Научная статья на тему 'On a certain problem of a singular perturbation of the wave equation'

On a certain problem of a singular perturbation of the wave equation Текст научной статьи по специальности «Математика»

CC BY
48
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
OPTIMAL CONTROL / PERTURBATION METHOD / INTERNAL TRANSITION LAYERS / SINGULAR PERTURBATION / ASYMPTOTIC APPROXIMATIONS

Аннотация научной статьи по математике, автор научной работы — Milogorodskii Aleksandr Andreevich, Berman David, Ming Kang Ni

A complete asymptotic expansion with respect to a small parameter of the solution of a singularly perturbed Cauchy problem with initial jump for a multidimensional hyperbolic equation of the second order degenerating into a linear hyperbolic equation of the first order is constructed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On a certain problem of a singular perturbation of the wave equation»

Milogorodskii Aleksandr Andreevich, East China Normal University, PhD student, Department of Mathematics E-mail: amilogorodskii@mail.ru Berman David, Middle East University, Postdoctoral research assistant, Department of Physics E-mail: haimzilberberg@hotmail.com

Ming Kang Ni, East China Normal University, Professor of Math, Department of Mathematics

Shanghai, China

ON A CERTAIN PROBLEM OF A SINGULAR PERTURBATION OF THE WAVE EQUATION

Abstract: A complete asymptotic expansion with respect to a small parameter of the solution of a singularly perturbed Cauchy problem with initial jump for a multidimensional hyperbolic equation of the second order degenerating into a linear hyperbolic equation of the first order is constructed.

Keywords: optimal control, perturbation method, internal transition layers, singular perturbation, asymptotic approximations.

Introduction singularly perturbed problems for differential equa-

Many applied problems of physics, mechanics, tions with a small parameter for the highest deriva-engineering, chemistry and biology are described tives depend on the parameter both in a regular way

by means of differential equations containing small or large parameters called perturbed equations [1, 627-654; 2, 127-128; 3, 720-730; 4, 10-126]. Depending on the nature of the perturbation, such problems are subdivided into regularly perturbed and singularly perturbed problems. In comparison with regularly perturbed problems, the study of singularly perturbed problems presents a great difficulty. In such problems, the degenerate problem belongs to a different type than the original problem, and difficulties arise in qualitative investigation of the behavior of the solution of a non-degenerate problem. One of the difficult problems in the theory of singularly perturbed problems for differential equations is the construction of asymptotic expansions with respect to a small parameter of solutions for the problems under consideration. The solutions of

and in a singular way.

1. Statement of the problem

Consider the following singularly perturbed hyperbolic equation of the second order:

V

d2V

-AV

= A (t, x )— + v ' dt

\dV +pj(t 'x fe-

ci)

F (t, x ),

where £> 0 - small parameter, x = (x1,x2,...,xn) -n - dimensional vector,

d2V d2v AV = —- +

dx1

+ ... + -

d 2V

dx] dx2n

- Laplace operator.

Necessary to consider the behavior of the solution of equation (1) when s^ 0 with initial conditions

s

dV

V=o = v(x )> £ — = v(x ). (2)

dt t=o

The following conditions must be fulfilled:

1) Functions A(t,x),Bj (t,x), j = l,n,F(t,x) are sufficiently smooth in the domain

D = {(t,x): t > 0,x e Rn}.

2) Functions (p(x), y(x) smoothly enough Rn. 2. Calculation of the initial change

To determine the initial jump [5, 145-171] A(x ) multiply equation (1) by s and t = st. Then from (1), (2)

d2V u .6V —--£ AV = A (ex, x )-+

dT y ' dT

+e

n dV YB (eT,x)-+ F (t, x)

VT=o = v{x ) ^r =v(x ).

or t=o

(3)

From (3) when s = 0

d 2V

d 2 = A (0, x , d t d t

Vt=o = v{x ), ^T =v(x ).

dT t=o

(4)

From (4)

d2V

= A (o, x ^,

dt2 v ; dt

dV,

(5)

V (o, x,s) = ç(x ), — (o, x,s) = y(x ),

then

dV

V(x )

— (t, x ,£) =

dtx ' £

exp I A(o,x)—

Let t = te =-(elns)l£. Then from the expression dV /dt considering the properties 1), 2) when 0

dV —(t ^ x ,£)

dt

< M, M = const > o

(6)

for any bounded subset G e Rn.

Suppose that lim V(te, x ,s) = y(x ) + A(x) for any x e G. Integrating both sides of expression (5) from 0 to ts:

dV

£—(t e, x ,s)-y(x ) = A (0, x )(v (t £, x ,s)-y(x )) .(7)

dt

Passing to the limit in (7) when £ ^ 0 considering (6), for any x e G

v(x)

A(x ) = -

(8)

A (0, x)'

Thus, the initial jump for V defined. Then it is necessary to construct the asymptotics of the solution of problem (1), (2).

3. Construction of the asymptotics of the solution

The asymptotic expansion in the small parameter for the solution of the singularly perturbed problem (1), (2) is considered as the sum

V (t, x ,s) = Vs(t, x) + W£(t, x), (9)

where function V£ (t,x) - the regular part of the as-ymptotics is representable in the form of a series in powers of s

Vs(t, x ) = ^ekVk (t, x), (10)

k >0

function Wk (t,x) - the singular part of the asymptotics is representable in the form of a series in powers of s

W£(T,x) = ^kWk (t, x), (11)

k>0

The regular part of the asymptotics V (t, x) is determined by means of the initial singularly perturbed differential equation (1)

dt2

-AV.

= A (t,x )dVjL +

J

dV,L

+Ypt (t, x ) d

i=1 dx.

dt F (t,x),

(12)

and the singular part of the asymptotics We(r, x) is determined by means of the homogeneous equation corresponding to equation (1) (13):

ôr2 .dW£

-£2AW =

.ÔW

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(13)

\dWF / .....

= A (£t, x I-- + £} Bi (£t, x I

V 1 dt t1'y ; dxt

Substituting the expansions (10), (11) respectively in (12), (13) and expanding the functions A (sr, x ),Bt (sr, x) in the series of degrees s and equating the coefficients for the same powers of £ in both sides of equations (12), (13), obtain a sequence

£

l

of differential equations for determining the coefficients of the expansions (10), (11).

For V0 (t,x) W0(t,x)

dV n dV

A (t,x)-V° + YBt(t,x+ F (t,x) = 0, (14)

dt i=i dxt

d2W , \ dW ° W = A (0,x) 0

Or1

dT

(15)

and for Vk (t, x ), Wk (t, x )

dV n dV

A (t,x+ YB1 (t,x= ®k (t,x), (16)

ox.

dt

i=i

d 2Wk .,n ,owk . . —t = A (0, x )—k + yk (r, x ), dr dT

(17)

where ®k already defined function V (t,x), i < k:

0k (t,x)=dVrL ~*Vk

and function expressed by

W (t, x ), 1 < k :

k-1

^k (T, x ) = -AWk-2 +X

1=0

-1+1

((+1)!

A(()(0, x )dWk -i-i

dT

+

_nk-1 1

+I I ^ }(0, x )

T B(1 )fn ^dWk-1 -1

;=1 1 =0

1!

dx.

To uniquely determine the coefficients of the expansions (10), (11), it is necessary to specify the initial conditions. To determine these conditions, we substitute the expansion (9) with (10), (11) into the initial conditions (2) and equate the coefficients for the same powers of £ in the expressions obtained. Then

W (0,x) = p(x)-V (0,x), (18)

dWn

-(0,x) = w(x),

or

Wk (0,x) = -Vk (0,x),

W (0, x ) = -dV-L (0, x ), k = 1,2,. Or y ' dt y '

(19)

Initial condition for V0(t, x)

V0 (0,x) = p(x) + A(x), (20)

where the initial jump is determined by means of formula (8).

Solution V0(t, x) of (14), (20) is constructed as follows [6, 235-236]. Integration of the equation

(14) is equivalent to integrating the characteristic system:

dV0 _ F(t,x) dx1 _ B1 (t,x) dt A (t, x)' dt A (t, x)'

i \ (21) dxn _ Bn (t, x )

' " dt A (t, x )'

Let

xi _ X1 ((, xi , • • •, xn ) , xn = Xn ( t, xi ,• * * , xn ) ,

v _ y v y - solution

Vo = Vo(t, x°,..., xn0, ç(xQ) + A(x o)) of the system of equations (21), satisfying the condition

Xi (0,xi,- • -,xn ) xi,- • -,Xn (0,xi,- • -,xn ) x„, Vo (xio,..0x0, ty(xo) + A(xo)) = ç(xo) + A(xo).

Then the unique solution Vo(t, x ) of the problem (14), (20) will be written in the form of an implicit formula Vo(t,x) = Vo(t,xo,^(xo) + a(xo)). The system of equations xi = Xi (t,xo),...,xn = Xn (t,x0 ) is uniquely solvable with respect to xo = (x°,..., x°) when t > o. For this it suffices to show that

det ||X (t, x o) = (t, x o)l =

6X,

d(x1 , ■ • - , xn )

sX,

ôx1

dX„

dx0

3X„

(t, x 0 ) 0.

where

dx° dxn

For this consider the system of identities

dX _ B(t, X) dt A(t, X)'

X = (Xi(t,x0),...,Xn (t,xo)), B(f,X) = = (Bi (t, X),..., Bn (t, X)). Differentiating this system by x0,

d dX _^BkA-A*BX i _ 12 n

dt dx0 k=1

A2 dx0 or in matrix form

d dX BA - AB dX

dt dxn

A dxn

(22)

The solution of the matrix equation (22), satisfying the initial condition

will

dX * ,

— (t, x o ) = exP

dx o

from where follows

■BXA - AXB A2

(t, X (t, x o ))dz

j dX , , n det-(t, x 0) ^ 0.

dx 0

Let x0 = x0(t, x) - solution of equationx = X(t, x0), then V,(t,x) = V(t,x0(t,x), @(x0(t,x)) + A(x0(i,x))) gives an explicit formula for solving the problem (14), (20).

Turn to the problem (15), (18). Integrating both sides of equation (15) from 0 to t and taking into account (18), (20) and (8),

dW , ,

n- = A(0,x)W0, W0 (0,x) =

dr

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

= ç(x ) - Vo (o, x ) = -a(x ) =

y(x )

A (0, x)'

The trivial solution of this equation is asymptotically stable when t ^ +00, i. e. lim W0(t,x) = 0 . Then equation implies that

lim W (t, x ) = 0.

dT

Thus, the zeroth approximation V0 (t, x), W0(t, x) constructed.

Turn to the definition Vk(t,x), Wk(t,x),k = 1,2,.... Equation (16) is solved by the method of characteristics. To determine the initial condition for Vk (t,x) consider (19). Suppose that Wk (t,x),dWk(t,x)/ dt limits to zero when t ^ +00. Then integrating both sides of (17) by t from 0 to +<» and considering (19),

dV m

(0,x) = A(0,x)vk (0,x) + JVk (t,x)dt.

Because A (0,x) ^ 0 , then the initial condition

for Vk (t,x):

dV

Vk (o, x ) = -&

^ (o, x )-{ (t, x )dt

A (0, x) ' (23)

Integrating now both sides of equation (17) from 0 to t with considering (19), (23),

dt

(t, x ) = A (o, x )Wk (t, x ) - jVk (t, x )dt, (24)

Wk (0, x ) = -Vk (0, x ). The trivial solution ofthe homogeneous equation corresponding to (24), asymptotically stable with t ^ +00. Thus, the formal expansion (9) for the solution of the original problem (1), (2) is constructed. 4. The validity of asymptotic expansions Defining the terms of the expansions (10), (11) n,n +1 inclusive and denote by Vn (t, x ,s) the corresponding partial sum of the expansion (9),

V (t,x,s) = Vn,£(t, x) + w^x) (25)

where

Vn,£ (t,x) = yskVk(t,x), Wn,s (t,x) = yfkWk (t,x), k=0 k=0 and the coefficients V0(t,x) and W0 (t,x) are uniquely determined from problems (14), (20) and (15), (18), coefficients Vk (t,x) and Wk (t,x) respectively, from problems (16), (23) and (17), (19), and the coefficient Wn+1 (t,x) is uniquely determined from equation (17) under the initial conditions

Wn+1 (t, x ) = o,

dWn+i(o, x) dVn

(o,x). (26)

dr dt

Suppose Rn (t,x,s) = V(t,x,s)- Vn (t,x,e), where

function V(t,x,e) - exact solution of the problem

(1), (2) and function Vn (t,x,e), expressed by the

formula (25),

n n+1

Vn (t,x,e) = YßkVk(t,x) + Y?kWk (t,x). (27)

k=o

k=o

Function Vn (t,x,e) in any characteristic cone Q equations (1) satisfies equation (1) with an accuracy of order sn+1,

dt2

- " V

(t, x ^ - F (t, x ) = Q (sn+1 ).

i=i dxl

- A (t, x)

V dt

(28)

s

The following is valid Theorem Suppose that the

following conditions are satisfied:

A (t, x), Bt (t, x), 1) functions , , . . .

i = 1,n;F(t,x) e Cn (D);

2) p(x),y/(x)^C L2j (Rn), and y/(x)* o; Then problem (1), (2) in Q - characteristic cone of equation (1) has a unique solution V (t, x ,s), which admits the following asymptotic expansion [7, 377-384]:

V (t, x ,s) = YjskVk (t, x )-

k=0

+

yjskWk (t,x) + Rn (t,x,j),

(29)

k=0

where the coefficients Vk (t,x),Wk (t,x),k = o,i,.. .,n are successively determined from problems (16), (23) and (17), (19), and the coefficient Wn+i (t, x) from the task (17), (26), and for the remainder term Rn and Qfor sufficiently small s the estimate

Rn ('•x•£)K,i(Q) =

J-JJ

2

I dt

+

S

2

rdRn

n

Kdxt J

dtdx

(30)

rdR

dt2

- " R

. dR ^ D dR = A—+ > B-+ g

dt v 1 öx

with zero initial conditions

dR,

R(0,x,e) = 0, -—(0,x,e) = 0,

(31)

(32)

where function g = g (t, x ,s) at sufficiently small s in Q has an estimation

g (t, x ,e) = O (n+1). (33)

= O (en+1).

Proof According to the conditions of the theorem, in any characteristic cone Q equation (1) when s* 0 exists [8, 178-179] the unique solution of problem (1), (2), having continuous derivatives appearing in equation (1).

To prove the estimate (30) we subtract from equation (1) the equation (28). Then, taking (27), (29) we obtain an equation for R = Rn (t, x ,s)

Figure 1.

Let Q the characteristic cone of equation (l) with vertex at point H0(t0, x0). Let put the cone Qin the cylinder with the upper and lower bases Гh and Г0, lying respectively on hyperplanes t = 10 and t = 0 and with a lateral surface S, lying on a cylindrical

n 2

hypersurface ^( - x0) = 32, where 3 > 10 - ar-

i=1

bitrary positive number, and Гt - arbitrary section of the cylinder Z hyperplane t e [0,t0 ] = const. Zt -part of the cylinder enclosed between the bases Г0 and Гt.

Multiplying both sides of(3l) by 2( ARt + ^BR )

/

after elementary transformations we obtain the following identity

d

s— dt

A

R +TK + 2TBARXi

-sY—\b1 (R2 + Ri ) + 2ARR

dx L ^ xi ' 1 x

V d

-£ y -

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

¿—I ^

1, j ('*j) dxj

2BtRxRx -BjRXi

(34)

= 2

2

ARt +YBR + 2g ■ ARt + YBR

V 1 / V 1 /

+e(Rt, Rv..., RXn )M ( ,RXi,..., RXn f where the matrix M

2

1=1

Q

£

M =

'A -TPtx,

B, - A.

Bnt - Ax

A -YpiXi

= (m tj )(t,x ).

We integrate the relation (34) by area Zt

d "dt

Rt+YrI + 2YbAK

t / J xt ^^ t t x

t

S (2BRR - BjRl )}dtdx =

t,j((*j) j

= 2{{{( ARt +YBR dxdt-

(35)

/

+ xjjj -(ARt + JBR )dxdt +

zt i

+£{{{(, Rxi,---, Rn )M (r , R^,..., Rn fdxdt.

Zt

Transforming the integral on the left-hand side of (35) by the Ostrogradsky-Gauss formula,

2 ii

rt

A

A

R +?& 1 + 2^BiRtRx

t J t S \

Rt + ÏK + 2^BtRtRx

dx -

i j i

+4f iE(B ( + K ) + 2ARtRXi )]

xi dx +

x - x t0

x — x 0

0 -}ds -

t ,j (t*j )

0

dxdt +

= 2iiil AR+lBiR

zt V t

+2{{{g -(AR, + ZBtRt )dxdt +

Z t

+siH(RtRx ,...,Rx )M(RtRx ,...,Rx )Tdxdt

7 1 n 1 n

(36)

where ds - surface element St, integration into St is produced on the outside of the surface St, determined by the direction of the normal to St:

n — J0, -

0

^, x x o —

0

=(!( - x")x

The integral over r0 on the left-hand side of (36) is equal to zero, since from (32) follows that Rt lr = 0, it remains to show

H ARx2 dx = 0

r0

jj AR2Xi dx = H AR2 dx1 ...dxn =

r0 f

= { + AR2xdxi

V r0

dxi... dx t—idx t+i... dxn.

Integrating by parts of the inner integral gives ¡AR2xdxt = ARRXi-¡R(ARXi) dxt, hence, by (32) obtain that

{{¿ARX. dx = 0.

r0 i=1

Let H = 10 + 28, where 5 any positive number, and y/ (x) e C 2(Rn) such function that 0 <y/ (x) < 1,

\ I 1, II x — x0 II— 10,

W (x) = < v ; [0, I Ix-x0II> t0 +5.

Instead of a function R(t, x ,s) consider the function R = R (t, x ,s) = R(t, x ,s)y/ (x). Obviously,

| R (t, x ,s)in Q ,

R (t, x,s) = •

0 0n Zstde.

Rewriting the equality (36) for function R = R(t,x,e) in the following way [9, 5-12]

'ii

- a(r + ~£r ;.) - 2-£b,r ,R x:

dx

+2iiif ar + tbr x

dxdt =

(37)

= -2ÎÎÎg 'I AR +TBR E

dxdt

i /

-fff(R, R v-, R xn )m (, R V-, R x„ fdxdt.

Zt

From the inequality Xcd <Sc2 + d2 / 5,5>0 and

i \ X i \x

±2g • ARt +YJBtRXi

V

< + 2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

i /

V

AR +ZBR x

i

r

S. t

2

r

2

Z

Then from (37)

- a(r+ZR1 ) - I^bM x

dx< (38)

<

efff((, R v-, R n M (( , R V-, R n )Tdxdt-

+ÎÎÎ dxdt. Z 2

Quadratic form

w ((, rxi )=-a(r2+yrk ) - izbrâ

hence, taking into account the estimate (33)

/('Wife + TR2, )dx = O (2n+1). (42)

rt V i ) Then necessary to prove, that for R(t,x,e) with small s follows

JJJR2dxdt < CJJJR2dxdt, C = const > 0. (43)

Zt Zt

Considering the properties (32), for R in Qfollows

it A2 t

R2 = I jR2dt < t JR2dt.

V o y o Integrating it sequentially first on rt, then on t H = min j inf |a (t, x )|-2B (t, x ) ,inf|A (t, x )|-B j- , from t = const, ^ ^

is positive definite. We denote by

f i \

B = max sup B (t, x )|.

Then

/

W ((, RXi ) R2 + YrR2 . (39)

i /

Quadratic form (R, Rxi,..., R^) M (R, R^,..., R^ f is estimated from above in the following way [10, 181-191]

(R,RV-,Rxn )(R,Rv-,Rxn) ^

(40)

R2 +£r 2

<A

V i /

where

X = (n + 2)m, m = maxsuplm{j(t,x)l.

i ,j q ,

Introducing the notation

dx

J (t)=//(RR2+IR 2

T, V i

and taking into account (39), (40) from (38) t1

e/J (t )<elJ (t )dt + - JJJ"g2dxdt. (41)

0 2 zt

Applying the Bellman- Gronwall lemma to (41), we have

+

Hl^ 2dt <\s ffffifdtdx ds < — ffffifdtdx

Zt 0 | Zt J 2 Zt

From (42) using (43)

{{{R 2dtd,x = O (2n+1). (44)

Zt

From (42), (44)

{{{(Rt2+R2 + £Rx2 )dtdx = O (s2n+1). z, i

For rin q

II Rn (t,x^^(Q) = 1

f \2 = {{{(Rt2 + R2 + ^R2 )dtdx = O(s2n+1). V Q i )

Considering R _ Rn, for number n +1

II Rn+1 (t, x ,^)IU2(Q) = O (L5). (45)

Because

Rn = Rn+1 + (n+1 - V) = Rn+1 + ^ (Vn+1 + Wn+2), then from R2 <2(r2+1 + ((+1 -Vnf) using (45) followed the estimation

II Rn (t,x,e)l^(Q) = O(en+1)

J (t )<{{{g- dxdt ■ e »< 1 {№ dxdt ■ e » ,

2" ï e

References:

1. Mishenko E. F. Asymptotic calculation of periodic solutions of systems of differential equations containing small parameters.- IAN USSR, ser. math., - 1957. -21. - No. 5. - P. 627-654.

r

Q

2. Van Daik M. Perturbation methods in fluid mechanics. - M., Mir, - 1967.

3. Calise A. J. A singular perturbation analysis of optimal aerodynamic and thrust magnitude control. -IEEE Trans. Automat. Control, - 1979. - Vol. 24. - Vol. 5. - P. 720-730.

4. Vasileva A. B., Butuzov V. F. Asymptotic expansions of solutions of singularly perturbed equations. - M.: Science, - 1973. - 242 p.

5. Jager E. M. Singular perturbations of hiperbolice tipe. - Nieuv Arch. Voor Wiskunde (3), 23. - 1975. -P. 145-171.

6. Naife A. H. Perturbation methods. - M.: Mir, - 1976.

7. Kokotovic P. V., Sannuti P. Singular perturbation method for reducing the model order in optimal control design.-IEEE Trans. Automat. Control, - 1968. - Vol. 13. - No. 4. - P. 377-384.

8. Kato T. Perturbation theory of linear operators. - M.: Mir, - 1972.

9. Singular Perturbations in Systems and Control / Ed. M. D. Ardema. International Centre for Mechanical Sciences. Courses and Lectures. № 280. Wien-New York: Springer-Verlag, - 1983.

10. Glizer V. Y. Euclidean space controllability of singularly perturbed linear systems with state delay // Syst. Control. Lett. - 2001. - Vol. 43. - № 3. - P. 181-191.

i Надоели баннеры? Вы всегда можете отключить рекламу.