Научная статья на тему 'ON A FAMILY OF CIRCLE HOMEOMOHPHISMS WITH ONE BREAK POINT'

ON A FAMILY OF CIRCLE HOMEOMOHPHISMS WITH ONE BREAK POINT Текст научной статьи по специальности «Математика»

CC BY
3
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
circle homeomorphism / renormalization / rotation number

Аннотация научной статьи по математике, автор научной работы — Karshiboev Kh.K.

In this article, we study a one-parameter family of circle homeomorphisms with one break point. It is proved that in the case of a rational rotation number the number of periodic trajectories does not exceed two.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ON A FAMILY OF CIRCLE HOMEOMOHPHISMS WITH ONE BREAK POINT»

Karshiboev Kh.K., candidate of physical and mathematical sciences associate professor Head of Department of Higher Mathematics

SamIES

ON A FAMILY OF CIRCLE HOMEOMOHPHISMS WITH ONE BREAK

POINT

Abstract. In this article, we study a one-parameter family of circle homeomorphisms with one break point. It is proved that in the case of a rational rotation number the number of periodic trajectories does not exceed two.

Key words: circle homeomorphism, renormalization, rotation number.

Consider a one-parameter family of mappings of the unit circle [1]: Tqx = {f (x, Q)}, x e S1 = [0,1), Q e [0; 1]

where the bracket {•} - denotes the fractional part of the number, and f (x, Q)- satisfies the following conditions:

a) at a fixed Q, f (x; Q) - continuous monotonically increasing function;

b) f (0; 0) = 0, f (x +1; Q) = f (x; Q) +1, for anyone x e R1;

, f (x; Q)

c)JK > const > 0; dQ

d) t0 : [0;1] ^ [0;1] continuous curve;

e) for every fixed Qe [0;1], f (x; Q) > const > 0; for

dx

Vx e S1 \ {t0(Q)}, f (x; Q) e C2+e(Sl \ {t0(Q)}), at some e > 0 and

¿MQhQ) = c(Q)* J. /+(t0(Q), Q)

Let us Pq denote the number of rotations corresponding to, responsible f [2]:

r f (n)(x, Q)

Pq = lim ^-^-

n ^(X n

From the d) - e) conditions it follows that TQ x for each fixed value of the parameter has only one break point t0 (Q). The number c(Q) is called the break

point Tq . Everywhere below we will denote by the f(n) - n st superposition of the function f. It is easy to see that Pq monotonically (not strictly) depends on

p

the parameter Q. Note that each rational p = — corresponds to a non-degenerate

q

p

segment (values Q such that pQ= —, while irrational p corresponds only to Q

q

Let A =

r \

Pi P2

с (0,1) - be the Faria interval of the n - nd level [1]:

qi

1) P2 qi - pq =1

2) All rational numbers inside the interval A have the form kPi + P .

kqi + q

Rational number with minimum denominator is Pi + P2 .

q + ^2

We choose an arbitrary point x0 on the circle and a segment of the

trajectory of this point {xi = TqXq,0 < i < qi + q2). Denote A^ and A(02) segments [x0, xq ] and [xq , x0], respectively. We also denote the images of

these segments under the action of Tq by A(1) and [1]:

a9 = Г A(1)

0

a(72) = T A(2)

The following assertion was proved in [1] and works without any changes

f \

in our situation. Лемма 1. Suppose p(T) e —,P2-

l qi 42

Trajectory segment

ixi = Tqxo,0<i<qi + 42} divides the circle into non-intersecting segments

e 0 < i < 42 and A\-), 0 < j < q1. Denote the constructed partition Ç( A, xo).

v(2)

Let's

put

v = vars 1 ln f ' < да, v = v+1 ln f '(x0 - 0) + ln f '(x0 + 0) | ,

q = max(qi,42), p = max(pi, pj). Consider an arbitrary trajectory yi = TQyo, У0 e ^ such that yi * xo = 0, 0 <i < q2-

Лемма 2. Suppose p(T ) e

or p(T) =

f , ^ Pi + P2 P

qi + q2, q.

- q-i -

^ "v<n f '( уг ) < ev. i=0

f \ v q j

Then

Let An =

f \ Pi P2

be a Farey interval of rank n - [1], and Am,m < n

qi qi

be some Farey interval of rank m containing An. Let p(T) e An. Let's choose An -arbitrary element of partition £(Am, t0) containing An . Let's denote by | A |.

^eMMa 3. Let's put X = (1 + e °) 2 < 1

| An |< constX1 m | Am | An |< constX1. Let the continued fraction expansion of p be of the form

p(f (x, Q)> = p = [kl9k2,...,kn],kn > 2.

q

p

Let's designate I(—) the segment of the value of the parameter Q such that

q

p p

p(Q) = . Fix some Q e I(—) and denote f = fQ, Tf = Tf . For a rational

q q j j q

p

rotation number of p(Q) = —, there always exists at least one periodic trajectory

q

of period q. Let {y(i),0 < i < q -1} be an arbitrary periodic trajectory. Let

[yi,y2] denote the segment formed by the trajectory {y(i),0 < i < q -1} and containing the singular point to. Let's move on to renormalized coordinates:

x = y2 + (yi - y2)*

and define the function corresponding to T q in the renormalized coordinate

system:

f ( z) =

1

yi - y2

[Tj (y2 + (yi - y2z)) - y2], z E[0,1]

Denote by d the renormalized coordinate of the point to :

d = (to - y2)/(y1 -y2)

and define the function Fd (z), z e [0,1] :

Fd (z) =

zc

d (1 - c2) + c2 + z (c -1):

z e [0, d]

d (1 - c2) + zc 2

2 . d(1 - c ) + c + zc(c -1)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

-, z e[d,1]

Theorem 1. There is a constant c3 > 0 such that

f (z) - Fd (z)

< c3^. (1)

C 2([0,]\{d})

Proof. Consider the partition of the circle generated by the trajectory (y(z) ,0 < i < q -1). Denote A0 = [y1,y2], At = Te A0,1 < i < q -1. Obviously

Tq A 0 = A 0. It is not difficult to show [1] that |A^ < const X1,1 < i < q -1. Function f (z) can be represented as a superposition of two functions f and f2

l

<

, corresponding to mappings Te : A0 ^ A1? Tqj 1: A1 ^ Aq = A0. Let us

determine the relative coordinates inside the segments Ai:

* = fi + f - T)yi)z .

Then the functions fi and fi can be written as:

fi( *o) =

1

(ТвУ1 - Тв У 2)

[Тв (У2 + (У1 - У2 )z0 ) - ТвУ2 ]

1

f2(Z1) = -1(ТвУ2 + (ТвУ1 - ТвУ2)z1) - У2]

У1 - У2

Wherein

In [1], it was proved f2( ^1)

f (z) = f2(f1(z)). (2) Mz-

1

1 + z1(M -1)

< constAns (3)

С 2([0,1])

where

q-1 f" (v)

ln M = Z j ^У: /■=1A 2f (У)

(4)

q-1 f " (У) Z j ^У

,=0 A,2 f (У , A 0

j ™ ^У = ln c -j i™ ^У д. 2f '(У) У A. 2f '(У) У

Insofar as

f2( Z1) -

J f™ dy

L 2f'(У) У

< const An, we get

CZ1

1 + z1(c -1)

< const A (5)

С 2([0,1])

It is easy to see that function fi (z0) is close to piecewise linear function fd(z0), where

fd (z0)=

z,

~2-0-, z0 e [0, d]

c 2(1 - d) + d

d(1 - c ) + z0c2

(6)

c 2(1 - d) + d

z0 e [d, 1]

Since |A0 < const A is valid estimate: Using (2)-(6) we obtain (1).

Theorem 1 implies that f (z) is convex at 0 < c < 1 and concave at c > 1

Indeed, by direct calculation it is easy to verify that

d2

Fd(z) > 2c2(1 - c), z ф dпри 0 < c < 1

dz

2

<

Ä.

d2 2

(z) <—-(c -1), z * d npn c > 1.

dz c3

Let's put

N =

11 1 9

ln(-| c - 1|min(- c2))

Ä c3 c3

p

Denote the interval I (—) =

q

^1(P), Q2(P) q q _

Let's put J = [0,1] \ U I( ) • Denote the Lebesgue measure on [0,1] by

p. q

o< P <1 q

We now formulate the main results of our work.

Theorem 2. For all n > N, the following statements are true: p P

(a) if Q = Q1^) or Q = ), then Tq has a unique periodic trajectory q q

of period q;

(c) at Q e

^Q1(P), Q2(P

q

q

there are equal to two periodic trajectories of

period q.

Theorem 3. The Lebesgue measure of the set J is equal to zero, i.e. A( J) = 0.

References:

1. K. M. Khanin and E. B. Vul. Circle Homeomorphisms with weak Discontinuities. Advances in Soviet Mathematics, v. 3, 1991, p. 57-98.

2. I.P. Kornfeld, Ya.G. Sinai, S.V. Fomin. Ergodic theory. -M. Science, 1980.

3. H.K. Karshiboev. Behavior of renormalizations of ergodic mappings of a circle with a break// Uzbek mathematical journal. - Tashkent, 2009. - No. 4. -p.82-95.

i Надоели баннеры? Вы всегда можете отключить рекламу.