УДК 37.013.75 ББК В151.0.Я7
О ВЫЯВЛЕНИИ ВНУТРИПРЕДМЕТНЫХ СВЯЗЕЙ ПРИ ИЗУЧЕНИИ ТРИГОНОМЕТРИИ
Н.И. Попов, кандидат физико-математических наук, доцент кафедры математического анализа и теории функций Марийского государственного университета, popovnikolay@yandex.ru, (8362) 46-22-49, А.Н. Марасанов, старший преподаватель кафедры высшей математики Марийского государственного университета, aleksej-marasanov@yandex.ru, (8362) 46-84-12
В статье рассматривается проблема выявления внутрипредметных связей при изучении тригонометрии. Указанный подход применялся авторами на практике во время работы со школьниками.
Ключевые слова: обучение тригонометрии, внутрипредметные связи.
ABOUT DISCOVERY OF DIFFERENT SUBJECT'S RELATIONS IN STUDYING OF TRIGONOMETRY
Popov N.I., Marasanov A.N.
The article describes the problem discovery of différent subject 's relations in studying of trigonometry. The problem to be discussed was used in the pedagogical work of the authors.
Keywords: trigonometry teaching, inwardly subject relations.
В условиях более ранней специализации обучения нужны такие программы и учебники по математике, которые позволили бы эффективно дифференцировать усвоение материала учащимися на обязательном и углубленном уровнях. Это возможно за счет реализации в учебных курсах различной степени полноты внутрипредметных связей. Усиление внутрипредметных связей следует рассматривать как одно из важнейших направлений дидактического совершенствования школьного курса математики [1].
Роль внутрипредметных связей в учебном процессе велика: они непосредственно влияют на достижение обучающей, развивающей и воспитывающей целей обучения. При этом внутрипредметные связи формируют у учащихся научное мировоззрение; способствуют установлению логических связей между понятиями, развивая тем самым логическое мышление учащихся; позволяют сформировать такую систему знаний, которая предстает перед учащимися не как застывшая, а как динамичная, качественно изменяющаяся; сокращают затраты учебного времени; способствуют устранению перегрузки школьников.
Объем, глубина и надежность усваиваемого школьниками учебного материала, как показали многие исследования, определяются не продолжительностью непрерывного занятия одним и тем же учебным предметом, а частотой возврата к ранее изученному материалу и методическим наращиванием сложности изучаемых разделов на значительных по протяженности отрезках времени [2, 5].
Обобщения в сознании учащихся при существующей структуре курса и используемой технологии обучения сами по себе, произвольно, конечно, не возникают. Школьники не всегда осознают, что любому теоретическому материалу изучаемого курса присуща определенная система. Отсутствие у учащихся умения обобщать является одной из основных причин слабого овладения ими системой знаний. Поэтому на определенном этапе обучения необходима перекомпоновка материала, его систематизация, выявление новых связей и отношений между элементами изученной суммы знаний.
Это возможно при обобщающем повторении. Оно позволяет углубить, расширить и систематизировать знания. Если в какой-то теме учебного курса будут слабо реализованы внут-рипредметные связи, то обобщающее повторение призвано устранить этот недостаток; с его помощью можно установить те связи и отношения между элементами знаний, которые ранее не были раскрыты.
Несмотря на большую результативность, обобщающее повторение проводится в школе редко и используется лишь с целью закрепления полученных знаний. Это можно объяснить многими причинами: отсутствием эффективной методики проведения повторения, недостатком времени, отсутствием в учебниках достаточного числа обобщающих упражне-
ний, недостаточной полнотой внутрипредметных связей в темах курса.
Обобщающее повторение на уровне понятий в большей степени приемлемо в группе слабоуспевающих учащихся, а на уровне теорий - в группе наиболее подготовленных. Но при этом характерной особенностью работы со слабыми школьниками должно явиться не пассивное приспособление к слабым сторонам их психики, а активное воздействие на их умственное развитие, при котором ученик постепенно подстраивается под оптимальный процесс обучения. Ученика, достигшего определенных положительных сдвигов в учении, не следует задерживать на прежнем уровне - надо как можно быстрее вводить его в общий ритм работы класса, оказывая всяческую помощь в учении. Обобщающие повторения учебного материала нужно проводить не эпизодически, а систематически и целенаправленно.
Не следует, конечно, думать, что систематизация и обобщение изученного материала происходят лишь при обобщающем повторении - они, безусловно, имеют место и на уроках другого типа. Процесс обучения должен быть построен так, чтобы школьники уже при изучении текущего учебного материала проводили его первоначальную систематизацию и обобщение, а роль обобщающего повторения будет состоять в том, чтобы сосредоточить внимание учащихся на связях между основными вопросами усваиваемых знаний.
При изучении нового учебного материала полезно продумывать его всевозможные связи с другими темами и предметами. Школьный курс тригонометрии связан и с методом координат, и с геометрией, и с математическим анализом. Некоторые из указанных связей можно найти в учебном пособии [3].
Для школьников и абитуриентов одним из наиболее сложных разделов при изучении школьной математики, как показывает практика, является тригонометрия. Это обстоятельство нашло свое подтверждение в исследованиях, проведенных в 2004/2005 учебном году в десятых классах МОУ «Средняя общеобразовательная школа № 29 г. Йошкар-Олы» и МОУ «Средняя общеобразовательная школа п. Юрино» Республики Марий Эл [4].
В 2005 году у учащихся десятых классов указанных школ был проведен срез знаний по разделу «Тригонометрия» в виде контрольной работы, рассчитанной на два школьных урока, задания для которой были аналогичны примерам из учебного пособия [3]. Тематику проведенного контрольного испытания условно можно разбить на три группы: примеры на знание тригонометрической окружности; упражнения на знание основных формул тригонометрии; задания на применение формул при тождественных преобразованиях тригонометрических выражений, а также при решении тригонометрических уравнений, неравенств и систем уравнений.
Проверка работ учащихся показала, что средний балл у учеников 10б класса школы № 29 г. Йошкар-Олы составил 2,8 балла, а в 10а классе Юринской средней школы - 2.7 балла по пятибалльной шкале оценок. Кроме того, работы учащихся были подвергнуты всестороннему исследованию и анализу, включающему в себя составление матриц взаимосвязей между заданиями контрольной работы, построение корреляционных таблиц, выявляющих уровень тесноты этих взаимосвязей, а также составление круговой диаграммы связей.
Построение круговых диаграмм взаимосвязей признаков чрезвычайно важно при проведении констатирующего эксперимента. Пренебрежение этой работой из-за ее трудоемкости иногда может привести к ошибочным результатам [5]. Приведем далее расчет и анализ матрицы взаимосвязей. После проведенных в указанных ранее школах исследований были составлены сводные ведомости, где для всех учеников клас-
сов были проставлены отметки по результатам контрольной работы. Затем сведением данных к дихотомии, что упрощает обработку информации с помощью компьютера и сводит к минимуму число возможных ошибок, была получена матрица значений критерия достоверности связей [5]. Чтобы построить матрицу взаимосвязей, рассчитываются коэффициенты корреляции и значения /-критерия достоверности связей для каждой пары столбцов, т. е. оценивается взаимосвязь всех заданий друг с другом. Естественно, процедура вычисления громоздкая и выполняется с использованием компьютера по специальной программе.
Полученная матрица значений /-критерия (Таблица 1) симметрична относительно главной диагонали, поэтому заполнена только одна ее половина. «Заливкой» отмечены значения / > 1.64, обеспечивающие достоверность результата более чем на 90%.
Таблица 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Щ 0.64 0.70 0.51 1.25 0.57 0.83 0.64 0.83 5.00 3.46 0.77 1.15 -0.57 -0.45 1.36 Упр.1
-0.23 0.67 1.64 0.33 -0.73 0.04 0.18 0.64 0.92 2.30 1.87 0.71 1.36 1.41 Упр.2
3.64 2.80 2.09 2.45 0.73 2.45 0.70 1.01 0.11 -1.28 1.93 0.33 1.68 Упр.3
2.04 0.94 1.02 0.67 1.02 0.51 0.74 -0.83 0.20 1.40 1.09 0.83 Упр.4
1.34 1.67 -0.18 2.50 1.25 1.81 0.51 1.32 2.49 1.56 2.04 Упр.5
3.44 3.46 3.44 0.57 0.83 -0.16 0.60 0.48 -0.05 2.11 Упр.6
2.00 3.33 0.83 -0.30 -0.51 0.33 0.38 -0.45 1.36 Упр.7
2.00 0.64 0.92 0.45 1.87 -0.33 1.36 0.48 Упр.8
0.83 1.20 0.34 1.15 1.34 0.67 2.21 Упр.9
3.46 0.77 1.15 -0.57 -0.45 1.36 Упр.10
1.11 1.66 0.90 1.37 0.43 Упр.11
-0.03 1.13 1.64 0.21 Упр.12
-0.60 1.36 -0.81 Упр.13
2.61 0.82 Упр.14
0.64 Упр.15
Упр.16
При построении круговой диаграммы сильных связей упражнения контрольной работы обозначены кружочками с соответствующими заданиям номерами. Если между упражнениями существует сильная связь, что подтверждается значением / > 1.64, то они на диаграмме соединены линией (см. рис. 1).
Рис. 1. Круговая диаграмма связей между заданиями (СШ№29 10б)
На представленной диаграмме кружочками с пунктирной границей обозначены упражнения, при выполнении которых учащимися достигнут средний балл 4 и выше по пятибалльной шкале (для остальных - средний балл ниже 4); кружочками с «заливкой» обозначены задания, имеющие много связок (упражнения 5 и 3 имеют соответственно 8 и 7 связок, пример 9 имеет 6 связок, задачи 6 и 7 - по 5 связок, упражне-
ния 8, 11 и 16 - по 4 связки). Поэтому задания 3, 5, 7, 9 можно назвать «ключевыми». Именно они определяют имеющиеся резервы и, при соответствующей подготовке, - успех обучения.
В процессе повторения и подготовки к экзамену по математике в 2005/2006 учебном году уже в 11 б классе учитель средней школы № 29 г. Йошкар-Олы по рекомендации одного
из авторов уделил наработке решения «ключевых» заданий особое внимание на уроках в рамках отведенного для указанного раздела времени. В Юринской средней школе подобная работа не проводилась. Результаты повторного среза знаний по тригонометрии по аналогичным вариантам в этих же классах указанных школ показали, что средний балл у учащихся 11 б класса средней школы №29 г. Йошкар-Олы составил 3,8 балла, в 11а классе Юринской средней школы этот показатель оказался равным 2,5 балла по пятибалльной шкале.
Таким образом, исследования показали, что выявление «ключевых» заданий или упражнений и их наработка даже при определенном дефиците времени позволяют существенным образом повысить результативность обучения и качество знаний учащихся.
Литература
1. Далингер В.А. Методика реализации внутрипредмет-
УДК 372.854 ББК 74.262.4
ных связей при обучении математике: кн. для учителя. - М.: Просвещение, 1991.
2. Шаталов В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии. - М, 1993.
3. Попов Н.И., Марасанов А.Н. Тригонометрия: учебное пособие. - Йошкар-Ола: Мар. гос. ун-т, 2000.
4. Марасанов А.Н. Об особенностях предвузовской подготовки школьников к экзамену по математике по разделу «Тригонометрия» // Математика. Образование: материалы XV международной конференции. - Чебоксары: Изд-во Чуваш. ун-та, 2007.
5. Зайцев В.Н. Приобщение к поиску: диагностико-технологический практикум: учебное пособие для студентов педагогических специальностей, аспирантов, учителей, руководителей школ. - Йошкар-Ола: МГПИ им. Н.К. Крупской, 2006.
ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИЙ ИНДИВИДУАЛИЗИРОВАННОГО ОБУЧЕНИЯ ПРИ ИЗУЧЕНИИ
ХИМИИ
Т.А. Боровских, кандидат педагогических наук, доцент МПГУ (495) 246-83-54
Практика применения технологий индивидуализированного обучения при изучении химии не велика. По данным опросов, большинство учителей химии либо вообще не знакомы с современными педагогическими технологиями индивидуализированного обучения, либо знакомы с некоторыми из них в общих чертах. Кроме того, респонденты указывали на тот факт, что при длительном применении какой либо технологии она быстро теряет свою эффективность из-за применения однообразных приемов и методов в обучении. Исследование, проведенное автором, показало необходимость сочетания элементов различных технологий индивидуализированного обучения для достижения различных дидактических целей: формирования новых знаний, закрепления, контроля и коррекции знаний учащихся при изучении химии в школе.
Ключевые слова: личностно-ориентированное обучение, планирование результатов обучения, технология индивидуализированного обучения (модульная, интегральная, ТОГИС).
INDIVIDUALIZATION TECHNOLOGIES ON DIFFERENT STAGES OF CHEMICAL EDUCATION
Borovskikh T.A.
The individualized education technology is not widely used in practice. According to an arrogation, the majority of teachers either know nothing on modern pedagogical technologies o individualized education or know something in general outline. Additionally, the respondents pointed out the fact that a technology becomes ineffective after being used for a long time. This can be due to use of monotonous educational procedures and methods. The results of this work made it evident the elements of various technologies of individual education should be combined to attain different didactic aims, namely, forming novel knowledge; consolidaton, control, and correction of the scholar knowledge upon studying chemistry in school.
Keywords: person-oriented education, planning the education results, technology of individual education (modular, integral, TEGIS).
Сегодня в практике школ получили распространение различные педагогические технологии, целью которых является максимальная индивидуализация обучения. Среди них модульно-рейтинговая технология обучения, технология естественного обучения, технология интегрированного обучения, индивидуальная технология обучения, технология коллективного обучения, адаптивная система обучения, технология уровневой дифференциации, интегральная технология, ТОГИС и пр. Тем не менее, как показал опрос ряда учителей, лишь немногие из них (8% опрошенных) применяют какие-либо технологии индивидуализации обучения в своей работе.
Из анализа научно-методической литературы следует, что большинство эффективных педагогических технологий так или иначе концентрируется вокруг четырёх генеральных идей:
• укрупнение дидактических единиц (П.М. Эрдниева);
• планирование результатов обучения;
• психологизация образовательного процесса;
• компьютеризация.
Компьютер сегодня используются и как инструмент управления учебным процессом, и как средство коммуникаций, и как средство усиления интеллекта обучаемых, их развития, т. е. компьютерная поддержка обучения занимает свои естествен-
ные ниши, повышая эффективность процесса обучения, но отсутствие этой поддержки не ведёт к негативным последствиям.
Для большинства технологий индивидуализированного обучения (ТИО) минимальной единицей учебного процесса становится блок уроков, в котором условно выделяют постоянную и переменную части.
Уроки постоянной части, как правило, используют фронтальные методы (лекции, лекции-беседы и т.п.). Это определяется в основном характером учебного материала. Для переменной части в разных технологиях разрабатываются уроки различных типов (семинар (технология Н.П. Гузика), практикум (технология коллективного обучения, адаптивная система обучения), семинар-практикум (интегральная технология В.В. Гузеева)), что «... обеспечивает предметное и личностное развитие ученика через коммуникативную активность и групповую динамику на основе кооперативной мотивации..» [1].
Во всех технологиях индивидуализированного обучения есть система непрерывной обратной связи и динамического управления педагогическим процессом.
В целом можно утверждать, что технологии индивидуализированного обучения обеспечивают каждому ученику право и возможность продвинуться в предмете настолько глубоко, насколько он хочет и может.