URAL MATHEMATICAL JOURNAL, Vol. 6, No. 1, 2020, pp. 137-146
DOI: 10.15826/umj.2020.1.011
ON GENERALIZED EIGHTH ORDER MOCK THETA FUNCTIONS
Pramod Kumar Rawat
University of Lucknow, Lucknow 226007, India [email protected]
Abstract: In this paper we have generalized eighth order mock theta functions, recently introduced by Gordon and MacIntosh involving four independent variables. The idea of generalizing was to have four extra parameters, which on specializing give known functions and thus these results hold for those known functions. We have represented these generalized functions as q-integral. Thus on specializing we have the classical mock theta functions represented as q-integral. The same is true for the multibasic expansion given.
Keywords: q-Hypergeometric Series, Mock Theta functions, Continued Fractions, q-Integrals.
1. Introduction
The last gift to mathematics by Ramanujan was mock theta functions. In his last letter to Hardy [5], Ramanujan introduced 17 functions and called them mock theta functions as they were not theta functions and classified them as 4 functions of third order, 10 functions of fifth order and 3 functions of seventh order though Ramanujan did not say what he meant by "order" of mock theta function. Later Watson [12] introduced 3 more mock theta functions of third order. Gordon and Mcintosh [7] gave eight more mock theta functions and called them of eighth order. Andrews and Hickerson [3] said the "order" is connected with combinatorics interpretation. Andrews [1] generalized five third order mock theta functions. Srivastava [11] generalized eighth order mock theta function. Recently Choi [4] also generalized mock theta functions of third, fifth, sixth, seventh and tenth order.
Motivated by Andrews' generalization of five of seven third order mock theta functions and Choi's generalization, we have tried to generalize the eighth order mock theta functions by introducing four independent variables. The advantage is that by specializing the parameters we can have known functions.
In this paper we have represented these generalized functions as q-integral and we have also given the multibasic expansion. Thus we have on specializing the parameters, the classical mock theta functions representation as q-integral and the multibasic expansion for generalized functions reduced to classical mock theta function of eighth order.
2. Definitions and notations
The eighth order mock theta functions of Gordon and Mclntosh [7] are
= Sl(g) = f; """'+2>(-g-g2>'
^ (-q2; q2)n (-q2; q2)n
n=0 v ^ '^ "" n=0
^ (n+1)(n+
q(n+1)(n+2) ( q2; q2) ^ qn2+n( q2; q2)
To{d) = Y.q—(—t1^ TM = E ( I
n=0 (-q; q2)n+1 n=0 (-q; q2)n+1
qn2 ( q; q2) q(n+1)2 ( q2)
TT / \ V^ q ( —q q )n TT f N V^ q q /n
rw,)=r 1(,)=£ '
qn2 ( .... q2) q2n2 ( ...2. q4)
to ¿i
^ (q-,q2)n+i (<?;<?2)2n+2 '
n=0 ^ "+1 n=0
where
(a; qk)n ^(1 - aqk(j-1)), (a; qk= [](1 - aqk(j-1)), and (a; qk)o = 1.
j=i j=1 3. Generalized eighth order mock theta functions
The four variable generalization of the eighth order mock theta functions are
R , 1 t)nq"+nl3(-zq]q2)
rp /, O \ 1 ^ (¿)rag»3+3n+2-n+ra/3(_ 2/a 2)
n=0
«,(., a, ft t; 9) = ^ £--
tru a \ 1 i 1 v^ (t)nqn2 n+nl(-zq;q2)nan V0(t, a,f3,z;q) = -l + — ^-j—^-
ray \ ^HiH )n<-
n
n
(aq; q2)n
* = s ——
Tl(i'a'* = (ijl S (-«A^W^i
(i'* = mz S —H^tw—'
Vl(t, a, /J, z; q) = J— ^--
(t)~ ^ (aq; q )n+1
For t = 0, a = 1, ft = 1 and z = 1 these functions reduce to classical mock theta functions.
4. Relation between generalized eighth order mock theta functions
The differential operator Dq [8] is defined as
zDq,zF(z, a) = F(z, a) — F(zq, a).
By using the differential operator we shall connect the generalized eighth order mock theta functions.
n
Proposition 1. The following is true:
(i) Dq2 tS0(t, a, fl, z; q) = S1(t, a, fl, z; q),
(ii) q2D2,tT1(t,a,fl,z; q) = T)(t, z, a, fl, z; q).
Proof. Proof of (i):
+ n au a 1 ^ (t)nqn2-n+n^(-zq; q2)nan 1 ^ (tq)nqn2-n+n^(-zq; q2)nan
tDq,tS0(t, a, ft, Z] g)-— ^ — ^
1 1 A (t)nqn2-n+n^-zq-,q2)no^ n
(-aq2; q2)« (t)~ (-aq2; q2)
i Y^{t)nqn2+nß{-zq]q2)nan
(t)^ (-aq2; q2)n
Similarly
DqMt, a, ß, z- q) = — g--
1 (t) qn2+2ra-ra+raß( zq; q2)
1 V^ (t)nq (-zq q )na a „ „ a
=m S--=Sl(ti - A '
which proves (i). Proof of (ii):
1 ^ qra2+2ra-ra+raß ( q2 / q2) n T> (+ a \ 1 V^ q ( — q/a; q )™
n=0
and
D^fi, a, ft t;,) = ^ £ ■
n=0
1 ^ qn2+3n+2-n+n,3(-q2/a; q2)
= — = ft
which proves (ii). □
5. q-Integral representation for the generalized eighth order mock theta
functions
Thomae and Jackson [6, p. 19] defined q-integral
r 1 ^
/ f (t)dqt = (1 - q)£ f (qn)q 0
n=0
using limiting case of q-beta integral, we have
1 (1 - q)-1 Z1
f tx *(tq; t. o
(qx; q)~ (q; q)~ ./0
We now represent these generalized functions as q-integral. By specializing the parameters we have the integral representation for classical mock theta functions.
Theorem 1.
(i) So(qt, a, ft, z.
(ii) To(qt,a,ft,z
(iii) Uo(qt,a,ft,z;
(iv) V0(qt,a,ft,z
(v) S1(qt, a, ft, z.
(vi) T1(qt,a,ft,z
(vii) U1(qt, a, ft, z;
(viii) V1(qt,a,ft,z
(i - q)~
(q; q)« (i - q)"
(q; q)« (i - q)"
(q; q)«
(i - q)
(q; q)« (i - q)"
(q; q)«
(i - q)
(q; q)«
(i - q)
(q; q)«
(i-g)'
(q; q)
u (uq; q)«So(0,a,pu, z; q)dqu,
/ u* 1(uq; q)«To(0,a,pu,z; q)dqu, Jo
u (uq; q)«Uo(0,a,pu, z; q)dqu,
u 1(uq; q)«Vo(0,a,pu, z; q)dqu,
«o
/ u* :(uq; q)«Si(0,a,pu, z; q)dqu, Jo
/ ut-1(uq; q)«T1(0,a,pu, z; q)dqu, o
/ ut-1(uq; q)«U1(0,a,pu, z; q)dqu, o
/ ut-1(uq; q)«V1(0, a,pu, z; q)dqu. o
Proof. A detailed proof for So(ql,a,ft,z; q) is given.The proofs of the other functions are similar, so omitted.
Proof of (i): By definition
S0(t, a, ft, z; q) =
1 ^ (t)nqn2-n+n|(-zq; q2)raan
(t)
n=0
(-aq2; q2)r
Replacing t by q*, we have
(q )«
; q2)nan
n=0
(-aq2; q2)
;q2)n an
n=o
(-aq2; q2)n(qn+t; q)c
qn2-n+n^(-zq]q2)nan (1 -
(q-,q)
-1 1
n=o (-aq2; q2)n
« J0
/ u* 1(uq; q)«dqu, o
1
o
1
o
1
o
but
q (-zq; q )n
« qn2-n+ni3(-zq; q2)nan
So(0,a,f3,z-,q) = ,
^ (-aq2; q2)
n=0
putting qi = p, we have
n
x V- qn2 n{-zq]q2)nanpn
n=0
(1 - q)-1 f 1
S0{qt ,a,ft,z-,q) = —--- / ut~1(uq]q)ooS0(0,a,pu, Z]q)dqu,
(q; q)« JO
which proves (i).
The proof of all the other functions is similar. Taking a = 1, ft = 1 and z = 1 we have the integral representation of the classical eighth order mock theta functions. □
6. Multibasic expansion of generalized eighth order mock theta functions
The following bibasic expansion will be used to give multibasic expansion for the generalized functions.
Theorem 2. The following is true :
(1 — apkqk){l — bpkq~k){a, b]p)k{c, a/bc; q)kqk
ÔI ^ "m+fc
(6.1)
\ - yi - up q - up g )(u,,u,p)k\c,u,/uc,q)kq \ -
¿J (1 - a)(l - b)(q, aq/b; q)k(ap/c, bcp;p)k "m+fc
_ y^ (ap, bp', p)m(cq, aq/bc; q)mqm (q,aq/b]q)m(ap/c,bcp]p)m
P r o o f. Using the summation formula [6, (3.6.7), p. 71] we have
apkqk)( 1 - bpkq~k) (a, b;p)k(c, a/bc; q)k k ^ (1 - a)( 1 - b) (q, aq/b; q)k(ap/c, bcp;p)k
_ (ap,bp;p)n(cq, aq/bc; q)n (q, aq/b; q)n(a,p/c, bcp;p)n
and [9, Lemma 10, p. 57],
EE5 (k,n) = EE b (k,n+k),
n=0fc=0 n=0fc=0
therefore we get the statement of the theorem. □
x n
X X
We will consider the following case of Theorem 2. Case I. Letting q ^ q3 and c ^ to in Theorem 1, we have
x
E-
fc=Q
(1 - apkq3k)( 1 - />//'</ 3fc)(a, b-,p)kq(-3k'2+3k^2 (1 - a)(l - 6)(q3, ag3/6; q3)fc6fc;p(fc2+fc)/2
am+fc
m=Q
E
m=Q
(ap,bp-,p)mq(-3m2+3m)/'2 (q3, aq3/b; q3)m&"Vm2+m)/2
(6.2)
am
Theorem 3. The multibasic hypergeometric expansion of these generalized functions are :
(i) So (t,a, 1, z; q) =
1 ^ (1 - tq4k-1)(1 - k-2fc+2)(i; q)fc-i(-zq; q2)fcqfc2ak
(t)c
E
fc=Q
(1 - qk+2)(-aq2; q2)fc
x 0
(ii) To(t, a, 1, z; q) =
1
q;-zq2fc+1;iq3fc ;q3k+3 qk+3;-aq2k+2:Q ; x ^ . 4fc-l
2 3
q, q2, q3; qa
E
(1 - tq4k-1)(1 - k-2k+2)(t; q)fc-i(-q2/a; q2)fcqk2+3k+2ak
x 0
(t)x k=Q (1 - qk+2)(-q/z; q2)fc+izk+1
q;-q2fc+2/a;iq3fc ;q3fc+3_ qk+3;-q2k+2/z:Q ; x
; q, q2, q3; q4a
(iii) UQ (t,a, 1,z; q) =
1 ^ (1 - tq4k-1)(1 - k-2k+2)(t; q)fc-i(-zq; q2)fcqfc2akz2k
(t)c
E
fc=Q
(1 - qk+2)(-aq4; q4)fc
x 0
q;-zq2fc+1;iq3fc ,q3fc+3;Q 2 3 4 2
qk+3:Q;Q;-«q4fc+4 ; ;q,q ,q ,q ;z qa
v = + --
X $
q-_zq2k + 1-tq3k q3k + 3 2 3 2
qk+3^_aq5!fc+i:o ; q,q ,q; qaz
1 ^ (1 -¿^-^(l - fc-2fe+2)(f;g)fe-i(-^;g2)fegfe3+2feafe (V) Sl(i,a,Mi?)=(^i-(1 — gk+2)(—ag2] g2)k-
x $
q-_zq2fc+1-tq3fc ,q3k+3 _ ^ ^2 ^,3.^,3 q
fc+3:_aq2fc+2:o ; q,q ,q; q a
rvn T d ™ \ ^-tciik-l)ii-k-2k+2){t]q)k.l{-q2/a]g2)kgk2+kak
(t)« ^ (1 - qk+2)(-q/z; q2)fc+1zk+1
x $
q-_q2fc+2/a-tq3fc „3fc+3 2 3 2 _1
qfc+3-_q2k+3/z:o ;q,q ,q ;qz a
t .. , 1 ^ (1 -tg^jl -k-2k+2)(t-,q)k.1(-zq-,q2Wk+^akz2k (VU) -(1 -g^-ag2^-
X $
q-_zq2k+1-tq3k ,q3fc+3 2 3 4 3 2 qfc+3-o-o-_aq4k+6:o ; q,q ,q ,q ; q z a
(V111) -(1 - gk+2)(ag] g2)fc+i-
X$
q-_zq2k+1-tq3k,q3k+3; q q2 q3; 3 2a
qfc+3-aq2fc+3:o ; q,q ,q ; q z a
Proof. We shall give the proof of (i) only, for others we will state the value of parameters. Proof of (i): Taking a = t/q, b = q2, p = q and
(g3; g3)m(t; g3)m(~zg] g2)mamgm . am =-———-^—- m (6.2),
f; q)m(-aq2; q2)m
we have
^ (1 - tg^-^j 1 - g-2k+2)(t/g, g2; g)fcgfc3+fc
(! - t/g)^ - g2)(g3,t; gi)kg2k (t; q3)m+fc(q3; q3 Wfc(-zq; q2)m+fcam+kqm+k
oo
¿J, (gi-,g)m+k{-ag2]g2)m+k
« (t, q3; q)mqm2+m (q3; q3)m(t; q3)m(-zq; q2)mamqm
m=o (q3,t; q3)mq2m (q3; q)m(-aq2; q2)r
The right hand side is equal to
E
(t, q3; q)mqm (q3; q3)m(t; q3)m(-zq; q2)mamqm
m=o (q3,t; q3)mq2m (q3; q)m(-aq2; q2)
y^ jt] g)m{-zg] g2)mgm2am n ( cxg2] g2)m
m=o
= (t)«So(t,a,ft,z; q).
The left hand side of (6.3) is equal to
^ (1 - ^-^(l - q-2k+2)(t/q, q2; q)kqk2+k (l-i/9)(l"92)(93>i;93)fc92fe
A (t; q3)k(tq3; q3)m(q3; q3)k(q3k+3] q3)m(~zq; q2)k(-zq2k+l] q2)mam+kqm+k ¿0 (q3; q)k(qk+3; q)m(~aq2; q2)k(-aq2k+2; q2)m
= ~ (1 -¿^-^(l - q-2k+2)(t]q)k.1(-zq]q2)kqk2ak (l-9fe+2)(-aç2;ç2)fc
~ (tq3; q3)m(q3k+3; q3)m(-zq2k+1; q2)mamqm
E
(qk+3; q)m(—aq2k+2; q2)
m=0 <x
1 g (1 -^-^(l -k-^rnqh^-zqiq2)^^
(t)x k=0 (1 - qk+2)(-aq2; q2)fc
q.-zq2fc+l.tq3fc ;q3fc+3 2 3
qfc+3;-aq2fc+2:0 ; q,q ,q ; qa
which proves (i).
Proof of (ii): Take a = t/q, b = q2, p = q and
_ (q3; q3)m(t; q3)m(-q2/a; q2)mq4m+2«m . (q3; q)m{-q/z-, q2)m+izm+1 111
Proof of (iii): Take a = t/q, b = q2, p = q and
„ _ (q3; q3)m(t; q3)m(-zq; q2)mqmz2mam
am — /„z.„\ < „„A.„A\ 111
(q3;q)m(-aq4;q4)m Proof of (iv): Take a = t/q, b = q2, p = q and
„ _ (q3; q3)m(t; q3)m(-zq; q2)mqmz2mam
OLm — / o N , o\
(q3; q)m(aq; q2) Proof of (v): Take a = t/q, b = q2, p = q and
(q3; q3)m(t; q3)m(—zq] q2)mq3mam . am =--—^——-^—- m (6.2).
(q3;q)m(-aq2;q2)m Proof of (vi): Take a = t/q, b = q2, p = q and
_ (q3j q3)m{t] q3)m{ — q2/Q; q2)mq2mQm .
(q3; q)m{—q/z] q2)m+izm+l m (b-2j-
Proof of (vii): Take a = t/q, b = q2, p = q and
= (q3; q3)m(i; q3)m(-zq; q2)mq3m+VmQ:m ^ (q3;q)m(-aq2;q4)m+i
Proof of (viii): Take a = t/q, b = q2, p = q and
(q3; q3)m(t; q3)m(-zq; q2)mq3m+1z2mam .
«m =-r-î—-- m (6.2).
(q3; q)m(aq; q2)m+i
By taking a = 1, fi = 1 and z = 1 we have multibasic expansion of classical eighth order mock theta functions.
m
m
7. Special cases and Ramanujan's cubic continued fraction Proposition 2. We have the following special cases
f (—q, —q)
(i) Uo(0, -1,1,1; q) =
(ii) Uo(0,-1,1,1; —q) =
(iii) Uo(0, —1, 3, —1; —q) =
(iv) Uo(0, —1,1, —1; —q) =
q)
f(-q2,-q2) q)
f (—q, —q5)
f (—q3, —q3)
$(-q)
P r o o f. Proof of (i): By definition we have
-t^MZ-' <">
put t = 0, a = -1, ft = 1 and z = 1, therefore we have
=±{-lr^f)'\ (7.2)
n=0
from [10, eq. (A.13), p. 171], we have
M-q) to '
by (7.2) and (7.3), we get which proves (i).
Proof of (ii): Put t = 0, a = -1, ft = 1, z = 1 and replace q = -q in (7.1), we have
n=o (q ; q )n
from [10, eq. (A. 23), p. 172], we have
f{-q2,-q2) _ y^
q) n=o (q4; q4)n
by (7.4) and (7.5), we get which proves (ii).
Proof of (iii): Put t = 0, a = —1, ft = 3, z = —1 and replace q = — q in (7.1), we have
n=0
from [10, eq. (A. 52), p. 175], we have
/(-<?, -q5) v g"3+2ra(-g;g2)n r7 ~
by (7.6) and (7.7), we get
4>(_q) n=0 (q4; q4)n
C/o(0,-l,3,-l;-g) = /(^g)g5), (7.8)
which proves (iii).
Proof of (iv): Put t = 0, a = -1, ft = 1, z = -1 and replace q = -q in (7.1), we have
n=o (q ; q )n
from [10, eq. (A. 53), p. 175], we have
f (-q3, -q3) qn2 (-q; q2)n
^(_q) n=0 (q4; q4)n '
(7.10)
by (7.9) and (7.10), we get
Uo(0,-1,1,-1 -,-Q) = f{/{:/\ (7.11)
which proves (iv). □
Remark 1. Dividing (7.8) by (7.11), we have
Up(0, —1, 3, —1; —g) = f(-q,-q5) = q + q2 q2 + qA q3 + q6 Uo(0, —1,1, —1; —q) f(-q3,~q3) 1+1 + 1 +"'
which is Ramanujan's cubic continued fraction [2, (3.1.6), p. 86].
8. Conclusion
The advantage of the generalization presented in the paper is that by specializing the parameters we can obtain known functions which connects mock theta functions with continued fractions. So the results obtained for mock theta functions are reduced to continued fractions.
Acknowledgement
The author thanks the reviewers for their useful comments and Prof. Bhaskar Srivastava for his guidance.
REFERENCES
1. Andrews G.E. On basic hypergeometric series, mock theta functions and partitions (I). Q. J. Math.., 1966. Vol. 17, No. 2. P. 64-80. DOI: 10.1093/qmath/17.1.64
2. Andrews G.E., Berndt B.C. Ramanujan's Lost Notebook. Part I. New York: Springer-Verlag, 2005. 437 p. DOI: 10.1007/0-387-28124-X
3. Andrews G.E., and Hickerson D. Ramanujan's "lost" notebook VII: The sixth order mock theta functions. Adv. Math., 1991. Vol. 89, No. 1. P. 60-105. DOI: 10.1016/0001-8708(91)90083-J
4. Choi Y.-S. The basic bilateral hypergeometric series and the mock theta functions. Ramanujan J., 2011. Vol. 24. P. 345-386. DOI: 10.1007/s11139-010-9269-7
5. Collected Papers of Srinivasa Ramanujan. Hardy G.H., Seshu Aiyar P.V., Wilson B.M. (eds.) New York: Chelsea Pub. Co., 1962 (©1927). 355 p.
6. Gasper G., Rahman M. Basic Hypergeometric Series. Cambridge: Cambridge University Press, 1990. 276 p.
7. Gordon B., MacIntosh R.J. Some eighth order mock theta functions. J. London Math. Soc., 2000. Vol. 62, No. 2. P. 321-335. DOI: 10.1112/S0024610700008735
8. Jackson F.H. Basic Integration. Q. J. Math., 1951. Vol. 2, No. 1. P. 1-16. DOI: 10.1093/qmath/2.1.1
9. Rainville E. D. Special Function. New York: Chelsea Pub. Co., 1960. 365 p.
10. Sills A. V. An Invitation to the Rogers-Ramanujan Identities. New York: Chapman and Hall/CRC, 2017. 256 p. DOI: 10.1201/9781315151922
11. Srivastava B. A generalization of the eighth order mock theta functions and their multibasic expansion. Saitama Math. J., 2006/2007. Vol. 24. P. 1-13.
12. Watson G.N. The final problem: An account of the mock theta functions. J. London Math. Soc., 1936. Vol. 11. P. 55-80. DOI: 10.1112/jlms/s1-11.1.55