Научная статья на тему 'On λ-convergence almost everywhere of multiple trigonometric Fourier series'

On λ-convergence almost everywhere of multiple trigonometric Fourier series Текст научной статьи по специальности «Математика»

CC BY
85
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Ural Mathematical Journal
Scopus
ВАК
Область наук
Ключевые слова
TRIGONOMETRIC FOURIER SERIES / RECTANGULAR PARTIAL SUMS / CONVERGENCE ALMOST EVERYWHERE

Аннотация научной статьи по математике, автор научной работы — Antonov Nikolay Yu.

We consider one type of convergence of multiple trigonometric Fourier series intermediate between the convergence over cubes and the λ-convergence for λ > 1. The well-known result on the almost everywhere convergence over cubes of Fourier series of functions from the class L(ln+ L)d ln+ ln+ ln+ L([0, 2π)d) has been generalized to the case of the Λ-convergence for some sequences Λ.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On λ-convergence almost everywhere of multiple trigonometric Fourier series»

URAL MATHEMATICAL JOURNAL, Vol. 3, No. 2, 2017

ON A-CONVERGENCE ALMOST EVERYWHERE OF MULTIPLE TRIGONOMETRIC FOURIER SERIES1

N.N. Nikolay Yu. Antonov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences; Ekaterinburg, Russia Nikolai.Antonov@imm.uran.ru

Abstract: We consider one type of convergence of multiple trigonometric Fourier series intermediate between the convergence over cubes and the A-convergence for A > 1. The well-known result on the almost everywhere convergence over cubes of Fourier series of functions from the class L(ln+ L)d ln+ ln+ ln+ L([0, 2n)d) has been generalized to the case of the A-convergence for some sequences A.

Key words: Trigonometric Fourier series, Rectangular partial sums, Convergence almost everywhere.

Suppose that d is a natural number, Td = [—n, n)d is a d-dimensional torus, and <p: [0, ^ [0, is a nondecreasing function. Let ^>(L)(Td) be the set of all Lebesgue measurable real-valued functions f on the torus Td such that

J <p(\f (t)|)dt <

Td

Let f € L( Td), k = (k1, k2,..., kd) € Zd, x = (x1, x2,..., xd) € Rd, and kx = kV + k2x2 + ... + kdxd. Denote by

Ck = (w//(t,<!"'kl<it

Td

the kth Fourier coefficient of the function f and by

E ckeikx (1)

kezd

the multiple trigonometric Fourier series of the function f.

Let n = (n1,n2,... ,nd) be a vector with nonnegative integer coordinates, and let Sn(f, x) be the nth rectangular partial sum of series (1):

Sn(f, x) = E Ckeikx.

k=(fc1,...,fcd): |kj|<nj, 1<j<d

Denote by mesE the Lebesgue measure of a set E and let ln+ u = ln(u + e), u > 0.

In 1915, in the case d = 1, N.N. Luzin (see [1]) suggested that the trigonometric Fourier series of any function from L2(T) converges almost everywhere. A.N. Kolmogorov [2] constructed an example of a function F € L(T) whose trigonometric series diverges almost everywhere and, later on [3], of a function from L(T) with the Fourier series divergent everywhere on T. L. Carleson [4] proved that Luzin's conjecture is true: if f € L2(T), then the Fourier series of the function f converges almost

1This work was supported by the Russian Science Foundation (project no. 14-11-00702).

everywhere. R. Hunt [5] generalized the statement about the almost everywhere convergence of the Fourier series to the class L(ln+ L)2(T), particularly, to Lp(T) with p > 1. P. Sjolin [6] generalized it to the wider class L(ln+ L)(ln+ ln+ L)(T). In [7], the author showed that the condition f € L(ln+ L)(ln+ ln+ ln+ L)(T) is also sufficient for the almost everywhere convergence of the Fourier series of the function /. At present, the best negative result in this direction belongs to S.V. Konyagin [8]: if a function <p(u) satisfies the condition <p(u) = o(v,\JIn«/ In In«) as u —> +oo, then, in the class <^(L)(T), there exists a function with the Fourier series divergent everywhere on T.

Let us now consider the case d > 2, i.e., the case of multiple Fourier series. Let A > 1. A multiple Fourier series of a function f is called A-convergent at a point x € Td if there exists a limit

lim Sn(f, x)

min{nj :1<j<d}^+<^

considered only for vectors n = (n1, n2,..., nd) such that 1/A < < A, 1 < < d. The

A-convergence is called the convergence over cubes (the convergence over squares for d = 2) in the case A = 1 and the Pringsheim convergence in the case A = i. e., in the case without any restrictions on the relation between coordinates of vectors n.

N.R. Tevzadze [9] proved that, if f € L2(T2), then the Fourier series of the function f converges over cubes almost everywhere. Ch. Fefferman [10] generalized this result to functions from Lp(Td), p > 1, d > 2. P. Sjolin [11] showed that, if a function f is from the class L(ln+ L)d(ln+ ln+ L)(Td), d > 2, then its Fourier series converges over cubes almost everywhere. The author [12] (see also [13]) proved the almost everywhere convergence over cubes of Fourier series of functions from the class L(ln+ L)d(ln+ ln+ ln+ L)(Td). The best current result concerning the divergence over cubes on a set of positive measure of multiple Fourier series of functions from ^>(L)(Td), d > 2, belongs to S.V. Konyagin [14]: for any function <^(u) = o(u(ln u)d-1 lnln u) as u ^ there exists a function F € ^(L)(Td) with the Fourier series divergent over cubes everywhere.

On the other hand, Ch. Fefferman [15] constructed an example of a continuous function of two variables, i. e., a function from C(T2) whose Fourier series diverges in the Pringsheim sense everywhere on T2. M. Bakhbukh and E.M. Nikishin [16] proved that there exists F € C(T2) such that its modulus of continuity satisfies the condition w(F, ¿) = O (ln-1 (1/^)) as 5 ^ +0 and its Fourier series diverges in the Pringsheim sense almost everywhere. A.N. Bakhvalov [17] established that, for m € N and any A > 1, there is a function F € C(T2m) such that the Fourier series of F is A-divergent everywhere and the modulus of continuity of F satisfies the condition

w(F, 5) = O (ln-m(1/5)) , 5 ^ +0. (2)

Later on, Bakhvalov [18] proved the existence of a function F € C(T2m) satisfying condition (2) and such that its Fourier series is A-divergent for all A > 1 simultaneously.

Let A = {Av}^L1 be a nonincreasing sequence of positive numbers. Assume that

( 1 ni

Qa = \ n = (nl,n2,.. .,nd) € Nd :-— < — < 1 + \nj, 1 < i,j < d

\ i + xni ~ ni ~ nJ'

We will say that a multiple Fourier series of a function f € L(Td) is A-convergent at a point x € Td if there exists a limit

lim Sn(f, x).

nSHA, min{nj:1<j<d

Let us note that, if Av = A — 1 for some A > 1, then the condition of A-convergence turns into the condition of A-convergence defined above. And if Av ^ 0 as v ^ ro, then the condition of A-convergence is weaker than the condition of A-convergence for any A > 1.

The author proved [19] that, if a sequence A = {\v}^=1 satisfies the condition ln2 \v = o(ln v) as v —y to, then there exists a function F € C(T2) such that its Fourier series is A-divergent almost everywhere on T2.

In the present paper, we obtain the following statement that strengthens the result of [12].

Theorem 1. Assume that a nonincreasing sequence of positive numbers A = {Av }^=1 satisfies the condition

A„ = o(I) (3)

and a function <p: [0, +to) — [0, +to) is convex on [0, +to) and such that ^>(0) = 0, ^>(u)u-1 increases on [u0, +to), and (p(u)u-1-6 decreases on [u0, +to) for some u0 > 0 and any 5 > 0. Assume that the trigonometric Fourier series of any function g € f(L)(T) converges almost everywhere on T. Then, for any d > 2, the Fourier series of any function f from the class ^>(L)(ln+ L)d-1(Td) is A-convergent almost everywhere on Td.

Theorem 1 and the result of paper [7] imply the following statement.

Theorem 2. Let a nonincreasing sequence of positive numbers A = {Av}^=1 satisfy condition (3), d > 2. Then the Fourier series of any function f from the class

L(ln+ L)d(ln+ ln+ ln+ L)(Td)

is A-convergent almost everywhere on Td.

Proof of Theorem 1. Let a sequence A = {Av}^=1 and a function tp satisfy the conditions of the theorem. Let ^>d(u) = ^>(u)(ln+ u)d-1 for short. Without loss of generality, we can consider only functions (fid such that the functions (pd,(s/u,) are concave on [0,+oo). Otherwise, we can consider the functions ^>d(u + ad) — bd (with appropriate constants ad and bd) instead of pd. The corresponding class ^>d(L)(Td) will be the same in this case.

Denote by Sn(f, x) the nth cubic partial sum of the Fourier series of the function f:

Sn(f, x) = Sn(f, x), where n = (n, ...,n).

Suppose that

M(f, x) = sup\Sn(f, x)\, neN

MA(f,x) = sup \Sn(f,x)\. nenA

Under the conditions of the theorem (see [12, formula (3.1) and Lemma 3]), there are constants Kd > 0 and yd > 0 such that

mes{x€Td:M(/,x)>y}<^( y^d(|/(x)|)dx + l), y > yd, f £ <pd(L)( Td). (4)

Td

Using (4), we will prove that, for every y > yd and f € pd(L)(Td),

mes{x€Td:MA(/,x)>y}<^ j ^d(|/(x)|) dx + l) (5)

Td

and, for every f € ^>d+1(L)(Td),

J MA(/, x)dx < Bd( J (x)|) dx + 1^ , (6)

where Ad is independent of / and y; Bd is independent of /.

The proof is by induction on d. Consider the base case, i. e., d =1: statement (5) immediately follows from (4) because M(/, x) = Ma(/, x) in the one-dimensional case. Similarly, (6) is a consequence of [5, Theorem 2].

Let d > 2. Suppose that statements (5) and (6) hold for d — 1 and let us show that the same is true for d.

First, let us prove the validity of (5). Let n = (n1,«2,... , nd) € Qa. According to (3), there is an absolute constant C > 0 such that Avv < C for all natural numbers v. Combining this with the definition of Qa, we obtain that, for all i, j € {1,2,..., d},

|n - nj |< C. (7)

Recall that, if n = (n1,«2,... , nd), then the following representation holds for the nth rectangular partial sum of the Fourier series of the function /:

1 f d

>',,(/• x) 37 /II i/?)-/'i-r' ' ......' /'î'//' ••• dtd, (8)

Td j = 1

where Dn(t) = sin((n + 1/2)t)/(2sin(t/2)) is the one-dimensional Dirichlet kernel of order n. Let

d

us add to and subtract from the d-dimensional Dirichlet kernel H Dnj (tj) of order n the sum

j=i

d / k d E ll Dm (tj ) II Dnj (tj )

k=2 ^ j=1 j=k+i

(here and in what follows, we suppose that all products n with an upper index less than a lower one are equal to 1). Rearranging the terms, we obtain

d d—1 / k d k+1 d ■> d

riDnj (tj ) = E( IlDni (tj ) U Dn> (tj ) -n D„1 (tj ) [] D„j (tj )]+[] D„1 (tj ) = j=1 k=1 ^ j=1 j=k+1 j=1 j=k+2 ' j=1 d ✓ k— 1 d ■> d

= E ( II Dni(tj) Ü Dnj (tj) (Dnk(tk) - Dni(tk)) ) + Ü Dni(tj). k=2 ^ j=1 j=k+1 ' j=1

From this and (8), it follows that

d / k—1 d Sn(f^) = Y,-d / (II Dn^j) II Dn](tn{Dnk(tk)-D.,Atk)) ix k=2 ^ Td j=1 j=k+1

d

:f{xl + i1,..., xd + td) dt1... dtd + y fj £)„i (i^) /(x1 + t1,...,xd + td)dt1... dtd

Td j=1

d 1 f

Ep J (Dn* (tk) - Dni(tk) ]x

k—1 d >. / r[Dni (tj) n Dnj (tj )f (x1 +i1,...,xd+id) dt1 ...dik—1dtk+1 ...didJ dtk+Sni (f, x). Td-i j=1 j=k+1

(9)

Note that the latter term on the right hand side of (9) is the n1th cubic partial sum of the Fourier series of the function f. By (7), for all k € {2,3,..., d} and t € T, we have \Dnk(t) — Dni(t)\ < C. Combining this with (9), we obtain

d

k—1 d

k=2 t Td-i j^1 j=k+1

xf (x1 +11,..., xk—1 + tk—1, tk, xk+1 + tk+1,..., xd + td) dt1... dtk—1dtk+1... dtd

dtk + \Sni (f, x)\.

Applying the definitions of MA(f, x) and M(f, x), from the latter estimate, we obtain

d a j A k 1 d

Ma(/,x)<M(/,x) + -E / sup — / n^^') II

n uo-J n= (ni ,n2, ••• ,nd)eHA n J „•_ i.,1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

-i j=1 j=k+1

dtk = (10)

T Td-i

xf (x1 +11,..., xk—1 + tk—1, tk, xk+1 + tk+1,..., xd + td) dt1... dtk—1dtk+1... dtd

Cd

= M(/,x) + -VMfc(/,x), n z—' k=2

where Mk(f, x) denotes the kth term of the sum on the left hand side of the equality in (10). Let k € {2,3,... ,d}. Consider Mk(f, x). Denote by gk,tk the function of d — 1 variables that can be obtained from the function f by fixing the kth variable tk:

gk,tk(t1,...,tk—1,tk+1,...,td) = f(t1,...,tk—1,tk,tk+1,...,td), (t1,...,tk—1,tk+1,...,td) € Td—1.

Define QA as the set of mk = (m1,..., mk—1, mk+1,..., md) € Nd—1 such that m = (m1,..., md) € Qa. Note that, in view of the invariance of Qa with respect to a rearrangement of variables, the set QA is independent of k. Suppose that n'k = (n1,..., n1, nk+1,..., nd) € Nd—1. Then

k—1 d t / IlA^) n n<> i/?)x

nd—

Td-i

-i j=1 j=k+1

xf (x1 +11,..., xk—1 + tk—1, tk, xk+1 + tk+1,..., xd + td) dt1... dtk—1dtk+1. . . dtd =

and

dxk.

= Snk (gMk, (x1 ,...,xfc-1,xfc+1,...,xd))

Mfc (/, x)=/ sup Snk (gKxk, (x1 ,...,xfc-1,xfc+1,...,xd))

J nken' k v '

Further,

me^ x € Td : Mk (/, x) > y} = 2n me^(x1,...,xk-1,xfc+1,...,xd) € Td-1 : Mk (/, x) > y} <

2n f

< — / Mk(f, x) dx1... dxk~1dxk+1... dxd =

1

Sn'k (gfc,xk , (x , • • • , x , x + , . . . , x ^

pd-1

2n f

- / sup

y J n', en'

Td

/ sup ^(fiffe^fc ^a;1,...,^ \xfc+1,...,xd))

T Td-1

dx =

dx ... dx : 1dxk+1... dxd | dxk

(11)

From this, applying the induction hypothesis (more precisely, statement (6) for the dimension d — 1) to the inner integral on the right hand part of (11), we obtain

mes jx g Td : .1//,(/. x) > y} < y j i j <£d(|/(x)|) dx1... dx^dx^1... dxd + l) dxfc <

pd-1

<

(27r)2Bd_1

y

Pd(|/(x)|) dx + 1

Td

(12)

According to (10),

{x g Td : MA(/,x) > y} c {x g Td : M(/,x) > |} |J ( |J {x g Td : .\/,i/.x) > ^J^}) •

k=2 (13)

Combining (13), (4) and (12), we obtain (5) with the constant Ad = 2Kd + 8n(d — 1)2Bd-^.

Now, we only need to prove the validity of statement (6). To this end, let us use statement (5) proved above.

From (5), it follows that the majorant Ma(/, x) is finite almost everywhere on Td for all / € ^>d(L)(Td), in particular, for all / € L2(Td). Applying Stein's theorem on limits of sequences of operators [20, Theorem 1], we see that the operator Ma(/, ■) is of weak type (2,2), i.e., there is a constant Ad > 0 such that, for all y > 0 and / € L2(Td),

mes jx g Td : M\(f, x) > y j < ^ J |/(x)|2dx

Td

(14)

Similarly, from [20, Theorem 3], we can obtain the following refinement of statement (5): there is a constant Ad > 0 such that, for all y > yd/2 = Ad and / € ^>d(L)(Td),

mes {x g Td : MA(/,x) > y} < J <pd (^y^j < ^ J ^(|/(x)|) dx. (15)

Further, let f € ^>d(L)(Td) and y > 0. Suppose that

if(x), \f(x)\ >y,

g(x) = gy(x) = s h(x) = (x) = f (x) — g(x).

\f(x)\ < y;

Define A/(y) = mes {x € Td : MA(f, x) > y}. Then A/(y) < me^x € Td : MA(g,x) > y/2} + me^x € Td : MA(h,x) > y/2} = Ag(y/2) + Afc(y/2). From this, using the equality

MA(f, x) dx = —J ydA/(y) = J A/ (y) dy

Td 0 0

(see, for example, [21, Chapter 1, § 13, formula (13.6)]), we obtain

oo oo o

I MA(/,x) dx<yd(2vr)d + J Xf(y)dy<yd(^)d + f Afl(|) dy + J A„ (|) dy. (16)

Td Sd Sd Sd

Taking into account that g € ^>d(L)(Td) and h € Lo(Td) c L2(Td) and applying estimate (15) to Ag(y/2) and estimate (14) to Ah(y/2), from (16), we obtain

J M\(f, x) dx<yd(27r)d + 2Ad yYi J <pd(\g(t)\)dt\dy + 4AlJ J \h(t)\2 dt) dy =

Td yd ^ Td Sd ^ Td

= yd(27r)d + 2Adj J M\m\)dt\dy + AAlJ J |/(t)|2dtW

Sd ^ {teTd |/(t)|>y} ' Sd ^ {teTd |/(t)|<y} '

(17)

Applying Fubibi's theorem to the integrals on the right hand side of (17), we conclude that

, 1/(t)| V

J M\(f,x) dx < 2Ad J <Ai(|/(t)|)l J j)dt+

Td {teTd |/(t)|>Sd} Sd

+ ^2dJ\m\2( j ||]dt+yd(2vr)d,

Td |/(t)|

hence, statement (6) follows easily.

Finally, the A-convergence of the Fourier series of an arbitrary function from the class ^d(L)(Td) can be obtained from (5) by means of standard arguments (see, for example, [12, Lemma 3]). Theorem 1 is proved. □

REFERENCES

1. Luzin N.N. Integral and trigonometric series. Moscow - Leningrad: GITTL. 1951. 550 p. [in Russian]

2. Kolmogoroff A. Une serie de Fourier - Lebesgue divergente preque partout // Fund. math., 1923. Vol. 4. P. 324-328.

3. Kolmogoroff A. Une serie de Fourier - Lebesgue divergente partout // C. r. Acad. sci. Paris, 1926. Vol. 183. P. 1327-1329.

4. Carleson L. On convergence and growth of partial sums of Fourier series // Acta math., 1966. Vol. 116, no. 1-2. P. 135-157. DOI: 10.1007/BF02392815

5. Hunt R.A. On the convergence of Fourier series // Orthogonal expansions and their continuous analogues. SIU Press, Carbondale, Illinois, 1968. P. 235-255.

6. Sjolin P. An inequality of Paley and convergence a.e. of Walsh-Fourier series // Arkiv for mat., 1969. Vol. 7. P. 551-570. DOI: 10.1007/BF02590894

7. Antonov N.Yu. Convergence of Fourier series // East Journal on Approximations, 1996. Vol. 2, no. 2. P. 187-196.

8. Konyagin S.V. On everywhere divergence of trigonometric Fourier series// Sb. Math., 2000. Vol. 191, no. 1. P. 97-120. DOI: 10.1070/SM2000v191n01ABEH000449

9. Tevzadze N.R. The convergence of the double Fourier series of a square integrable function // Soob-shch. AN GSSR, 1970. Vol. 58, no. 2. P. 277-279. [in Russian]

10. Fefferman C. On the convergence of multiple Fourier series // Bull. Amer. Math. Soc., 1971. Vol. 77, no. 5. P. 744-745. DOI: 10.1090/S0002-9904-1971-12793-3

11. Sjolin P. Convergence almost everywhere of ertain singular integrals and multiple Fourier series // Arkiv for mat., 1971. Vol. 9, no. 1. P. 65-90. DOI: 10.1007/BF02383638

12. Antonov N.Yu. Almost everywhere convergence over cubes of multiple trigonometric Fourier series // Izv. Math., 2004. Vol. 68, no. 2, P. 223-241. DOI: 10.1070/IM2004v068n02ABEH000472

13. Antonov N.Yu. On the almost everywhere convergence of sequences of multiple rectangular Fourier sums // Proc. SteklovInst. Math., 2009. Vol. 264, Suppl. 1. P. S1-S18. DOI: 10.1134/S0081543809050010

14. Konyagin S.V. On divergence of trigonometric Fourier series over cubes // Acta Sci. Math. (Szeged), 1995. Vol. 61. P. 305-329.

15. Fefferman C. On the divergence of multiple Fourier series // Bull. Amer. Math. Soc., 1971. Vol. 77, no. 2. P. 191-195. DOI: 10.1090/S0002-9904-1971-12675-7

16. Bakhbukh M., Nikishin E. M. The convergence of the double Fourier series of continuous functions // Siberian Math. Journal, 1973. Vol. 14, no. 6. P. 832-839. DOI: 10.1007/BF00975888

17. Bakhvalov A. N. Divergence everywhere of the Fourier series of continuous functions of several variables // Sb. Math., 1997. Vol. 188, no. 8. P. 1153-1170. DOI: 10.1070/SM1997v188n08ABEH000240.

18. Bakhvalov A. N. A-divergence of the Fourier series of continuous functions of several variables // Mathematical Notes, 2002. Vol. 72, no. 3-4. P. 454-465. DOI: 10.4213/mzm438

19. Antonov N.Yu. On divergence almost everywhere of Fourier series of continuous functions of two variables // Izvestiya of Saratov University. New ser. Ser. Math. Mech. Inform., 2014. Vol. 14, iss. 4, pt. 2. P. 495-502. [in Russian]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

20. Stein E.M. On limits of sequences of operators // Ann. Math., 1961. Vol. 74, no. 1. P. 140-170.

21. Zygmund A. Trigonometric series, vol. 1. New York: Cambridge Univ. Press, 1959. 383 p.

i Надоели баннеры? Вы всегда можете отключить рекламу.