*(T)2 4~

+

d(9e

dt

L2(r)

From this, together with the interpolation inequality, Lemmas 3.3-3.6, (3.14) and (3.15), it follows

d_

dt

1 du . .

«at(t)

+ C21(T)

+ 2M

<

dVu

dt

(t)

Cu (T )3

du dt

+ 20

(t)

1 du u d0e .

+ 2~dt ' W

du dt

(t)

ay

<9t2

< 5

(t)

du 0t

+

dp at

(t)

(t)

+ C (T)

dp dt

du dt

(t)

(t)

+

+

+

1 du u dt

L2(r) 2

(t)

dg_ dt

(t)

+

1 du u dt

dt

2

(t)

L2 (r)

(t)

+ C21(T)

d2p

dt2

+ C22 (T) (3.24)

with a constant 5 > 0 determined later and C (T) = cC11(T) 6 5 1.

2

2

2

2

d2u

2

2

2

u

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

2

2

2

2

1

2

2

2

2

2

3

2

2

1

4

2

Second, multiply (3.23) by d2u/dt2 and then integrate it over Q. We have by integration by part and Young's inequality

M d ~2 dt

dVu

dt

(t)

+

du

1 d2u u dt2 2

(t)

+

/3 d_ 2 dt

1 du d6>e . , ,

«7*+uaT>(t)

¿2(r)

d2p

dp

dg\ \ d2

1 /du\3 _ „ f d20e du _ t ( dde

dt + —~r /

2 dt J V di

r

vA-dt dT + l3J dt2 dt

<

1 d2u u dt2

+ c£

(t)

+ C23 (T)

1 du u dt

+

L3 (r)

du dt

du dt

+

l4(o) 2

L2 (r)

(ap + b)

92p <9t2

2

+

dp at

+

d20e

dt2

L2 (r)

+

/3 d_ 2 dt,

dr

+

dtfe

'at

<9t

dr.

Like (3.24), due to trace theorem, the interpolation inequality, and Lemmas 3.3-3.6, this inequality yields

M

d_

dt

dVu

dt

(t)

+

< 5'

+ C24 (T)

+

1 d2u u dt2

du dt

+ 0

1 du d(9, u dt

(t)

+ c5'

Wa

du dt

(t)

d2p 2

dt2 +

dp

dt

4

+

1

4

+

1

du dt

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

dp

dt

4

(t)

(t)

+

dt

4

du dt 2

dt

\ 2

r (t)

t L2

du (t)

+ dt

2

№ +

1

+ dt2

du dt 2

(t)

+

/3 d_ 2 dt.

L2 (r)

d^e l~dt~

dr (3.25)

with 5' > 0 is a constant determined later. Here we used

||u|||3(r) < c||u3/2||i||u3/2|| < 5'||u||2 + c5'-1(||Vu||4 + ||u||4). Third, integrating (3.23) multiplied by dAu/dt over Q, one obtains

M

dAu

dt

(t)

<

MCii(T )2

+ C25 (T)

1 d2u u2 dt2

d2p

+

MCn(T )6

dt2

+

dp

dt

+

dVu . (t) 4 +

dp 4 + dg

dt dt

du dt

(t)

. (3.26)

Then, add (3.24), (3.25) and (3.26) multiplied by MCn(T)2/(2c), choose 5 = 5' = M2C11(T)2/(8c) and integrate the resultant inequality with respect to t. Con-

2

2

2

2

2

2

4

2

2

2

1

2

2

3

2

2

2

2

4

2

2

4

2

4

2

c

c

2

4

1

sequently, we conclude thanks to Lemmas 3.1-3.5

1 du u dt

(t)

+ M

Wu

t

+ J I 2M 0

dt

Wu

(t)

(r )

dr

+ 20

+ 0

+

1 du dé>e . . .

¿2(r )

d2u

(r )

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

+

M 2CU(T )2

4c

dAu

dr

(r)

1 du u dé>e \ û~îh + 21h)

¿2(r )

dr

< C26(T) y 0

Then, (3.27) leads to

du

dr

dr + C27(T ) = C26(T )X (t) + C27(T ). (3.27)

d_

dt

X(t) < 2C28(T)2X(t)2 + 2C29(T)2

(3.28)

where C28(T) = C26(T)/ min{u*(T)-2,M}, C2g(T) = C2r(T)/min{Cu(T)-2,M}. Solving (3.28), we find

X(t) < ^4^tan(2C28(T)C29(T)T) = CW(T). C28 (T )

Therefore the left hand of (3.27) is bounded from above by C26(T)C*0(T) + C2r(T). Finally, recalling

1 du

dp

u2 dt

dt

from (1.6)2, multiplying this by A2u and integrating it over Qt, one get by virtue of (3.21), (3.27) and Lemmas 3.1-3.5

t

J || A2u(r)||2 dr < C31 (T).

(3.29)

Estimates (3.27) and (3.29) lead to (3.22) with C20(T) = C26(T)C30(T) +

C27(T )+ C31(T ). □

Combining Lemmas 3.1-3.6 with Theorem 1.1 implies the existence and uniqueness of the solution in QT for any T > 0 to problem (1.6). Therefore, the assertion of Theorem 1.2 is proved.

2

2

2

2

2

2

2

4

1

REFERENCES

1. Penrose O. and Fife P., "Thermodynamically consistent model of phase field type for kinetics of phase transitions," Phys. D, 43, 44-62 (1990).

2. Horn W., Laurençot Ph., and Sprekels J., "Global solutions to Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature," Math. Meth. Appl. Sci., 19, 1053-1072 (1996).

3. Penrose O. and Fife P., "On the relation between the standard phase field model and a 'thermo-dynamically consistent' phase field model," Phys. D, 69, 107—113 (1993).

4. Van der Waals J. D., On the continuity of the liquid and gaseous states, PhD Thes., Univ. Leiden, Netherlands (1873).

5. Van der Waals J. D., "The thermodynamic theory of capillarity under the hypothesis of a continuous variation in density," Verhandel. Konink. Akad. Weten. Amsterdam, 1 (1893).

6. Landau L. D., "On the theory of phase transitions. I," Zhurn. Eksp. Teor. Fiz., 7, 19—32 (1937); II, 7, 627-633 (1937).

7. Devonshire A. F., "Theory of ferroelectrics," Adv. Phys., 3, 85-130 (1954).

8. Cahn J. W., "Free energy of a uniform system I. Interfacial energy," J. Chem. Phys., 28, 258-267 (1958).

9. Cahn J. W., "On spinodal decomposition," Acta Metall., 9, 795-801 (1961).

10. Cahn J. W. and Milliard J. F., "Free energy of a nonuniform system I. Interfacial free energy," J. Chem. Phys., 28, 258-267 (1958).

11. Hohenberg P. C. and Halperin B. I., "Theory of dynamic critical phenomena," Rev. Mod. Phys., 49, 435-479 (1977).

12. Langer J. S., "Theory of spinodal decomposition in alloys," Ann. Phys., 65, 53-86 (1971).

13. Brokate M. and Sprekels J., Hysteresis and Phase Transition, Springer (1996) (Appl. Math. Sci.; vol. 121).

14. Caginalp G., "An analysis of a phase field model of a free boundary," Arch. Rat. Mech. Anal., 92, 205-245 (1986).

15. Zheng S., "Global existence for a thermodynamically consistent model of phase-field type," Differ. Integral Equ., 5, 241-253 (1992).

16. Sprekels J. and Zheng S., "Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions," J. Math. Anal. Appl., 176, 200-223 (1993).

17. Zheng S., Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems, Longman (1995) (Pitman Monogr. Surv. Pure Appl. Math.; vol. 76).

18. Colli P. and Laurenfot Ph., "Weak solution to the Penrose-Fife phase field model for a class of admissible flux law," Phys. D, 111, 311-334 (1998).

19. Colli P. and Sprekels J., "Weak solution to some Penrose-Fife phase-field systems with temperature-dependent memory," J. Differ. Equ., 142, 54-77 (1998).

20. Feireisl E. and Schimperna G., "Large time behaviour of solutions to Penrose-Fife phase change models," Math. Meth. Appl. Sci., 28, 2117-2132 (2005).

21. Kenmochi N. and Niezgodka M., "Systems of nonlinear parabolic equations for phase change problems," Adv. Math. Sci. Appl., 3, 89-117 (1993).

22. Laurenfot Ph., "Solutions to a Penrose-Fife model of phase-field type," J. Math. Anal. Appl., 185, 262-274 (1994).

23. Alt H. W. and Pawlow I., "A mathematical model of dynamics of non-isothermal phase equation," Phys. D, 59, 389-416 (1992).

24. Wloka J., Partielle Differentialgleichungen, B. G. Teubner (1982).

25. Solonnikov V. A., "On boundary value problems for linear parabolic systems of differential equations of general form," Proc. Steklov Inst. Math., 83, 1-184 (1965).

26. Tanaka N. and Tani A., "Surface waves for compressible viscous fluid," J. Math. Fluid Mech., 5, 303-363 (2003).

27. Ladyzenskaja O. A., Solonnikov V. A., and Ural'ceva N. N., Linear and Quasi-Linear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).

Submitted April 4, 2021 Revised February 18, 2022 Accepted February 28, 2022

Atusi Tani

Department of Mathematics, Keio University 3-14-1 Hiyoshi, Yokohama 223-8522, Japan tani@math.keio.ac.jp

i Надоели баннеры? Вы всегда можете отключить рекламу.