Научная статья на тему 'О взаимодействиях массивных полей с высшими спинами'

О взаимодействиях массивных полей с высшими спинами Текст научной статьи по специальности «Физика»

CC BY
90
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВЫСШИЕ СПИНЫ / РЕПЕРНЫЙ ФОРМАЛИЗМ / ФОРМАЛИЗМ ФРАДКИНА-ВАСИЛЬЕВА / HIGHER SPINS / FRAME-LIKE DESCRIPTION / FRADKIN-VASILIEV FORMALISM

Аннотация научной статьи по физике, автор научной работы — Зиновьев Ю. М.

Мы обсуждаем возможность расширить формализм Фрадкина-Васильева построения непротиворечивых кубических вершин взаимодействия на случаи, когда вершина содержит массивные и/или безмассовые поля высших спинов. В качестве иллюстрации мы даем применение этого формализма к гравитационному взаимодействию безмассовых и частично безмассовых полей со спином 5/2.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ON MASSIVE HIGHER SPIN INTERACTIONS

We discuss a possibility to extend a Fradkin-Vasiliev formalism of constructing consistent cubic interaction vertices to the cases where vertex contains massive and/or massless higher spin fields. As an illustration we provide application of this formalism to the gravitational interactions of massless and partially massless spin-5/2 fields.

Текст научной работы на тему «О взаимодействиях массивных полей с высшими спинами»

UDC 530.1; 539.1

ON MASSIVE HIGHER SPIN INTERACTIONS

Yu. M. Zinoviev

institute for High Energy Physics, 142280, Protvino, Russia. E-mail: Yurii.Zinoviev@ihep.ru

We discuss a possibility to extend a Fradkin-Vasiliev formalism of constructing consistent cubic interaction vertices to the cases where vertex contains massive and/or massless higher spin fields. As an illustration we provide application of this formalism to the gravitational interactions of massless and partially massless spin-5/2 fields.

Keywords: higher spins, frame-like description, Fradkin-Vasiliev formalism.

1 Fradkin-Vasiliev formalism

Let us first of all briefly remind what is Fradkin-Vasiliev formalism [1,2] developed for the construction of consistent cubic interaction vertices among the massless higher spin fields. The main ingredient of this formalism is the so-called frame-like description of massless higher spin fields [3-5]. Its main features can be described as follows.

• Each massless higher spin field is described by a set of one-forms $ (physical, auxiliary and extra ones).

ô$ = DÇ + ...

where dots stand for the terms without derivatives.

can be constructed R = D A ...

where again dots stand for the terms without derivatives.

rewritten in a explicitly gauge invariant form L0 ~ ^RAR.

There exist three types of possible cubic vertices:

• trivial: L ~ RARAR, i.e constructed using gauge invariant two-forms only and thus trivially gauge invariant (hence the name);

• abelian: L ~ R A R A which contain one-form and whose gauge invariance (up to total derivative) follows from the Bianci identities;

• non-abelian: £~RA $ A $, which look similar to the ones in the Yang-Mills theories and whose gauge invariance requires introduction of nontrivial corrections to the gauge transformations.

All the non-abelian vertices can be constructed by the following deformation procedure:

curvatures in the form: AR ~ $ A $; transformations 6$ ~ $£; covariantly, i.e. 6R ~ R£;

Lagrangian L ~ ^ R Alt, which is just the free Lagrangian but with the initial curvatures replaced by the deformed ones.

Vasiliev has shown [6] that any non-trivial cubic vertex for massless completely symmetric fields with spins si, s2 and s3 having up to

N = s i + S2 + s3 - 2

derivatives can be obtained as a linear combination of abelian and non-abelian vertices.

The Fradkin-Vasiliev formalism was initially-developed and effectively applied for the construction of cubic vertices for the massless higher spin fields (see e.g. [7-12]). As we have seen the two main ingredients of this formalism are frame-like description and gauge invariance. But frame-like gauge invariant description exists for the massive higher spin fields as well [13,14]. Thus it seem natural to extend this formalism to the case of cubic vertices containing massive and/or massless fields. Some examples for electromagnetic and gravitational interactions of massive fields already exist [15-18]. In what follows we apply such formalism for gravitational interaction of partially massless spin-5/2 field

cUS cl

simplest non-trivial fermionic case.

Note that in the frame-like description most of the auxiliary and extra fields are mixed symmetry (spin-) tensors (7-traceless in fermionic cases)

ai...as-i,bi...bk

and this make all calculations rather involved (especially in the fermionic cases). One of the possible ways to simplify investigations is to restrict ourselves with particular space-time dimension d = 4 and use a multispinor frame-like formalism where all fields are still one forms but with all local indices replaced by spinor ones a ^ (aa). For the spin | case we are interested in here it means for example:

, (7^) = 0 ^ , ,

Q[ab], Y^ab = 0 ^ Qa3Y, Qa Pi.

Thus in what follows we will work in (A)dS4 space with background frame eaa and covariant derivative D normalized so that (A = —A2)

D A D^a = 2A2Ea3, Ea3 = 1 eaa A e3a.

2 Massless spin —

In this section we begin with the massless case that will be useful for the comparison. The free Lagrangian in AdS4 space can be written as follows [13]:

3A

Lo = 4aßa ea ß D',p3a 3 + —^«3* Ea 7 ^

- 2 ^aßa E' 3

4aßß + h.c.

öo^aßY = DiaßY + ej naßY + Xe(aè Ç3)Y è.

5oüaßY = DVaßY + X2e(aè .

physical frame field, while in spin-5/2 case it also put physical field on shell:

r Q

T = 0 ^ ü = ü(p) 0 — =0.

Op

Using these gauge invariant objects the free Lagrangian can be rewritten in the form:

Lo = a-tUaßY RaßY + avTcßY TaßY + h.c.

(5)

where coefficients ai,2 must be adjusted so that auxiliary field Q do not enter.

Now let us turn to the gravitational interactions. It turns out that deformations for the spin-| correspond just to the minimal substitution rules: D ^ D + w, e ^ e + h:

ARa3Y = co[w(as Q3y)s + X2h(aa ],

ATa3à = c0[w(aY 't^3)Yà + 3 i>a33 (6)

+Xh(a3 ^3 + hnà Qa3Y ].

At the same time deformations for the gravitational curvature and torsion have the form:

ARaß = b0[Q(aYs ü3)yS + 2X2^(aia p3^6

+X2^aa 3 43)a 3 ]

(7)

ATaa = 2b0 [üa3l i>ßYa + 2X4aß3 3 + h.c].

(1)

In this, non-trivial (on-shell) part of gauge transformations looks like:

This Lagrangian is invariant under the following local gauge transformations:

5HaßY = R(as nßY)S,

STaßa = R(aY £3)y" + Ra 3 iaßß,

(8)

(2) sRaß = 2boR(ajs V3)7ä.

We will need also an auxiliary field üaßY (though it does not enter the free Lagrangian) with the corresponding gauge transformations:

(3)

Now we consider the following interacting Lagrangian, which is just the sum free spin-5/2 and spin-2 Lagrangians with the initial curvatures replaced by the deformed ones:

Following the general procedure we construct two gauge invariant objects (similar to the curvature and torsion in the spin-2 case):

Ra3Y = DQa3Y + A2e(as ,

Ta3Y = D'^a3Y + Ae(at + esY Vta3S. (4)

Note that there is an essential difference between spin-2 and spin-5/2 cases as far as the zero torsion condition is concerned. In the spin-2 case this condition simply allows one to express Lorentz connection in terms of

L = a{R aß y RaßY + a^TaßY taßY +aoRaß Raß + h.c.

(9)

For the Lagrangian (9) to be invariant under the transformations (8) we have to put:

3a\co = 4aobo.

Note that the cubic vertex extracted from this Lagrangian contains terms with up to 2 derivatives in agreement with [19-21].

3 Partially massless spin —

Now let us turn to the partially massless spin-2 (recall that in four dimensions such field has four physical degrees of freedom corresponding to helicities ±2, ±2). Correspondingly, gauge invariant description requires two fields (main and Stueckelberg ones) and the free Lagrangian has the form:

iea 3 D3 - i0

Lo = Vaß

DV>a

VßY& - VaßaEaßVaßß]

+3a2[^aßaEaß- VaaßEaßr-]

-?a1^aE aß Vß + h.c.

ai

+ Y [?Vaßä E

\2

D^aßax + ale(a, f)à ß

tß)

(H)

-JlaßY 'j-aßä

DQaßi - E(a61

5

D^a/3à + eY'

*QaßY

+a.1eSaß Vß)di ß + a2e£l(a^ß),

T = 0 ^ ü = Ü(v) © ^ = o ^ v = v (v) ©

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

SS

SV=0

SS

SV = 0

aß y V aßY + RaßY DV aßY

+ ^ VaßYEYÖ VaßS .

-6a2naßinaßY ■ 12a2

Now let us turn to the gravitational interactions. Deformations for partially massless spin 2 again correspond to the minimal substitution rules D ^ D + w, e ^ e + h, while deformations for the gravitational curvature and torsion are defined up to the possible field redefinitions:

h** ^ hark + Kie3"VaY&VMs + K2ea"V3Y&VMs + ...

Non-trivial (on-shell) part of gauge transformations looks like:

(10)

Here ai2 = a22 = — 52-. This Lagrangian is invariant under the following gauge transformations:

SRaß = SR aßY

S j aßa

2b1R(a7s nß)Y& + b2 RaßY = coR(c

+

(aÄ nßY)&

(15)

coR(aY tß)Y* + coRé

aßß

+e7a na3Y + a2ea(ae

6o^a = DC + 3a2e3„ C3" + 3aieaA C.

Correspondingly, we will need two auxiliary fields (note thatVa3Y is a zero form):

6oQa3Y = Dna3Y, 6Va3Y = 6a2na3Y. (12)

Each of these four fields has its own gauge invariant object:

, V 3Y)s

The interacting Lagrangian is just the sum of free Lagrangians with deformed curvatures plus one possible abelian vertex:

o=

aR aßY R aßY + a2Taßä T'aßa + a,3#a^a + a4 VaßYEY6 VaßS +a5Taßä e~,à V aßY + iaoRaß Raß +a6Raß VaßY Vy + h.c.

(16)

(13)

= Di[>a + 3a2epà i"3" +3a1eaà- E3yVa3Y, Va3Y = DVa3Y - 6a2Qa3Y.

Similarly to the massless case, the zero torsion conditions not only allows one to express auxiliary-fields in terms of physical ones, but simultaneously put physical fields on shell:

At last, the free Lagrangian in terms of these gauge invariant objects looks as follows:

Lo = aiRa3Y Ra3Y + a2Ta3à Ta3&

+a,3Ma + aAVa3Y EYS Va3S

+a5Ta3à eY" Va3Y + h.c. (14)

Note that there is an ambiguity in the choice of coefficients due to identity:

0 « D(Ra3YVa3Y )

=D

Gauge invariance fixes all the coefficients in deformations as well as coefficient ae of abelian vertex in terms of gravitational coupling constant c0 hence we obtained one non-trivial vertex only. As in the massless case cubic vertex contains terms with up to two derivatives in agreement with [19].

Conclusion

Thus the Fradkin-Vasiliev formalism allows one systematically investigate cubic vertices for massless, partially massless and massive fields (in any combination). Here we use the multispinor framelike formalism. Thus means a restriction to d = 4 case, but allows us to describe bosonic and fermionic fields on equal footing with possible generalization to arbitrary spins. Let us stress some points where good

understanding is still lacking:

terms of gauge invariant objects;

Acknowledgement

This research has been supported by RFBR grant No. 14-02-01172.

References

[1] Fradkin E. S. and Vasiliev M. A. 1987 Phys. Lett. B189 89.

[2] Fradkin E. S. and Vasiliev M. A. 1987 Nucl. Phys. B291 141.

[3] Vasiliev M. A. 1980 Sov. J. Nucl. Phys. 32 439.

[4] Lopatin V. E. and Vasiliev M. A. 1988 Mod. Phys. Lett. A3 257.

[5] Vasiliev M. A. 1988 Nucl. Phys. B301 26.

[6] Vasiliev M. A. 2012 Nucl. Phys. B862 341 [arXiv:1108.5921],

[7] Vasiliev M. A. 2001 Nucl. Phys. B616 106-162; Erratum-ibid. B652 407 [arXiv:hep-th/0106200],

[8] Alkalaev К. B. and Vasiliev N. A. 2003 Nucl.Phys. B655 57-92 [arXiv:hep-th/0206068],

[9] Alkalaev К. B. 2011 JHEP 1103 031 [arXiv:1011.6109],

[10] Boulanger N. and Skvortsov E. D. and Zinoviev Yu. M. 2011 J. Phys. A44 415403 [arXiv:1107.1872],

[11] Boulanger N. and Skvortsov E. D. 2011 JHEP 1109 063 [arXiv:1107.5028],

[12] Boulanger N. and Ponomarev D. S. and Skvortsov E. D. 2013 JHEP 1305 008 [arXiv:1211.6979],

[13] Zinoviev Yu. M. 2009 Nucl. Phys. B808 185 [arXiv:0808.1778],

[14] Ponomarev D. S. and Vasiliev N. A. 2010 Nucl. Phys. B839 466 [arXiv:1001.0062],

[15] Zinoviev Yu. M. 2011 JHEP 03 082 [arXiv:1012.2706],

[16] Zinoviev Yu. M. 2012 Class. Quantum Grav. 29 015013 [arXiv:1107.3222],

[17] Zinoviev Yu. M. 2014 Nucl. Phys. B886 712 [arXiv:1405.4065],

[18] Buchbinder I. L. and Snegirev T. V. and Zinoviev Yu. M. 2014 [arXiv:1405.7781],

[19] Metsaev R. R. 2008 Phys. Rev. D77 025032 [arXiv:hep-th/0612279],

[20] Metsaev R. R. 2012 Nucl. Phys. B859 13 [arXiv:0712.3526],

[21] Henneaux M. and Gomez G.-L. and Rahman R. 2014 JHEP 1401 087 [arXiv:1310.5152],

Received, 04.11.2012

Ю. M. Зиновьев

О ВЗАИМОДЕЙСТВИЯХ МАССИВНЫХ ПОЛЕЙ С ВЫСШИМИ СПИНАМИ

Мы обсуждаем возможность расширить формализм Фрадкина-Васильева построения непротиворечивых кубических вершин взаимодействия на случаи, когда вершина содержит массивные и/или безмассовые поля высших спинов. В качестве иллюстрации мы даем применение этого формализма к гравитационному взаимодействию безмассовых и частично безмассовых полей со спином 5/2.

Ключевые слова: высшие спины, реперный формализм, формализм Фрадкина-Васильева.

Зиновьев Ю. М., доктор физико-математических наук, ведущий научный сотрудник. Институт физики высоких энергий. 142280 Протвино, Московская область, Россия. E-mail: yurii.zinoviev@ihep.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.