Научная статья на тему 'Обзор вычислительных систем будущего'

Обзор вычислительных систем будущего Текст научной статьи по специальности «Нанотехнологии»

CC BY
333
116
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Обзор вычислительных систем будущего»

Обзор вычислительных систем будущего

Коцев М.Б., Кисов БД., МТУСИ

В настоящее время, когда каждый новый шаг в совершенствовании полупроводниковых технологий дается со все большим трудом, ученые ищут альтернативные возможности развития вычислительных систем. Естественный интерес ряда исследовательских групп (среди них Оксфордский и Техасский университеты, Массачусетский технологический институт, лаборатории Беркли, Сандия и Рокфеллера) вызвали природные способы хранения и обработки информации в биологических системах. Итогом их изысканий явился (или, точнее, еще только должен явиться) гибрид информационных и молекулярных технологий и биохимии — биокомпьютер. Идут разработки нескольких типов биокомпьютеров, которые базируются на разных биологических процессах. Это в первую очередь находящиеся в стадии разработки ДНК- и клеточные биокомпьютеры.

Квантовые компьютеры

Квантовый компьютер будет состоять из компонентов субатомного размера и работать по принципам квантовой механики. Квантовый мир обладает странными свойствами: объекты в нем могут занимать несколько положений одновременно. Но именно эта странность и открывает новые возможности.

Например, один квантовый бит может принимать несколько значений одновременно, т. е. находиться сразу в состояниях "включено", "выключено" и в переходном состоянии. 32 таких бита, называемых q-битами, могут образовать свыше 4 млрд. комбинаций — вот истинный пример массово-параллельного компьютера. Однако, чтобы q-биты работали в квантовом устройстве, они должны взаимодействовать между собой. Пока ученым удалось связать друг с другом только три электрона.

Уже есть несколько действующих квантовых компонентов — как запоминающих, так и логических. Теоретически квантовые компьютеры могут состоять из атомов, молекул, атомных частиц или "псевдоатомов" — искусственно созданных ячеек для "отлова" электронов. Ряд таких ячеек может служить проводником электронов, так как новые электроны будут выталкивать предыдущие в соседние ячейки. Компьютеру, построенному из таких элементов, не потребуется непрерывной подачи энергии! Однажды занесенные в него электроны больше не покинут систему.

Насколько близко мы подошли к действующему квантовому компьютеру? Прежде всего необходимо создать элементы проводников, памяти и логики. Кроме того, эти простые элементы нужно заставить взаимодействовать друг с другом. Наконец, нужно выстроить узлы в полноценные функциональные чипы и научиться тиражировать их. По оценкам ученых, прототипы таких компьютеров могут появиться уже в 2009 г., а в 2010-2020 гг. должно начаться их массовое производство.

Оптические компьютеры

По сравнению с тем, что обещают молекулярные или биологические компьютеры, оптические ПК могут показаться не очень впечатляющими. Однако ввиду того, что оптоволокно стало предпочтительным материалом для широкополосной связи, всем традиционным кремниевым устройствам, чтобы передать информацию на расстояние нескольких миль, приходится каждый раз преобразовывать

электрические сигналы в световые и обратно.

Целиком оптические компьютеры появятся через десятилетия, но работа в этом направлении идет сразу на нескольких фронтах. Например, ученые из университета Торонто создали молекулы жидких кристаллов, управляющие светом в фотонном кристалле на базе кремния. Они считают возможным создание оптических ключей и проводников, способных выполнять все функции электронных компьютеров.

Однако прежде чем оптические компьютеры станут массовым продуктом, на оптические компоненты, вероятно, перейдет вся система связи — вплоть до "последней мили" на участке до дома или офиса. В ближайшие 15 лет оптические коммутаторы, повторители, усилители и кабели заменят электрические компоненты.

Биокомпьютеры

Применение в вычислительной технике биологических материалов позволит со временем уменьшить компьютеры до размеров живой клетки. Пока это чашка Петри, наполненная спиралями ДНК, или нейроны, взятые у пиявки и подсоединенные к электрическим проводам. По существу, наши собственные клетки — это не что иное, как биомашины молекулярного размера, а примером биокомпьютера, конечно, служит наш мозг:

Ихуд Шапиро из Вейцмановского института естественных наук соорудил пластмассовую модель биологического компьютера высотой 30 см. Если бы это устройство состояло из настоящих биологических молекул, его размер был бы равен размеру одного из компонентов клетки — 0,000025 мм.

Билл Дитто из Технологического института штата Джорджия провел интересный эксперимент, подсоединив микродатчики к нескольким нейронам пиявки. Он обнаружил, что, в зависимости от входного сигнала, нейроны образуют новые взаимосвязи. Вероятно, биологические компьютеры, состоящие из нейроподобных элементов, в отличие от кремниевых устройств, смогут искать нужные решения посредством самопрограммирования. Дитто намерен использовать результаты своей работы для создания мозга роботов.

Молекулярные компьютеры

Недавно компания Hewlett-Packard объявила о первых успехах в изготовлении компонентов, из которых могут быть построены мощные молекулярные компьютеры. Ученые из НР и Калифорнийского университета в Лос-Анджелесе объявили о том, что им удалось заставить молекулы ротаксана переходить из одного состояния в другое — по существу, это означает создание молекулярного элемента памяти.

Следующим шагом должно стать изготовление логических ключей, способных выполнять функции И, ИЛИ и НЕ. Весь такой компьютер может состоять из слоя проводников, проложенных в одном направлении, слоя молекул ротаксана и слоя проводников, направленных в обратную сторону. Конфигурация компонентов, состоящих из необходимого числа ячеек памяти и логических ключей, создается электронным способом. По оценкам ученых НР подобный компьютер будет в 100 млрд. раз экономичнее современных микропроцессоров, занимая во много раз меньше места.

Сама идея этих логических элементов не является революционной: кремниевые микросхемы содержат миллиарды точно таких же. Но преимущества в потребляемой энергии и размерах способны сделать компьютеры вездесущими. Молекулярный компьютер раз-

мером с песчинку может содержать миллиарды молекул. А если научиться делать компьютеры не трехслойными, а трехмерными, преодолев ограничения процесса плоской литографии, применяемого для изготовления микропроцессоров сегодня, преимущества станут еще больше. Первые опыты с молекулярными устройствами еще не гарантируют появления таких компьютеров, однако массовое производство действующего молекулярного компьютера вполне может начаться между 2009 и 2015 гг.

ДН К-компьютеры

Как известно, в живых клетках генетическая информация закодирована в молекуле ДНК (дезоксирибонуклеиновой кислоты). ДНК

— это полимер, состоящий из субъединиц, называемых нуклеотидами. Нуклеотид представляет собой комбинацию сахара (дезоксири-бозы), фосфата и одного из четырех входящих в состав ДНК азотистых оснований: аденина (А), тимина (Т), гуанина ^) и цитозина (С). Молекула ДНК образует спираль, состоящую из двух цепей, объединенных водородными связями. При этом основание А одной цепи может соединяться водородными связями только с основанием Т другой цепи, а основание G — только с основанием С. То есть, имея одну из цепей ДНК, всегда можно восстановить строение второй. Благодаря этому фундаментальному свойству ДНК, получившему название комплементарности, генетическая информация может точно копироваться и передаваться от материнских клеток к дочерним. Репликация молекулы ДНК происходит за счет работы специального фермента ДНК — полимеразы. Этот фермент скользит вдоль ДНК и синтезирует на ее основе новую молекулу, в которой все основания заменены на соответствующие парные. Причем фермент начинает работать только, если к ДНК прикрепился коротенький кусочек

— затравка (праймер). В клетках существует также родственная молекуле ДНК молекула матричной рибонуклеиновой кислоты (РНК). Она синтезируется специальным ферментом, использующим в качестве образца одну из цепей ДНК, и комплементарна ей. Именно на молекуле РНК в клетке, как на матрице, с помощью специальных ферментов и вспомогательных факторов происходит синтез белков. Молекула РНК химически устойчивее, чем ДНК, поэтому экспериментаторам с ней работать удобнее. Последовательность нуклеотидов в цепи ДНК/РНК определяет генетический код. Единицей генетического кода — кодоном — является последовательность из трех нуклеотидов.

Ученые решили попытаться по примеру природы использовать молекулы ДНК для хранения и обработки данных в биокомпьютерах. Первым из них был Леонард Эдлмен из Университета Южной Калифорнии [4], сумевший решить задачу гамильтонова пути. Суть ее в том, чтобы найти маршрут движения с заданными точками старта и финиша между несколькими городами (в данном случае семью), в каждом из которых разрешается побывать только один раз. "Дорожная сеть" представляет собой однонаправленный граф. Эта задача решается прямым перебором, однако при увеличении числа городов сложность ее возрастает экспоненциально. Каждый город Эдлмен идентифицировал уникальной последовательностью из 20 нуклеотидов. Тогда путь между любыми двумя городами будет состоять из второй половины кодирующей последовательности для точки старта и первой половины кодирующей последовательности для точки финиша (молекула ДНК, как и вектор, имеет направление). Синтезировать такие последовательности современная молекулярная аппаратура позволяет очень быстро. В итоге последовательность ДНК с решением составит 140 нуклеотидов (7x20).

Остается только синтезировать и выделить такую молекулу ДНК. Для этого в пробирку помещается около 100 триллионов молекул ДНК, содержащих все возможные 20-нуклеотидные последователь-

ности, кодирующие города и пути между ними. Далее за счет взаимного притяжения нуклеотидов А-Т и G-C отдельные цепочки ДНК сцепляются друг с другом случайным образом, а специальный фермент лигаза сшивает образующиеся короткие молекулы в более крупные образования. При этом синтезируются молекулы ДНК, воспроизводящие все возможные маршруты между городами. Нужно лишь выделить из них те, что соответствуют искомому решению.

Эдлмен решил эту задачу биохимическими методами, последовательно удалив сначала цепочки, которые не начинались с первого города — точки старта — и не заканчивались местом финиша, затем те, что содержали более семи городов или не содержали хотя бы один. Легко понять, что любая из оставшихся после такого отбора молекула ДНК представляет собой решение задачи [5] .

Вслед за работой Эдлмена последовали другие. Ллойд Смит из Университета Висконсин решил с помощью ДНК задачу доставки четырех сортов пиццы по четырем адресам, которая подразумевала 16 вариантов ответа. Ученые из Принстонского университета решили комбинаторную шахматную задачу: при помощи РНК нашли правильный ход шахматного коня на доске из девяти клеток (всего их 512 вариантов).

Ричард Липтон из Принстона первым показал, как, используя ДНК, кодировать двоичные числа и решать проблему удовлетворения логического выражения. Суть ее в том, что, имея некоторое логическое выражение, включающее n логических переменных, нужно найти все комбинации значений переменных, делающих выражение истинным. Задачу можно решить только перебором 2n комбинаций. Все эти комбинации легко закодировать с помощью ДНК, а дальше действовать по методике Эдлмена. Липтон предложил также способ взлома шифра DES (американский криптографический), трактуемого, как своеобразное логическое выражение. Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук. Она имитировала работу "молекулярной машины" в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком.

А в 2001 г. Шапиро удалось реализовать модель в реальном биокомпьютере [6], который состоял из молекул ДНК, РНК и специальных ферментов. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК — программного обеспечения. При этом в одной пробирке помещалось около триллиона элементарных вычислительных модулей. В результате скорость вычислений могла достигать миллиарда операций в секунду, а точность — 99,8%.

Пока биокомпьютер Шапиро может применяться лишь для решения самых простых задач, выдавая всего два типа ответов: "истина" или "ложь". В проведенных экспериментах за один цикл все молекулы ДНК параллельно решали единственную задачу. Однако потенциально они могут трудиться одновременно над разными задачами, в то время как традиционные ПК являются, по сути, однозадачными.

В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Машина была создана в сотрудничестве с доцентом Токийского университета Акирой Тояма.

Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая — обрабатывает информацию и анализирует полученные результаты.

Анализ генов обычно выполняется вручную и требует много времени: при этом формируются многочисленные фрагменты ДНК и

контролируется ход химических реакций. "Когда ДНК-компьютинг будет использоваться для генетического анализа, задачи, которые ранее выполнялись в течение трех дней, можно будет решать за шесть часов", — сказал сотрудник Olympus Optical Сатоши Икута.

В компании надеются поставить технологию генетического анализа на основе ДНК-компьютера на коммерческую основу. Она найдет применение в медицине и фармации. Ученые планируют внедрять молекулярные наноустройства в тело человека для мониторинга состояния его здоровья и синтеза необходимых лекарств.

Возможностями биокомпьютеров заинтересовались и военные. Американское агентство по исследованиям в области обороны DARPA выполняет проект, получивший название Bio-Comp (Biological Computations, биологические вычисления). Его цель — создание мощных вычислительных систем на основе ДНК. Попутно исследователи надеются научиться управлять процессами взаимодействия белков и генов. Для этого планируется создать мощный симулятор Bio-SPICE, способный средствами машинной графики визуализировать биомолекулярные процессы. Bio-SPICE планируется развивать на принципах открыггых исходников (open source). Программа рассчитана на пять лет.

Клеточные компьютеры

Еще одним интересным направлением является создание клеточных компьютеров. Для этой цели идеально подошли бы бактерии, если бы в их геном удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников. И единожды запрограммировав клетку, можно легко и быстро вырастить тысячи клеток с такой же программой.

В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И и ИЛИ.

Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути — входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций.

Потенциал биокомпьютеров очень велик. По сравнению с обычными вычислительными устройствами они имеют ряд уникальных особенностей. Во-первых, они используют не бинарный, а тернарный код (так как информация в них кодируется тройками нуклеотидов). Во-вторых, поскольку вычисления производятся путем одновременного вступления в реакцию триллионов молекул ДНК, они могут выполнять до 1014 операций в секунду (правда, извлечение результатов вычислений предусматривает несколько этапов очень тщатель-

ного биохимического анализа и осуществляется гораздо медленнее). В-третьих, вычислительные устройства на основе ДНК хранят данные с плотностью, в триллионы раз превышающей показатели оптических дисков. И, наконец, ДНК-компьютеры имеют исключительно низкое энергопотребление.

Однако в разработке биокомпьютеров ученые столкнулись с целым рядом серьезных проблем. Первая связана со считыванием результата — современные способы секвенирования (определения кодирующей последовательности) не совершенны: нельзя за один раз секвенировать цепочки длиной хотя бы в несколько тысяч оснований. Кроме того, это весьма дорогостоящая, сложная и трудоемкая операция.

Вторая проблема — ошибки в вычислениях. Для биологов точность в 1% при синтезе и секвенировании оснований считается очень хорошей. Для ИТ она неприемлема: решения задачи могут потеряться, когда молекулы просто прилипают к стенкам сосудов; нет гарантий, что не возникнут точечные мутации в ДНК, и т. п. И еще — ДНК с течением времени распадаются, и результаты вычислений исчезают на глазах! А клеточные компьютеры работают медленно, и их легко "сбить с толку". Со всеми этими проблемами ученые активно борются. Насколько успешно — покажет время.

Биокомпьютеры не рассчитаны на широкие массы пользователей. Но ученые надеются, что они найдут свое место в медицине и фармации. Глава израильской исследовательской группы профессор Эхуд Шапиро уверен, что в перспективе ДНК — наномашины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними.

Биокомпьютеры не рассчитаны на широкие массы пользователей. Но ученые надеются, что они найдут свое место в медицине и фармации. Глава израильской исследовательской группы профессор Эхуд Шапиро уверен, что в перспективе ДНК-наномашины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними.

Наконец, с помощью клеточных компьютеров станет возможным объединение информационных и биотехнологий. Например, они смогут управлять химическим заводом, регулировать биологические процессы внутри человеческого организма, производить гормоны и лекарственные вещества и доставлять к определенному органу необходимую дозу лекарств.

Литература

1. http://www.computer-museum.ru/technlgy/genecomp.htm

2. http://klein.zen.ru/old/Nauka_PC_Fut.htm

3. http://www.zdnet.ru/?ID=25089

4. Molecular Computation of Solutions to Combinatorial Problems. Science, 1994, № 266, рр. 1021.

5. Боркус В. ДНК — основа вычислительных машин// PC Week/RE, № 29-30/99, с. 29.

6. Programmable andautonomous computing machine made of biomole-ciles, Nature, 2001, № 44, рр. 430.

i Надоели баннеры? Вы всегда можете отключить рекламу.