АННАЛЫ АРИТМОЛОГИИ, № 2, 2010

© КОЛЛЕКТИВ АВТОРОВ, 2010

УДК 616.821.7+616-036.886

ОБСТРУКТИВНОЕ АПНОЭ СНА И ВНЕЗАПНАЯ СМЕРТЬ

Л. А. Бокерия*, О. Л. Бокерия, А. Х. Меликулов, Л. А. Глушко

Научный центр сердечно-сосудистой хирургии им. А. Н. Бакулева (дир. – академик РАМН Л. А. Бокерия) РАМН, Москва

Обструктивное апноэ сна (ОАС) является распространенной причиной возникновения огромного числа сердечно-сосудистых заболеваний. Патофизиологические события во время апноэ у пациентов с ОАС вызывают во сне острые и часто глубокие изменения в вегетативной нервной системе, сердце и сосудах, а также могут являться следствием нарушений нейрогуморальной регуляции, органической и функциональной патологии сердечно-сосудистой системы в течение

дня. Все эти изменения могут способствовать возникновению внезапной смерти во сне и увеличивать риск внезапной смерти днем.

В данной статье приведен обзор эпидемиологии ОАС, нормальной физиологии сна, отличительной патофизиологии сна у пациентов с ОАС (см. таблицу), механизмов, повышающих риск возникновения внезапной смерти при ОАС, и сведения о популяции, в которой наблюдается данная взаимосвязь.

Термины и их определение

Термин	Определение
Апноэ	Прекращение воздушного потока более чем на 10 с
еонпопи	Уменьшение, но не полное прекращение, воздушного потока не менее чем на 50% от нормального, часто в сочетании со снижением насыщения оксигемоглобином
Индекс апноэ-гипопноэ	Частота апноэ и гипопноэ в час во время сна; показатель тяжести ночного апноэ
Обструктивное апноэ и гипопноэ сна	Апноэ или гипопноэ обусловлены полным или частичным спадением глотки во время сна соответственно
Центральное апноэ и гипопноэ сна	Апноэ или гипопноэ обусловлены полным или частичным отсутствием импульсов из центральной нервной системы на дыхательную мускулатуру во время сна
Кислородная десатурация	Уменьшение сатурации оксигемоглобина, часто вследствие апноэ или ги- попноэ
Синдром сонного апноэ	По меньшей мере $10-15$ апноэ и гипопноэ в час во время сна ассоциируется с синдромом сонного апноэ, включающим громкий храп, оставшийся сон, головную боль утром, ночное диспноэ и чрезмерную сонливость днем
Полисомнография	Многоканальная электрофизиологическая запись электроэнцефалографической, электроокулографической, электромиографической, электрокардиографической и дыхательной активности для выявления нарушений дыхания во время сна
NREM-сон	Медленное движение глазных яблок, или медленный сон
REM-сон	Быстрое движение глазных яблок, или быстрый сон; сопровождается атонией скелетной мускулатуры, быстрым движением глаз и сновидениями
Пробуждение	Преходящее пробуждение от сна, длящееся менее 10 с

^{*} Адрес для переписки: e-mail: leoan@online.ru

Эпидемиология и факторы риска обструктивного апноэ сна

Основными факторами риска развития ОАС являются: ожирение, пол, возраст, национальность, семейный анамнез и наследственная предрасположенность, гипотиреоз, черепно-лицевая патология, курение и др.

Ожирение. Масса тела, весоростовой показатель (ВРП) и характер распределения жира в организме коррелируют с наличием ОАС. Так, 40—60% полных людей страдают ОАС [10, 37].

Ожирение, особенно центральное, индикатором которого может служить величина окружности шеи, является выраженным фактором риска для ОАС (окружность шеи более 43 см для мужчин и более 40 см для женщин) [10]. Проспективные исследования показали, что при увеличении массы тела на 10% риск развития ОАС в течение ближайших четырех лет возрастает в 6 раз, тогда как снижение массы тела на 10% приводит в 26% случаев к снижению индекса апноэ-гипопноэ (ИАГ) (95% ДИ, 18—34%) [39].

Пол. У мужчин ОАС встречается в 2—3 раза чаще, чем у женщин [1]. Дело в том, что распределение жира в верхних дыхательных путях (в боковой окологлоточной области) более выражено у мужчин, чем у женщин, так как мужчины, в силу физиологических особенностей, имеют большую массу тела.

Женские гормоны защищают от ОАС. Исследования населения показали, что женщины в периоде постменопаузы в 2—3 раза больше подвержены риску возникновения ОАС по сравнению с женщинами в периоде пременопаузы.

Возраст. Около 20% взрослых среднего возраста страдают по меньшей мере легкой степенью ОАС. Синдром ОАС, состоящий не только из физиологии, но и также из симптомов ОАС, представлен примерно у 5% этих популяций [37]. Встречаемость ОАС у полных людей после 65 лет увеличивается на 20—41% [2, 37].

Национальность. Афро-американцы и жители Азии оказались в группе повышенного риска по данным ВРП. Афро-американцы с ОАС моложе своих белых соотечественников. S. Ancoli-Israel и соавт. показали, что у афро-американцев мужской пол, пожилой возраст и повышенный ВРП были независимыми факторами риска дыхательных нарушений (ИАГ более 30 в час) [1].

Были исследованы результаты энцефалометрических измерений у жителей Азии и Европы с ОАС. Тяжесть ОАС была одинаковой в обеих группах, хотя жители Азии не были особенно полными. Азиаты имеют более узкий угол основания черепа — особенность, которая может увеличивать риск раз-

вития у них ОАС. Последние исследования показали, что у жителей Азии меньше щитоподбородочное расстояние, более крутая тироментальная плоскость, чем у европейцев со схожими параметрами ВРП и окружностью шеи. Эти анатомические особенности создают предпосылки увеличенного риска развития ОАС у азиатов.

Семейный анамнез и наследственная предрасположенность. Многочисленные исследования показали тенденцию преобладания ОАС в семьях с отягощенным анамнезом. Риск развития ОАС тем выше, чем больше родственников им страдали. В некоторых исследованиях обнаружено, что наследственность имела место в 30—35% случаев ИАГ. Черепно-лицевая морфология, включающая в себя твердые и мягкие ткани, представляет один из механизмов влияния генетики на ОАС. Негенетический полиморфизм до сих пор ассоциируется с несиндромальным ОАС. Некоторыми исследователями аллель эпсилон-4 гена АРОЕ соотносится с ОАС [36].

Назальная обструкция. Назальная окклюзия повышает риск ОАС. Так, ИАГ выше у пациентов с сезонными ринитами. Существует множество механизмов влияния носовой обструкции на ОАС. Они включают в себя повышение отрицательного давления, возникающего вследствие дыхательных усилий против частичной окклюзии носовых ходов, турбулентности, носовые рефлексы и храп из-за отека мягких тканей верхних дыхательных путей [19].

Алкоголь. Алкоголь расслабляет мышцы-дилататоры верхних дыхательных путей, повышает сопротивление верхних дыхательных путей и может вызвать ОАС у здоровых людей и хронических храпунов; в то же время он увеличивает продолжительность и частоту эпизодов окклюзии у пациентов с ОАС [4]. Но достоверной разницы наличия ОАС у лиц, употреблявших и не употреблявших алкоголь, не выявлено [25].

Курение. Данные Висконсинской группы исследователей показали, что курильщики имели значительно больший риск умеренного и выраженного нарушения дыхания во сне (коэффициент соотношения 4,44) по сравнению с некурящими. Тяжелые курильщики (то есть выкуривающие свыше 40 сигарет в день) имеют огромный риск умеренного нарушения дыхания во сне (коэффициент соотношения 6,74) и умеренный риск выраженного нарушения дыхания. В своем исследовании D. Wetter и соавт. обнаружили, что пациентов с ОАС среди курящих было 35%, среди некурящих — 18% [34].

Другие факторы риска. В качестве факторов риска ОАС может выступать множество других характеристик пациента. К ним относятся фоновые заболевания, такие как гипотиреоз и акромегалия

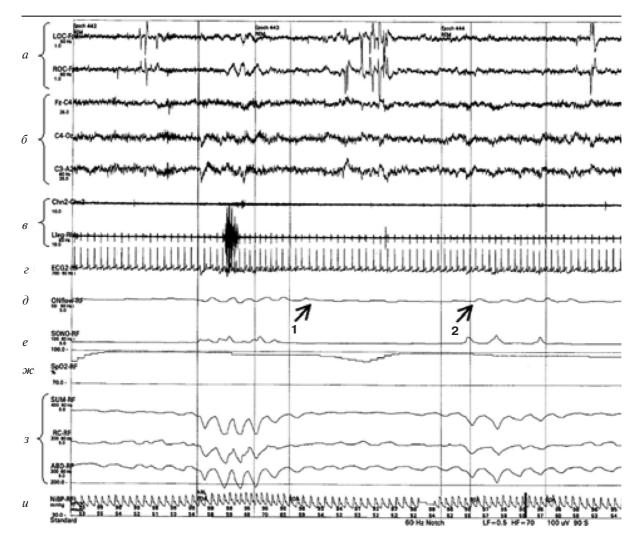


Рис. 1. Полисомнограмма, зарегистрированная у пациента с обструктивным апноэ сна. Запись отражает электроокулограмму (a), электроэнцефалограмму (δ), электромиограмму (ϵ), электрокардиограмму (ϵ), значения воздушного потока (δ), сонограмму (ϵ), оксиметрию (δ), торакоабдоминальные движения (δ), показатели артериального давления в течение 90 с (δ) (δ). Cardiovasc. Electrophysiol., 2008):

1 — начало обструктивного апноэ; 2 — его окончание

(оба этих заболевания могут приводить к увеличению мягких тканей в верхних дыхательных путях и/или влиять на регуляцию дыхания), применение бензодиазепинов и других миорелаксантов, структурные аномалии верхних дыхательных путей (например увеличение миндалин) и применение экзогенного тестостерона [40].

Большинству людей, страдающих ОАС, не поставлен диагноз ОАС из-за отсутствия симптоматики при легкой степени ОАС [38], распространенности его основного симптома — сонливости и общего недостатка доступности к выполнению полисомнографии для постановки диагноза (рис. 1).

Нормальная физиология сна

Сон составляет от одной четвертой до одной третьей нашей жизни и обычно относится к физиологическому восстановительному периоду. Дело в том, что сон состоит из динамических и сложных

физиологических процессов, многие из которых влияют на регуляцию и функционирование сердечно-сосудистой системы.

Ночной сон обычно состоит из четырех или пяти циклов, включающих фазы быстрого (REM) и медленного движения глаз (NREM), причем REM-фазы удлиняются с каждым последующим циклом [25]. Во время NREM-фазы уменьшается влияние симпатической нервной системы, в то время как тонус парасимпатической преобладает. В свою очередь, REM-фаза и ее базовый тонус являются периодами высокой активности парасимпатической нервной системы, несмотря на то что во время REM-фазы происходит взрыв симпатической активности [31]. В итоге REM-сон ассоциируется с динамическими колебаниями в вегетативной регуляции, представляя собой циркадный ритм. Наибольшая симпатическая активность наблюдается в течение дня, и ее пик приходится на

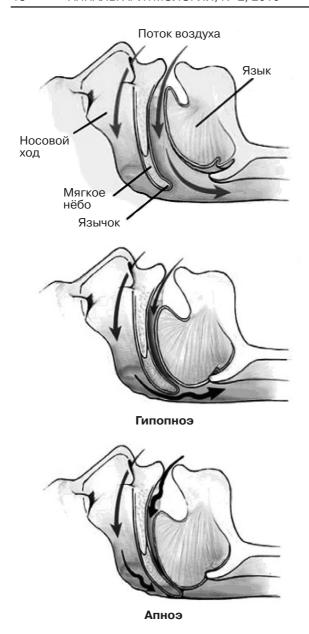


Рис. 2. Частичная и полная обструкция воздушного потока, приводящая к гипопноэ и апноэ соответственно (Hahn P. Y., Somers V. K., 2007)

полдень, в то время как парасимпатическая активность доминирует ночью [9].

Общий эффект нормального сна на сердечную электрофизиологию обусловлен преобладанием парасимпатического тонуса. В итоге во время нормального сна наблюдается снижение чувствительности артериальных барорецепторов, что приводит к уменьшению частоты сердечных сокращений, артериального давления, сердечного выброса, системного сосудистого сопротивления (в большом круге кровообращения).

У здоровых людей наблюдаются легкие ночные аритмии и нарушения проводимости, обусловленные относительной ваготонией. Последние включают в себя синусовую брадикардию, выраженную

синусовую аритмию, паузы, АВ-блокады I степени, АВ-блокады II степени типа Мобитц I [1]. Нормальный сон также сопровождается замедлением реполяризации, что проявляется в виде удлинения корригированного интервала Q-T(Q-Tc) во время сна у здоровых людей [5]. Некоторые данные указывают, что это наиболее вероятно на протяжении REM-фазы сна у женщин [16].

Нормальный сон сопровождается изменениями свертываемости крови и функции сосудов, что также обусловлено преобладанием тонуса парасимпатической нервной системы во время сна. По сравнению с состоянием утреннего бодрствования сон ассоциируется с повышенной фибринолитической активностью, повышенными уровнями активатора плазминогена, сниженной вязкостью крови и снижением агрегации тромбоцитов, всеми изменениями, которые уменьшают патологическую коагуляцию [17]. Артериальная эндотелиальная функция у здоровых людей также сопряжена с суточными биоритмами: так, вечером отмечается более выраженная эндотелийзависимая артериальная вазодилатация по сравнению с утром [22]. Подобным образом у пациентов, страдающих ишемической болезнью сердца, тонус венечных сосудов и периферических артерий подвержен суточной изменчивости с лучшей выраженностью сосудистой функции после полудня [26].

Патофизиология сна при обструктивном апноэ сна

Сон у людей, страдающих ОАС, характеризуется преходящими окклюзиями верхних дыхательных путей, которые приводят к эпизодам частичного (гипопноэ) или полного (апноэ) прекращения (прерывания) потока воздуха (рис. 2) [12].

Центральная нервная система во время сна ослабляет активность глоточных мышц и дестабилизирует дыхательную мускулатуру, особенно во время REM-фазы сна, когда наблюдается наименьший мышечный тонус, тем самым создавая все условия для обструкции дыхательных путей. Эти эпизоды апноэ и гипопноэ приводят к гипоксемии, а вентиляционные усилия, которые в конечном счете активируют центральную нервную систему и вызывают временное, но зачастую бессознательное пробуждение, обеспечивают восстановление проходимости дыхательных путей (см. таблицу). Гипервентиляция происходит после апноэ вследствие активации периферических и центральных хеморецепторов во время эпизодов гипоксемии и гиперкапнии. Эти серии событий могут повторяться много раз в течение каждого часа сна. Наиболее общим показателем тяжести ОАС является индекс апноэ-гипопноэ

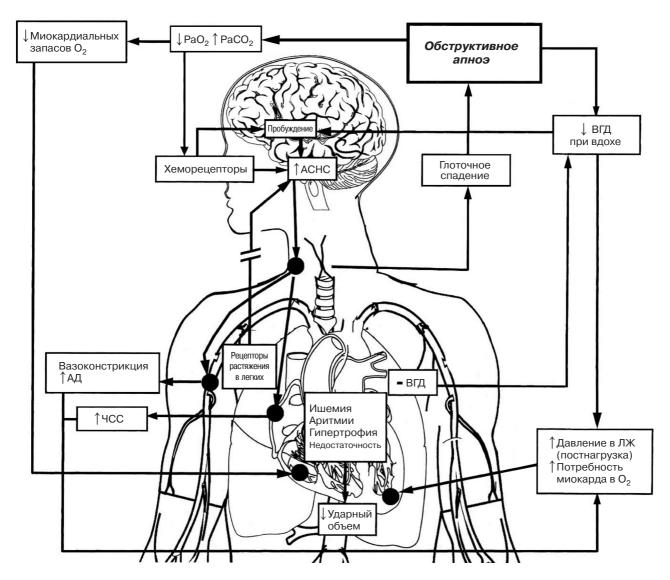


Рис. 3. Патофизиологическое влияние ОАС на сердечно-сосудистую систему

Обструктивные апноэ увеличивают левожелудочковое трансмуральное давление (постнагрузку) путем увеличения отрицательного внутригрудного давления (ВГД) и системного артериального давления (АД) вторично в ответ на гипоксию, пробуждения и повышение активности симпатической нервной системы (АСНС). Апноэ также подавляет симпатические ингибиторные эффекты рецепторов растяжения легких, в дальнейшем повышая активность СНС. Сочетание увеличенной ЛЖ постнагрузки и увеличенной ЧСС вторично в ответ на повышенную АСНС увеличивает потребность миокарда в кислороде на фоне сниженных запасов О2 в миокарде. Эти условия предрасполагают к развитию ишемии миокарда, аритмиям и со временем могут привести к гипертрофии ЛЖ и в конечном счете к сердечной недостаточности. В итоге снижение ударного объема будет приводить к повышению АСНС (Bradley T. D. и соавт., 2003)

(ИАГ), который представляет собой среднее число обструктивных событий, обусловленных апноэ и гипопноэ, в час во время сна. В норме ИАГ меньше 5; ИАГ больше 5 характеризует как минимум легкую степень ОАС и сопряжен с развитием и прогрессированием заболеваний сердечно-сосудистой системы [21].

Механические и гемодинамические эффекты

Обструктивные апноэ сна вызывают серию механических, гемодинамических, химических, нервных и воспалительных ответов с неблагоприятными последствиями для сердечно-сосудистой системы (рис. 3, 4). Тщетные усилия дыхательной

мускулатуры для осуществления вдоха против окклюзированной глотки приводят к резкому снижению внутригрудного давления. Последнее приводит к увеличению левожелудочкового трансмурального давления (разница между внутрисердечным и внутригрудным давлением), что обусловливает постнагрузку. Венозный возврат также увеличивается, приводя к растяжению правого желудочка и смещению влево межжелудочковой перегородки. Последнее препятствует расслаблению левого желудочка. Уменьшенная левожелудочковая преднагрузка и увеличенная левожелудочковая постнагрузка в совокупности уменьшают ударный объем.

Рис. 4. Влияние ОАС на сердечно-сосудистую систему

Обструктивное апноэ сна и возможные механизмы внезапной сердечной смерти

В отличие от нормальной физиологии сна, описанной ранее, люди, страдающие ОАС, испытывают выраженные расстройства сердечной регуляции во время сна, которые в отдельности или в совокупности могут повышать риск внезапной сердечной смерти.

Обструктивные апноэтические эпизоды вызывают снижение сатурации кислородом и системную гипоксемию. При этом у некоторых людей значения сатурации кислородом могут упасть ниже уровня, который технически может быть определен. Было показано, что эти повторяющиеся кислородные десатурации напрямую связаны с желудочковой эктопией у пациентов с ОАС и могут представлять прямой дизритмический механизм, связующий ОАС и ночную внезапную смерть.

Гипоксемия с гиперкапнией также вызывают активацию хеморефлекса [32], который приводит к повышению симпатического тонуса нервной системы в отношении сосудов и выработки сывороточных катехоламинов. Это приводит к повторяющимся колебаниям частоты сердечных сокращений и артериального давления во время сна. Несмотря на то что первичным кардиальным ответом на гипоксию и апноэ является брадикардия (о чем будет изложено далее), тахикардия проявляется в конце апноэ во время восстановления дыхания. В этот период также отмечается пик артериального давления. Таким образом, эпизоды апноэ

характеризуются одновременным возникновением гипоксемии и повышенной потребностью миокарда в кислороде, обусловленной увеличением частоты сердечных сокращений и артериального давления вследствие преобладания симпатического тонуса. Данная ситуация может вызвать ночную миокардиальную ишемию [13], которая, в свою очередь, может индуцировать желудочковые нарушения ритма и внезапную смерть у этих пациентов.

Другим механизмом развития ишемических событий и внезапной смерти у пациентов с ОАС может быть парадоксальное ночное повышение свертываемости крови. Активация и агрегация тромбоцитов повышаются во время сна у пациентов с ОАС. К тому же повышается уровень фибриногена и снижается фибринолитическая активность [27].

Внутрисердечная электрофизиология во время сна у пациентов с ОАС отличается от таковой во время нормального сна главным образом наличием нарушений ночной вегетативной сердечной регуляции. Вариабельность сердечного ритма и парасимпатические суточные изменения активности синусного узла снижены у пациентов, страдающих ОАС. Длительность желудочковой реполяризации, представленной Q-Tc, и неоднородность реполяризации, отраженной в дисперсии интервала Q-Tc у пациентов с ОАС, отличаются от нормальных [11]. Увеличение дисперсии Q-Tc коррелирует с тяжестью ОАС, определяемого ИАГ и продолжительностью значимой ночной гипоксемии.

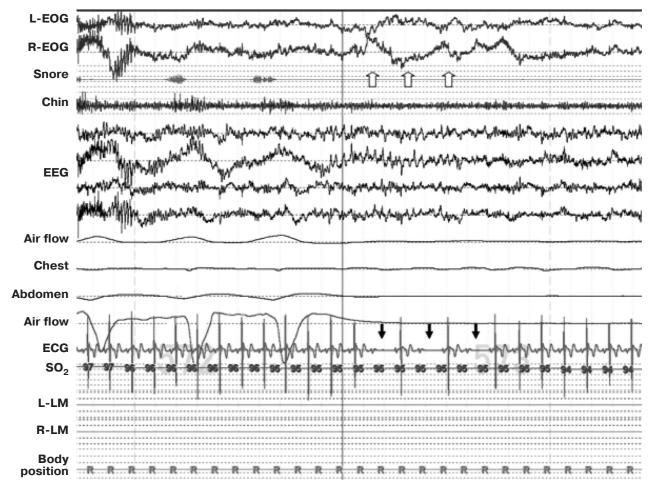


Рис. 5. На представленной полисомнограмме зарегистрирована AB-блокада 2:1 (черные стрелки) во время REM-фазы сна в начале эпизодов апноэ или гипопноэ без гипоксии. Белые стрелки обозначают движение глаз. AB-блокада продолжительностью 30 с возникла во время движения глаз. L-EOG и R-EOG соответствуют левой и правой электроокулограмме; EEG — электроэнцефалограмма; ECG — электрокардиограмма; SO₂ — сатурация кислородом; R-LM и L-LM — движения правой и левой ноги соответственно (Fusae Kawana, Takatoshi Kasai, 2008)

Во время сна у пациентов с ОАС возникают клинически значимые аритмии и нарушения проводимости. Контролируемое многоцентровое исследование показало, что на протяжении сна в 5,3% наблюдается нестабильная желудочковая тахикардия и сложная желудочковая эктопия у 25% пациентов с нарушениями дыхания во время сна, включающими ОАС, а также центральное апноэ сна [18].

Атриовентрикулярная блокада II степени встречалась у 2,2% (рис. 5), а нарушение внутрижелудочковой проводимости — у 8,9% пациентов с дыхательными расстройствами сна [18]. Электрофизиологические исследования у пациентов с ОАС и выраженной синусовой брадикардией или тяжелой АВ-блокадой показали, что функция синусного и АВ-узла почти не отклоняется от нормы, что демонстрирует выраженное влияние автономной регуляции у этих пациентов.

В дополнение к ишемии и желудочковым тахиаритмиям внезапная смерть у пациентов с ОАС может возникать из-за тяжелых брадиаритмий. Пре-

кращение воздушного потока и гипоксемия могут активировать рефлекс ныряльщика, который одновременно вызывает повышение сердечного парасимпатического тонуса и периферической вазоконстрикции во всех сосудистых бассейнах, кроме головного мозга и сердца. В итоге брадиаритмии наиболее часто встречаются во время REM-фазы сна, они могут быть выраженными и, как упоминалось выше, могут включать в себя прекращение активности синусного узла и АВ-блокаду высокой степени [15]. В серии из 239 исследуемых пациентов с ОАС в одной больнице 7% больных имели выраженную брадикардию (менее 30 уд/мин) или атриовентрикулярную блокаду высокой степени с паузой более 2 с [3]. Эти тяжелые брадиаритмии были выявлены в группе пациентов с ИАГ больше 60, то есть с тяжелым ОАС. Внезапные смерти, обусловленные брадиаритмиями, хорошо документируются, и, возможно, тяжелые брадиаритмии могут быть связаны с внезапной смертью у пациентов с ОАС.

Обструктивное апноэ сна тесно связано с возникновением инсульта, а инсульт, в свою очередь, значительно повышает риск возникновения нарушений ритма сердца [8]. Большинство пациентов с инсультами не наблюдаются по поводу аритмий, и возможно, что некоторые внезапные смерти у пациентов, страдавших ОАС, были связаны с инсультами, осложнившимися злокачественными аритмиями.

Другими менее распознаваемыми, но потенциально важными причинами внезапной смерти у пациентов с ОАС являются выраженная мозговая гипоксемия и неэффективные пробуждения, обусловленные ослабленной хемочувствительностью. Три наглядных случая внезапной смерти, одной обратимой, а двух других - фатальных, были описаны недавно [24]. Эти пациенты находились под полисомнографическим мониторингом во время обструктивных апноэтических событий, которые привели к глубокой системной гипоксемии (сатурация кислородом снижалась до 12%), нарушению пробуждения и внезапной смерти, подтвержденной отсутствием активности на энцефалограмме и остановкой сердечно-легочной системы. Электрокардиографический мониторинг не выявляет нарушения ритма, предшествующие этим событиям, и вскрытие у одного пациента показало незначительные структурные изменения в сердце или ишемическую болезнь сердца (ИБС) [24]. Эти случаи подтверждают, что ОАС может быть прямой причиной внезапной смерти. Механизмы могут включать грубую мозговую и системную гипоксемию, подобно тому, как центральные неэффективные пробуждения во время апноэ обусловлены нарушенной хемочувствительностью [1]. Возможно, что внезапные необъяснимые смерти, которые исторически относили к аритмическим (ввиду отсутствия органической сердечной патологии), у некоторых людей могут на самом деле быть обусловлены прямым воздействием ОАС.

В дополнение к острым механизмам, описанным выше, ОАС влияет на хроническую сердечнососудистую функцию, что может увеличивать риск внезапной смерти [30]. Существует тесная связь между ОАС и хронической системной гипертензией, и проспективные эпидемиологические исследования определили ОАС как независимый фактор для развития гипертензии [21]. Результаты исследований показывают, что ОАС широко распространен и является второй по частоте причиной артериальной гипертензии. Кроме того, ОАС тесно связан с ишемической болезнью сердца. Это было замечено по наличию многочисленных коронарных проблем у пациентов с ОАС. Рандомизированные и проспективные эпидемиологические исследования показали взаимоотношения между ОАС и

ишемической болезнью сердца, включающей острые ишемические нарушения, независимые от большинства фоновых факторов, таких как ожирение, сахарный диабет, гипертония и гиперлипидемия [29]. Сильная и независимая связь ОАС с ИБС также коррелирует с высочайшим риском внезапной смерти.

Очевидны хронические воздействия ОАС на активность автономной нервной системы в дневное время. Пациенты с ОАС обладают значительно большей симпатической активностью во время бодрствования днем, что отражается катехоламиновой и симпатической нервной активностью и не зависит от других фоновых факторов, включая ожирение [32]. Это может быть обусловлено излишками вегетативных ночных нарушений и хронической дисфункцией периферического хеморецепторного рефлекса [20]. В то время как точные взаимодействия между вегетативной нервной системой и аритмической внезапной смертью остаются неясными, хронический повышенный симпатикотонус определен маркером риска внезапной смерти.

Наконец, ОАС широко распространен среди пациентов с сердечной недостаточностью и вовлечен (задействован) в хроническую дисфункцию левого желудочка [33]. Лечение ОАС продолжительным положительным давлением потока воздуха вызывает выраженное и продолжительное улучшение систолической функции левого желудочка [33]. В одном исследовании было показано повышение фракции выброса на 9% в течение одного месяца после проведенной вышеуказанной терапии [14]. Вклад ОАС в левожелудочковую дисфункцию может быть важным содействующим фактором в нейрогуморальном ответе и перестройке, что приводит к возникновению миокардиального субстрата для внезапной смерти, особенно у пациентов, уже имеющий высокий риск, страдающих ИБС или обладающих другой органической патологией сердца.

Лечение обструктивного апноэ сна

Различают консервативное и хирургическое лечение ОАС. В качестве консервативной терапии проводится терапия продолжительным положительным давлением воздушного потока (СРАР) (рис. 6). Суть метода заключается в том, что через специальную маску в дыхательные пути подается кислород под некоторым давлением. Это помогает поддержать просвет дыхательных путей в нормальном состоянии. Уровень давления, под которым подается кислород, настроен таким образом, чтобы предупредить спадение просвета дыхательных путей.

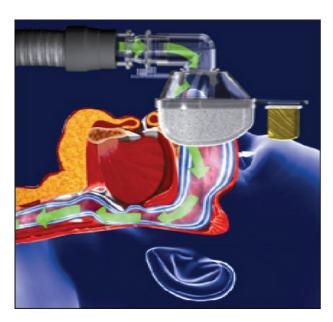


Рис. 6. Терапия продолжительным положительным давлением воздушного потока (СРАР)

Типы оперативного лечения апноэ сна обструктивного типа

Удаление увеличенных небных миндалин и аденоидов, которые могут нарушать проходимость просвета дыхательных путей. Это особенно актуально у детей.

Увулопалатофарингопластика — эта операция заключается в иссечении небных миндалин, язычка (складки ткани, которая свисает по середине задней части мягкого неба) и части мягкого неба.

Лазерная увулопластика — данная операция весьма эффективна в лечении храпа, однако для лечения синдрома ночного апноэ она не годится. Вмешательство заключается в иссечении с помощью лазера язычка и части мягкого неба. Так как данная операция помогает устранить наиболее важный признак апноэ сна — храп, перед операцией рекомендуется изучить характер сна.

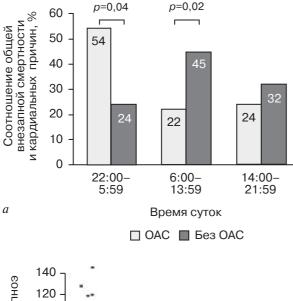
Трахеостомия — этот метод применяется при тяжелой форме синдрома ночного апноэ. В трахее делается небольшое отверстие, и в него вводится трубочка. При этом воздух проходит в легкие через эту трубочку. Результаты этой операции довольно успешные, однако она применяется только у тех больных, у которых другие методы лечения неэффективны.

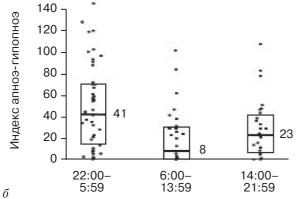
Другие методы хирургического лечения апноэ сна:

- Пластическая операция на нижней челюсти, направленная на изменение ее формы.
- Хирургическое вмешательство в полости носа: например, турбинэктомия (хирургическая операция, заключающаяся в удалении одной из носовых раковин), септопластика (операция, направ-

ленная на устранение дефектов носовой перегородки) и другие.

• Хирургическое лечение ожирения.


Связь обструктивного апноэ сна и внезапной смерти


Наличие ОАС повышает риск возникновения исходов сердечно-сосудистых заболеваний [30]. Это подтверждается множеством продолжительных исследований, которые выявили возникновение кардиальных событий и смертности в группе пациентов с диагностированным ОАС, хотя большинство этих исследований не имели контрольную группу сравнения пациентов без ОАС [23], и почти ни одно исследование не установило системно внезапную смерть как исход [35].

L. Doherty и соавт. наблюдали 168 пациентов с ОАС в среднем 7,5 лет [7]. Они сравнили сердечнососудистые исходы, включая внезапную смерть, у 107 пациентов с ОАС, проходивших длительное лечение по поводу ОАС с продолжительным положительным давлением воздушного потока, и у 61 пациента, получавшего кратковременную терапию по поводу ОАС. Внезапная смерть возникла у 4 (7%) пациентов, не получавших длительную терапию ОАС, и ни один пациент не умер, находясь в группе испытуемых, проходивших лечение (была только одна аритмическая смерть в этой группе у пациента после аортокоронарного шунтирования) [7]. Это было не рандомизированное исследование лечения ОАС, но оно является наиболее продолжительным по времени и его результаты говорят о том, что физиология ОАС повышает риск внезапной смерти.

Дополнительные наблюдения, подтверждающие влияние ОАС в возникновении внезапной смерти, имеют четкие различия в течение суток у пациентов с ОАС по сравнению с общей популяцией. В общей популяции риск внезапной смерти значительно больший в утренние часы после пробуждения, то есть с 6 ч утра до полудня [6]. Это обусловлено суточной вариабельностью сердечного ритма и связанными со сном и пробуждением изменениями в симпатической активности, функции барорецепторов, свертываемости крови, сосудистом тонусе и внутрисердечной электрофизиологии, описанными ранее.

Так как многие предполагаемые механизмы, связывающие ОАС и внезапную смерть, возникают остро во время сна, понятно, что внезапные смерти у пациентов с ОАС будут в основном происходить ночью. Впервые это было показано в исследовании Finnish (321 человек с внезапной смертью) [28]. В своем исследовании Т. Seppala и соавт. получили истории храпа от сожителей умерших людей и обнаружили, что внезапная смерть

Время наступления внезапной смерти от кардиальных причин

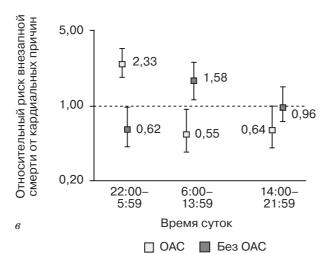


Рис. 7. Риск внезапной смерти ночью при обструктивном апноэ сна:

a — суточный паттерн BCC, основанный на обычных циклах сна и бодрствования; δ — индекс апноэ-гипопноэ у людей с BCC в течение 8-часовых интервалов суток. Линия внутри каждого столбца представляет средний индекс апноэ-гипопноэ, а столбик представляет собой порядок распределения (от 25-го перцентиля до 75-го); ϵ — относительный риск (OP) BCC в течение 8-часового интервала в течение суток сравнен с оставшимися 16 ч, для пациентов с OAC и без него. Точки и линии представляют OP и 95% доверительный интервал (Gami A. S. et al. 2005)

возникала среди «храпунов» чаще всего в ранние утренние часы в отличие от нехрапящих или храпящих случайно. Это явление было освещено в исследовании 112 пациентов, которым проводилась полисомнография для исключения ОАС, впоследствии умерших от внезапной смерти [28]. Пациенты с ОАС имели значительно более высокий риск внезапной смерти во время сна, с 10 ч вечера до 6 ч утра, а пациенты без ОАС имели дневной паттерн внезапной смерти, как и в общей популяции. Пациенты с ОАС имели в 2,6 раза больший риск ночной внезапной смерти, а тяжесть ОАС коррелировала с величиной риска.

На сегодняшний день существует 2 исследования, оценивших результаты ВСС у людей, страдающих ОАС. Первое сравнило отдаленную сердечно-сосудистую смертность у 107 пациентов с ОАС, стратифицированных по использованию СРАР-терапии. Спустя 7 лет ВСС не возникла ни у одного пациента, получавшего СРАР-терапию, но случилась у 7% пациентов, не проходивших лечение с помощью СРАР. Эти исследования предполагают, что ОАС является фактором риска внезапной смерти, особенно ночью (рис. 7). Установлено, что днем риск внезапной смерти у пациентов с ОАС уменьшается. В настоящее время данных о взаимоотношении ОАС и внезапной смерти недостаточно; для определения связи между ними необходимы дальнейшие продолжительные исследования.

Заключение

Обструктивное апноэ сна, особенно у людей с ожирением или заболеваниями сердечно-сосудистой системы, представляет собой важный фактор риска возникновения внезапной смерти. Патофизиология ОАС такова, что ночью возникает совокупность механизмов, которые могут приводить к внезапной сердечной смерти. Это обусловлено возникающими явлениями гипоксемии, вегетативного дисбаланса с преобладанием тонуса симпатической нервной системы, дисфункции барорецепторов, ослабления хемочувствительности, гиперкоагуляции и электрофизиологических нарушений. Внезапные смерти, связанные с ОАС, могут быть обусловлены ишемическими явлениями, желудочковыми тахиаритмиями, выраженными брадиаритмиями, инсультами или глубокими обструктивными эпизодами апноэ с неэффективным пробуждением, которые привели к фатальной мозговой и системной гипоксемии. Обструктивное апноэ сна увеличивает вероятность внезапной смерти ночью, но данных, рассматривающих влияние ОАС на общий риск внезапной смерти, недостаточно. Необходимы дальнейшие исследования, отражающие эту связь.

АННАЛЫ АРИТМОЛОГИИ, № 2, 2010

ЛИТЕРАТУРА

- Adlakha, A. Cardiac arrhythmias during normal sleep and in obstructive sleep apnea syndrome / A. Adlakha, J. W. Shepard, Jr. // Sleep Med. Rev. – 1998. – Vol. 2. – P. 45–60.
- Ancoli-Israel, S. Sleep-disordered breathing in community-dwelling elderly / S. Ancoli-Israel, D. F. Kripke, M. R. Klauber et al. // Sleep. 1991. Vol. 14. P. 486–495.
- Becker, H. F. Heart block in patients with sleep apnoea / H. F. Becker, U. Koehler, A. Stammnitz, J. H. Peter // Thorax. – 1998. – Vol. 53. – P. S29–S32 (Suppl. 3).
- Berry, R. B. Effect of ethanol on the arousal response to airway occlusion during sleep in normal subjects / R. B. Berry, M. H. Bonnet, R. W. Light // Amer. Rev. Respir. Dis. 1992. Vol. 145. P. 445–452.
- Browne, K. F. Prolongation of the Q-T interval in man during sleep / K. F. Browne, E. Prystowsky, J. J. Heger et al. // Amer. J. Cardiol. – 1983. – Vol. 52. – P. 55–59.
- Cohen, M. C. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death / M. C. Cohen, K. M. Rohtla, C. E. Lavery et al. // Amer. J. Cardiol. – 1997. – Vol. 79. – P. 1512–1516.
- Doherty, L. S. Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome / L. S. Doherty, J. L. Kiely, V. Swan, W. T. McNicholas // Chest. – 2005. – Vol. 127. – P. 2076–2084.
- 8. *Eckardt, M.* Prolongation of the frequency-corrected *Q-T* dispersion following cerebral strokes with involvement of the insula of Reil / M. Eckardt, L. Gerlach, F. L. Welter // Eur. Neurol. 1999. Vol. 42. P. 190–193.
- 9. Furlan, R. Modifications of cardiac autonomic profile associated with a shift schedule of work / R. Furlan, F. Barbie, S. Piazza et al. // Circulation. 2000. Vol. 102. P. 1912–1916.
- Gami, A. S. Obesity and obstructive sleep apnea / A. S. Gami, S. M. Caples, V. K. Somers // Endocrinol. Metab. Clin. North Amer. – 2003. – Vol. 32. – P. 869–894.
- 11. *Gillis, A. M.* Changes in the *Q*-*T* interval during obstructive sleep apnea / A. M. Gillis, R. Stoohs, C. Guilleminault // Sleep. 1991. Vol. 14. P. 346–350.
- Guilleminault, C. The sleep apnea syndromes / C. Guilleminault, A. Tilkian, W. C. Dement // Ann. Rev. Med. 1976. Vol. 27. P. 465–484.
- Hanly, P. ST-segment depression during sleep in obstructive sleep apnea / P. Hanly, Z. Sasson, N. Zuberi, K. Lunn // Amer. J. Cardiol. – 1993. – Vol. 71. – P. 1341–1345.
- Kaneko, Y. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea / Y. Kaneko, J. S. Floras, K. Usui et al. // N. Engl. J. Med. – 2003. – Vol. 348. – P. 1233–1241.
- Koehler, U. Relations among hypoxemia, sleep stage, and bradyarrhythmia during obstructive sleep apnea / U. Koehler, H. F. Becker, W. Grimm et al. // Amer. Heart J. – 2000. – Vol. 139. – P. 142–148.
- Lanfranchi, P. A. Sex-selective QT-prolongation during rapid eye movement sleep / P. A. Lanfranchi, A. S. Shamsuzzaman, M. J. Ackerman et al. // Circulation. – 2002. – Vol. 106. – P. 1488–1492.
- Linsell, C. R. Circadian rhythms of epinephrine and norepinephrine in man / C. R. Linsell, S. L. Lightman, P. E. Mullen et al. // Clin. Endocrinol. Metab. – 1985. – Vol. 60. – P. 1210–1215.
- Mehra, R. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study / R. Mehra, E. J. Benjamin, E. Shahar et al. // Amer. J. Respir. Crit. Care Med. – 2006. – Vol. 173. – P. 910–916.
- Mirza, N. The nasal airway and obstructed breathing during sleep / N. Mirza, D. C. Lanza // Otolaryngol. Clin. North Amer. – 1999. – Vol. 32. – P. 243–262.

- Narkiewicz, K. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea / K. Narkiewicz, P. J. Van de Borne, C. A. Pesek et al. // Circulation. 1999. Vol. 99. P. 1183–1189.
- Nieto, F. J. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study /F. J. Nieto, T. B. Young, B. K. Lind et al. // JAMA. – 2000. – Vol. 283. – P. 1829–1836.
- 22. *Otto, M. E.* Early morning attenuation of endothelial function in healthy humans / M. E. Otto, A. Svatikova, R. B. Barretto et al. // Circulation. 2004. Vol. 109. P. 2507–2510.
- Partinen, M. Long-term outcome for obstructive sleep apnea syndrome patients. Mortality / M. Partinen, A. Jamieson, C. Guilleminault // Chest. – 1988. – Vol. 94. – P. 1200–1204.
- Pearce, S. Obstructive sleep apnoea can directly cause death / S. Pearce, P. Saunders // Thorax. – 2003. – Vol. 58. – P. 369.
 Principles and practice of sleep medicine / Eds M. H. Kryger,
- Principles and practice of sleep medicine / Eds M. H. Kryger,
 T. Roth, W. C. Dement. Philadelphia, PA: Elsevier Saunders, 2005.
- Quyyumi A. A. Circadian variation in ischemic threshold. A mechanism underlying the circadian variation in ischemic events / A. A. Quyyumi, J. A. Panza, J. G. Diodati at al. // Circulation. – 1992. – Vol. 86. – P. 22–28.
- Rangemark, C. Platelet function and fibrinolytic activity in hypertensive and normotensive sleep apnea patients / C. Rangemark, J. A. Hedner, J. T. Carlson et al. // Sleep. – 1995. – Vol. 18. – P. 188–194.
- Seppala, T. Sudden death and sleeping history among Finnish men / T. Seppala, M. Partinen, A. Penttila et al. // J. Intern. Med. – 1991. – Vol. 229. – P. 23–28.
- Shahar, E. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study / E. Shahar, C. W. Whitney, S. Redline et al. // Amer. J. Respir. Crit. Care Med. 2001. Vol. 163. P. 19–25.
- Shamsuzzaman, A. S. Obstructive sleep apnea: implications for cardiac and vascular disease / A. S. Shamsuzzaman, B. J. Gersh, V. K. Somers // JAMA. – 2003. – Vol. 290. – P. 1906–1914.
- Somers, V. Sympathetic-nerve activity during sleep in normal subjects / V. Somers, M. Dyken, A. Mark, F. Abboud // N. Engl. J. Med. – 1993. – Vol. 328. – P. 303–307.
- Somers, V. K. Sympathetic neural mechanisms in obstructive sleep apnea / V. K. Somers, M. E. Dyken, M. P. Clary, F. M. Abboud // Clin. Invest. – 1995. – Vol. 96. – P. 1897–1904.
- 33. *Tkacova*, *R*. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure / R. Tkacova, F. Rankin, F. S. Fitzgerald et al. // Circulation. 1998. Vol. 98. P. 2269–2275.
- Wetter, D. W. Smoking as a risk factor for sleep-disordered breathing / D. W. Wetter, T. B. Young, T. R. Bidwell et al. // Arch. Intern. Med. – 1994. – Vol. 154. – P. 2219–2224.
- Yaggi, H. K. Obstructive sleep apnea as a risk factor for stroke and death / H. K. Yaggi, J. Concato, W. N. Kernan et al. // N. Engl. J. Med. – 2005. – Vol. 353. – P. 2034–2041.
- Young, T. Association between apolipoprotein E epsilon-4 and sleep-disordered breathing in adults / T. Young, H. Kadotani, T. Kadotani et al. // JAMA. – 2001. – Vol. 285. – P. 2888–2890.
- Young, T. Epidemiology of obstructive sleep apnea: a population health perspective / T. Young, P. E. Peppard, D. J. Gottlieb // Amer. J. Respir. Crit. Care Med. 2002. Vol. 165. P. 1217–1239.
- Young, T. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women / T. Young, L. Evans, L. Finn, M. Palta // Sleep. – 1997. – Vol. 20. – P. 705–706.
- Young, T. Longitudinal study of moderate weight change and sleep-disordered breathing / T. Young, P. Peppard, M. Palta et al. // JAMA. – 2000. – Vol. 284. – P. 3015–3021.
- Zwillich, C. W. Influence of testosterone on breathing during sleep / C. W. Zwillich, B. K. Schneider, C. K. Pickett et al. // J. Appl. Physiol. – 1986. – Vol. 61. – P. 618–623.