ПЕРЕРАБОТКА ПРОДУКЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА
УДК 637.131.2 А.А. Майоров,
Н.М. Сурай, С.Ю. Бузоверов ОБОСНОВАНИЕ МЕМБРАННЫХ СПОСОБОВ РАЗДЕЛЕНИЯ МОЛОЧНОЙ СЫВОРОТКИ
Ключевые слова: молочная сыворотка, подсырная сыворотка, творожная сыворотка, казеиновая сыворотка, микрофильтрация, ультрафильтрация, нанофильтрация, обратный осмос, электродиализ, сывороточные белки.
Введение
Проблема дефицита молочного сырья в России и повышения эффективности молочной промышленности может быть решена за счет использования молочной сыворотки, ресурсы которой в нашей стране превышают 3,5 млн т в год. Переработка молочной сыворотки остается одной из главных проблем молочной промышленности [1].
Рациональное использование продуктов, получаемых из молочной сыворотки, является не менее актуальной и значимой проблемой, как и промышленная переработка. К сожалению, ей уделяется, в том числе переработчиками, потребителями и инвесторами, недостаточное внимание. Так, если в странах с высокоразвитой молочной промышленностью (США, Канада и др.) до 90% сыворотки идет на производство продуктов питания и кормовых средств, то в России только около 50% ее подвергается промышленной переработке [2, 3].
Таким образом, задача полного использования молочной сыворотки остается нерешенной и требует внедрения в практику новых технических и технологических решений. Молочная промышленность имеет достаточные резервы сыворотки, что указывает на актуальность поиска новых способов ее переработки.
Молочная сыворотка является нормальным побочным продуктом при производстве сыров, творога, казеина, молочнобелковых концентратов и может быть отнесена к вторичным сырьевым ресурсам молочного подкомплекса АПК.
Наиболее ценными компонентами молочной сыворотки являются сывороточные белки (альбумин и глобулин), содержание которых достигает 1%. Биологическая ценность их обусловлена оптимальным набором жизненно незаменимых аминокислот. Энергетическая ценность составляет 36% от цельного молока. Наряду с питательной ценностью молочная сыворотка и продукты, получаемые из нее, имеют диетическое и лечебное значение.
Результаты исследований
Развивающееся направление в переработке молока и молочных компонентов, основанное на использовании мембранных технологий, позволяет разрабатывать технологии, использующие преимущества мембранных технологий (ультрафильтрацию, нанофильтрацию, обратный осмос) с применением традиционных технологических приемов термокоагуляции белков. Небольшие габариты мембранных установок, их способность к изменению режимов работы, возможность коррекции состава получаемых продуктов позволяют разрабатывать широкую гамму продуктов с различным составом.
Мембранные методы обработки можно разделить на два основных принципиальных направления: гиперфильтрация (микро-
фильтрация, ультрафильтрация, обратный осмос) и электродиализ (рис.). Сущность мембранных технологий основана на свойствах молочной сыворотки как гетерогенной системы с чётко выраженной селективностью компонентов по молекулярной массе, размерам и ионной силе. Применительно к молочной сыворотке главными достоинствами мембранных способов разделения являются:
• возможность направленного регулирования её состава и свойств при сравнительно небольших энергетических затратах;
• создание на этой основе новых молочных продуктов с пониженной калорийностью и высокой биологической ценностью;
• рациональное использование молочной сыворотки на основе малоотходных и безотходных технологических процессов.
Процесс гиперфильтрации основан на принципе обратного осмоса. Часть компонентов раствора, прежде всего растворитель, за счёт давления, создаваемого на раствор, проходит через мембрану, а другая, например, белки, задерживается. Происходит концентрация раствора.
Гиперфильтрацию в зависимости от пористости применяемой мембраны и эффективности процесса разделения гетерогенных растворов условно делят.
Ультрафильтрация. В случаях, когда осмотическое давление пренебрежимо мало по сравнению с рабочим давлением, что, например, характерно для водных растворов высокомолекулярных веществ, процесс разделения растворов с помощью полупроницаемых мембран называют ультрафильтрацией. Для проведения ультрафильтрации используют полупроницаемые мембраны диаметром пор от 10 до 100 нм, способные
задерживать компоненты с молекулярной массой от 104 и выше. При ультрафильтрации мембрана задерживает только высокомолекулярные соединения и пропускает с фильтратом вещества, образующие «истинный» раствор. При ультрафильтрации молочной сыворотки задерживается (концентрируется) белок, а в фильтр уходят соли и лактоза. В фильтрат переходит около 30% кальция, 90% калия и натрия, 70% магния, 80% хлора и 50% фосфора, содержащихся в исходной сыворотке.
В результате ультрафильтрации получаются белковые концентраты, содержащие высокомолекулярные соединения молочной сыворотки, и фильтрат (пермеат) — раствор лактозы, минеральных солей и других низкомолекулярных соединений.
Основной задачей управления процессом ультрафильтрации является поддержание заданных технологических режимов с получением белковых концентратов с разной массовой долей сухих веществ [2]. Состав и физико-химические показатели УФ-концен-тратов в зависимости от массовой доли сухих веществ представлены в таблице.
Фильтрат молочной сыворотки
Концентрирование
Обратный осмос Нанофильтр ация
Фильтрация
Изомеризация
4-----
Электродиализ
Ионный обмен
Сгущение
Сушка
Продукты общего и специального назначения
Рис. Принципиальная схема переработки молочной сыворотки мембранными методами
Таблица
Состав и физико-химические показатели сывороточных УФ-концентратов
Показатели Фактор концентрирования
0 8-9 18-19
Массовая доля, % — сухих веществ — общего азота (Ых6,38) — белкового азота (Ых6,38) — лактозы — золы — жира 6,0±0,3 0,95±0,7 0,65±0,6 4,45±0,15 0,53±0,05 0,05±0,01 10,87±0,30 4,25±0,25 3,64±0,15 5,16±0,15 0,78±0,05 0,50±0,05 19,79±0,4 11,93± 0,35 10,40± 0,25 5,43±0,15 1,03±0,06 1,10±0,05
Плотность, кг/см3 1024±2 1034 ±2 1055±2
Коэффициент рефракции 1343 ±1 1351±1 1366±2
Титруемая кислотность, °Т 15±2 25±2 40± 3
Частным случаем ультрафильтрации является диафильтрация, используемая для получения высокобелковых молочных концентратов. При диафильтрации концентраты, получаемые ультрафильтрацией, разбавляют водой (лучше деминерализованной) и подвергают повторной ультрафильтрации с целью «вымывания» низкомолекулярных компонентов, в частности лактозы и минеральных веществ.
Недостаток ультрафильтрации и других методов мембранного разделения заключается в том, что одновременно с концентрированием белка происходит и концентрирование жировой фракции, что обусловлено практически полной селективностью мембран по жиру.
Обратный осмос. Разграничить высоко-и низкомолекулярные соединения трудно, деление это условно, поэтому нельзя четко разграничить процесс ультрафильтрации и обратного осмоса. В обоих случаях требуется преодолеть осмотическое давление фильтруемого раствора, так как растворитель переносится в направлении, противоположном возрастанию концентрации растворенного вещества, задерживаемого фильтром. Способом обратного осмоса производят концентрирование всех веществ, находящихся в растворе, и выделение чистого растворителя из раствора, за исключением некоторого количества одновалентных ионов №, К, С1. Практически обратный осмос сводится к сгущению раствора.
Фильтры, применяемые для ультрафильтрации и обратного осмоса, принципиально различаются лишь размерами пор, последние мельче и обеспечивают перенос только растворителя. При обратном осмосе применяют полупроницаемые мембраны диаметром пор от 1 до 10 мм, способные задерживать компоненты раствора с молекулярной массой от 50 D и выше. Преимуществом обратного осмоса перед существующими способами концентрации растворов (например, сгущения в вакуум-выпарных установках) является возможность проведения про-
цесса при любых температурах. Кроме того, расчёты показывают, что затраты энергии при обратном осмосе меньше, чем при использовании других традиционных способов концентрации, а расход тепловой энергии может быть исключен совсем. Оптимальным считается концентрирование методом обратного осмоса до массовой доли сухих веществ 20-30%.
Обратный осмос должен найти применение для концентрирования сыворотки, что снизит потери и расширит пути ее рационального использования. Кроме того, одним из перспективных направлений использования обратного осмоса является обработка соленой сыворотки в целях исключения нежелательных явлений, связанных с наличием хлористого натрия, а также обработка конденсата вакуум-выпарных установок, что позволит рационально использовать оборотную воду и уловить отходящие с пеной и вторичными парами компоненты молочного сырья.
Электродиализ. Одним из эффективных способов деминерализации молочной сыворотки является электродиализ. Применение электролиза позволяет снизить в сыворотке содержание минеральных веществ. Сущность процесса электродиализа заключается в том, что селективная ионитовая мембрана (перегородка) находится в контакте с раствором, под влиянием электрического поля пропускает ионы одного заряда и служит барьером для ионов противоположного заряда.
При пропускании постоянного (или выпрямленного) электрического тока катионы солей, содержащихся в молочной сыворотке и рабочем растворе, перемещаются по направлению к катоду, а анионы солей — к аноду.
Электронейтральные молекулы других веществ, входящих в состав молочной сыворотки, в электродиализном процессе не участвуют, поэтому при электродиализном обессоливании молочной сыворотки в рабочий раствор переходят только ионы солей, а содержание белков и лактозы не меняется.
Изучение деминерализации творожной сыворотки показало возможность удаления до 90% минеральных веществ при незначительных потерях сывороточных белков и лактозы.
Электродиализ молочной сыворотки не оказывает существенного влияния на качество и содержание сывороточных белков, лактозы и витаминов. В результате электро-диализной обработки органолептические показатели молочной сыворотки значительно улучшаются.
Установлено, что при обессоливании натуральной сыворотки капитальные и производственные затраты выше, чем при обес-соливании сгущенной сыворотки, на 15% при 59%-ном и на 30% - при 90%-ном уровне деминерализации. Сгущение сыворотки приводит к снижению энергозатрат на процесс ее обессоливания и на перекачивание насосами, а также к повышению рабочей плотности тока и, следовательно, скорости обессоливания.
Полученные методом электродиализа продукты часто используются в качестве основы для заменителей женского молока.
В последнее время разрабатывается комбинированная технология, предусматривающая объединение методов электродиа-
лиза и ультрафильтрации. При этом получают сухой белковый препарат с максимальной концентрацией белка 35% и содержащий лактозу деминерализованный ультрафильтрат.
Заключение
При решении проблемы переработки молочной сыворотки необходима комбинация нескольких процессов разделения или концентрирования, позволяющая при минимальных затратах обеспечить производство высококачественных и безопасных продуктов, включающих все компоненты молочной сыворотки.
Библиографический список
1. Червецов В.В., Яковлева Т.А., Евдокимов И.А. Процессы и методы переработки молочной сыворотки // Переработка молока. — 2007. — № 12. — С. 30-32.
2. Кравченко Э.Ф. Прогрессивные технологии переработки молочной сыворотки // Переработка молока. — 2006. — № 4. — С. 36-37.
3. Храмцов А.Г., Нестеренко П.Г. Безотходная переработка молочного сырья: учебное издание. — М.: КолосС, 2008. — 200 с.
+ + +
УДК 633.13 В.А. Марьин,
А.Л. Верещагин ТОВАРОВЕДНАЯ ОЦЕНКА И КАЧЕСТВО ХЛОПЬЕВ «ГЕРКУЛЕС», ВЫРАБОТАННЫХ ИЗ ЗЕРНА ОВСА С РАЗЛИЧНОЙ НАЧАЛЬНОЙ ВЛАЖНОСТЬЮ
Ключевые слова: гидротермическая обработка (ГТО), зерно овса, хлопья овсяные «Геркулес», влажность, аминокислота, аминокислотный СКОР, овсяная каша.
Овес является одной из наиболее ценных крупяных культур. Однако в последнее время качество овса, поставляемого на переработку, ухудшается вследствие хранения зерна с повышенной влажностью у производителей.
Целью работы является изучение влияния влажности зерна овса на показатели качества крупы, в том числе на аминокислотный состав.
Для испытаний были отобраны партии зерна овса сорта «Аргумент», собранного в предгорной зоне Алтайского края в 2009 г., которые характеризовались повышенной увлажненностью (гидротермический коэф-
фициент 1,5) при пониженной против многолетних значений средней температуре в вегетационный период.
В качестве исходного сырья были взяты партии зерна с различной начальной влажностью (12,6-15,8%), такое зерно хранилось у производителей в условиях напольного складирования в течение нескольких месяцев.
Поступающие партии зерна формировались по влажности и направлялись без предварительной сушки в переработку на овсоцех.
Объём партий формировался таким образом, чтобы отобранный для исследования образец являлся среднесменным. При переработке зерна для определения массой доли белка и исследования аминокислотного состава в исследуемых партиях отбирались среднесменные образцы зерна и хлопьев овсяных «Геркулес».