УДК 37.09:51
В. М. Марченко, доктор физико-математических наук, профессор (БГТУ);
И. М. Борковская, кандидат физико-математических наук, доцент (БГТУ);
О. Н. Пыжкова, кандидат физико-математических наук, доцент, заведующая кафедрой (БГТУ)
О РАЗВИТИИ ЛИЧНОСТНЫХ КАЧЕСТВ СТУДЕНТОВ ПРИ ИЗУЧЕНИИ МАТЕМАТИЧЕСКИХ ДИСЦИПЛИН
В статье анализируется роль высшей школы в формировании и развитии личностных качеств студентов. Повышенное внимание уделяется особенностям формирования стиля мышления студентов при изучении математических дисциплин. Предлагается новая система оценки знаний студентов на экзамене. Подчеркивается важность личности преподавателя как фактора развития и саморазвития студентов.
The role of higher education in the formation and development of the personal qualities of students is analyzed in the article. Special attention is paid to the features of thinking style formation of students in the study of mathematics. A new system of assessing students on the exam is proposed. The importance of the teacher's personality as a factor of development and self-development of the student's personality is emphasized.
Введение. Целью воспитания в высшем учебном заведении является формирование у студенческой молодежи основополагающих ценностей, идей, убеждений, отражающих сущность белорусской государственности, патриотизма, гражданственности, активной жизненной позиции, политической культуры и личного вклада каждого в становление сильного процветающего государства. Идеологической и воспитательной работе с молодежью уделяется в нашем государстве особое внимание. В Концепции непрерывного воспитания детей и учащейся молодежи в Республике Беларусь определены подходы к процессу воспитания, представлены основные направления воспитания детей и учащейся молодежи, составляющие систему воспитания в нашей стране и базирующиеся на принципах непрерывности и преемственности учебно-воспитательной деятельности. Предусмотрено также усиление идеологического, идейно-нравственного и патриотического направлений воспитания. Концепция закрепляет приоритеты воспитания в учреждениях образования: целенаправленное и активное содействие личностному становлению настоящего гражданина и патриота своей страны [1].
Высшее образование - это тот социальный институт, где происходит наследование, накопление, воспроизводство научных знаний, культурных ценностей и норм. Обучение в учреждении высшего образования является одним из важнейших и наиболее ответственных этапов в воспитании и социализации гражданина, при этом задача вуза - подготовить не только профессионально способного инженера или менеджера, но и всесторонне развитого человека. Период обучения в высшем учебном заведении во многом определяет успешность социального становления личности, ее мировоззрение, пози-
цию в обществе, отношение к общественным интересам и, в конечном счете, формирует общую культуру студента, его гражданскую и профессиональную зрелость. Обучение в учреждении высшего образования - сложный и многогранный процесс, задачей которого является воспитание специалиста, сочетающего в себе профессиональную компетентность, широкую эрудицию, высокий уровень интеллектуального развития и общей культуры в целом. Воспитывающая социально-культурная среда в высшем учебном заведении является важнейшим фактором развития и саморазвития молодого человека. Образование и воспитание неразрывно влияют на формирование студенческой личности.
Основная часть. Идеологическая и воспитательная работа с молодежью в Белорусском государственном технологическом университете (БГТУ) осуществляется в соответствии с основными направлениями государственной молодежной политики Республики Беларусь и включает в себя политическое, нравственное, трудовое, профессиональное, эстетическое, экологическое, физическое и другие направления работы. Согласно Кодексу Республики Беларусь об образовании, ведущей идеей является системное воспитание, предполагающее осуществление целенаправленной работы по формированию духовно-нравственной и эмоционально ценностной сферы личности будущего специалиста с использованием всех возможностей образовательного процесса. Осуществляя цели и задачи, стоящие перед высшей школой, учебно-воспитательный процесс вуза реализует образовательную, воспитывающую, профессиональную и другие функции.
В университете успешно функционирует институт кураторов студенческих академических групп и комнат в общежитии. Куратор группы направляет свою деятельность на фор-
мирование сплоченного коллектива, через актив группы создает атмосферу доброжелательности, взаимопомощи, взаимопонимания, творчества, высокой дисциплины. Важнейшей задачей куратора является оказание помощи группе в достижении высокой успеваемости, вовлечение студентов в научно-исследовательскую, культурно-массовую работу. Целью работы кураторов является формирование у студенческой молодежи основополагающих ценностей, идей, убеждений, отражающих сущность белорусской государственности, патриотизма, гражданственности, активной жизненной позиции, политической культуры и личного вклада каждого в становление сильного процветающего государства.
При несомненной важности всех компонентов идеологической и воспитательной работы одним из основных воспитательных ресурсов вузов является учебный процесс. Преподаватель, как главный субъект этого процесса, должен в полной мере раскрыть и использовать тот воспитательный потенциал, который таится в знании, заложен в процессе обучения. Обучение и воспитание имеют общую цель - формировать личность будущего специалиста, профессионала. Они тесно взаимосвязаны, переплетены, взаимодействуют, дополняя друг друга. В то же время воспитание призвано содействовать духовному и физическому развитию студентов, формированию индивидуально и социально значимых качеств. Основной вид деятельности студентов - учебный труд. Он не только служит источником знаний и умений, развития учебно-познавательной активности и профессиональной подготовки студентов, но и способствует формированию многих нравственных качеств личности: целеустремленности, настойчивости, трудолюбия, стремления преодолевать трудности. Термин «студент» латинского происхождения, в переводе на русский язык означает усердно работающий, занимающийся, т. е. овладевающий знаниями. Преобразование мотивации, всей системы ценностных ориентаций, с одной стороны, интенсивное формирование специальных способностей в связи с профессионализацией - с другой, выделяют студенческий возраст в качестве центрального периода становления характера и интеллекта[2].
С точки зрения психологов, студенты отличаются наиболее высоким уровнем образованности, активным потреблением культуры и высоким уровнем познавательной мотивации. Студенчество - особая социальная категория, для которой учеба - основной труд. Эффективность этого труда проявляется в умении быть успешным в основных формах учебной дея-
тельности: умении слушать и слышать, конспектировать, вести дискуссию, анализировать, отстаивать свои убеждения и т. п. Для студентов первого курса это, как свидетельствует опыт, оказывается проблемой. Первоочередная задача преподавателя на данном этапе - научить «учиться» в широком понимании этого слова: научить планировать, организовывать свою деятельность; понимать цели и задачи, стоящие перед группой; организационно-правовые основы обучения, традиции учреждения высшего образования; ответственность в принятии самостоятельных решений. Преподаватель советом поможет сформировать у студентов умение учиться: выделять главное в изучаемом материале, обобщать и систематизировать материал, видеть структурные особенности различных классов задач, методы и способы их решения, работать с учебной и научной литературой и т. д. На первом этапе чрезвычайно важна разносторонняя педагогическая помощь первокурсникам в организации их жизнедеятельности. Преподаватель является носителем духовных ценностей и выступает как мудрый знающий советчик, внимательный собеседник, с уважением относящийся к сомнениям и поискам студентов. Если профессиональный авторитет преподавателя высок, гражданская позиция логична и принципиальна, то такой преподаватель, его мировоззрение, его общечеловеческая культура становятся для студентов примером для подражания, что делает процесс воспитания наиболее эффективным.
Методологической основой большинства образовательных, специальных дисциплин технического вуза является математическое образование. Математика - это не только универсальный язык для описания и изучения инженерных объектов и процессов, но и фактор, формирующий стиль мышления студентов. Математика ставит проблемы, решение которых требует усилий мысли, упорства, воли и других качеств личности. Изучение высшей математики в высшем учебном заведении должно быть направлено на формирование математической культуры студента как компонента его профессиональной культуры. Мотивация к учению, способность к логическому и алгоритмическому мышлению, гибкие, системные, обобщенные знания, умения, навыки, приемы исследования и решения математически формализованных задач, самоконтроль, культура мышления и речи в комплексе определяют математическую культуру студента. При этом целью обучения является не только достижение способностей и успехов в области математики, но и формирование таких качеств, характерных для творческого мышления, как
строгая логичность, гибкость, воображение, умение абстрагировать и т. д.
Целями и задачами воспитательного процесса при реализации математического образования, на наш взгляд, являются:
- развитие интеллектуальной, эмоционально-волевой и моральной сфер личности;
- развитие самосознания личности, стремления и потребности в самовоспитании;
- формирование трудовых и жизненных навыков;
- формирование ответственного поведения;
- формирование гармонии личных и общественных интересов, умения работать «в команде».
Уровень развития личности в сфере математической деятельности во многом определяет профессиональную мобильность современного специалиста, его способность адаптироваться к новым сферам деятельности, и в целом делает его востребованным на рынке интеллектуального труда. Современный инженер должен разбираться в сложных технологических процессах, понимать их сущность и логическую взаимосвязь, находить верные пути для решения тех проблем, с которыми нужно иметь дело в своей деятельности, ему приходится постоянно пополнять и обновлять свои знания, совершенствовать свой профессиональный уровень. Все это требует комплекса фундаментальных знаний, в том числе математических, получаемых будущим инженером в учреждении высшего образования. Кроме того, недостаточно передать современному специалисту сумму базовых знаний, образование должно дать инженеру умение самостоятельно осваивать новую информацию, творчески мыслить. Таким образом, речь идет о развивающей функции обучения.
Развивающая образовательная среда является важной составляющей повышения качества высшего образования, в том числе инженерного. Изучение влияния образовательной среды на становление, реализацию, самосовершенствование личности профессионала является актуальной проблемой современной педагогики.
Математическая подготовка студентов технических специальностей осуществляется, в основном, на первом и втором курсах, а все специальные дисциплины, связанные с будущей профессией, изучаются, как правило, на старших курсах. На первых курсах студенты осваивают основы и отдельные элементы исследовательской деятельности, развивают навыки самостоятельной работы по углубленному изучению предмета. Педагог призван способствовать развитию личности как тех студентов, которые имеют высокий уровень школьной подготовки, так и слабо подготовленных сту-
дентов. Несомненно, необходим индивидуальный, дифференцированный подход к обучению, учитывающий уровень подготовки, способности студентов, их психологические различия.
Для реализации эффективных форм учебного процесса с учетом специфики личности обучаемого на кафедре высшей математики БГТУ разрабатывается и внедряется уровневая технология организации учебного процесса по высшей математике [3-5]. Целью уровневой технологии организации учебного процесса является создание условий для включения каждого студента в деятельность, соответствующую зоне его ближайшего развития, обеспечение условий для самостоятельного или под контролем преподавателя усвоения программного материала в том размере и с той глубиной, которую позволяют индивидуальные особенности обучаемого, что, в свою очередь, имеет целью формирование математической культуры студента как части его культуры в целом. В соответствии с уровневой методологией организации учебного процесса, разрабатываемой на кафедре, в рамках компетентностного подхода реализуются следующие методические принципы: дифференциация заданий с учетом уровня подготовленности студентов и спецификой специальности; включение в содержание заданий элементов творческой деятельности при решении практических и профессионально направленных задач, способствующих формированию мотивации при изучении предмета. Разнообразие заданий помогает совершенствовать знания студентов, а постепенное нарастание сложности стимулирует проявление и развитие творческих способностей. Уровневая методология учебного процесса пробуждает у студентов интерес к приобретению знаний, ускоряет процесс адаптации для студентов первых курсов, обеспечивает организацию самостоятельной работы студентов и, в конечном счете, позволяет студенту объективно оценить свой уровень подготовки, способности и, как следствие, правильно определить свою образовательную стратегию, что зачастую приносит удовлетворение от получения знаний, тем самым создает в студенческой среде атмосферу взаимной требовательности к овладению знаниями и повышает престиж познавательной деятельности в структуре повседневной жизни студентов.
Такой подход к методике преподавания способствует созданию ситуаций успеха в учебно-познавательной деятельности и в целом направляет процесс обучения не только на усвоение информации, но и на формирование самостоятельности студентов, на раскрытие их личностного потенциала, повышение их внутренней мотивации. Происходит первоначальное
осмысление студентом собственных индивидуальных особенностей усвоения учебного материала. Уровневая методология ориентирована на выполнение важнейшей задачи высшей школы - подготовку специалистов, способных творчески мыслить и самостоятельно работать, определять проблемы и находить пути их решения. Использование уровневой образовательной технологии - один из факторов, способствующих активизации мотивационной сферы, без которой невозможно развитие и саморазвитие личности. Безусловно, преподавателю необходимо использовать средства и методы, которые способствовали бы выработке у студентов мотивации к изучению предмета и давали бы стимул к личностному развитию и профессиональному росту.
Особое внимание следует уделять совершенствованию организации и планирования самостоятельной работы студентов как методу, формирующему будущего специалиста путем индивидуальной познавательной деятельности, при которой наиболее полно раскрываются способности обучаемого, реализуется его творческий потенциал. Самостоятельная работа формирует культуру умственного труда, вырабатывает умение анализировать факты и явления, учит самостоятельному мышлению, самоорганизации в распределении учебных действий во времени, самоконтролю и самооценке. Удельный вес самостоятельной работы в общем учебном времени студента непрерывно растет, и ее следует строить с учетом реального и потенциального уровня развития интеллектуальных качеств и умственных возможностей студента. Эта работа включает разнообразные виды индивидуальной и коллективной деятельности обучающихся на аудиторных и внеаудиторных занятиях, выполнение различных заданий под методическим руководством преподавателя, но без его непосредственного участия. Пошаговый контроль преподавателя постепенно переходит в самоконтроль обучаемого.
Внедрение информационных технологий в учебный процесс (использование презентационных материалов, электронных учебников, интернет-технологий, специализированных пакетов и др.) позволяет гибко сочетать фундаментальную и прикладную составляющие обучения математике. Это особенно актуально для таких учебных курсов, как «Планирование и организация эксперимента», «Эконометрика и экономико-математические методы и модели». Для усвоения наиболее важных тем курса, которые активно используются в прогнозных расчетах, планировании и организации производственных процессов, программой предусмотрено выполнение лабораторных работ с расчетами
на ЭВМ. Планирование самостоятельной работы с использованием информационных технологий, когда в результате деятельности появляется конечный продукт - расчеты, графики, де-монстрацион-ный материал, виртуальный проект и др., активизирует интерес к предмету, демонстрирует применение математических методов при решении инженерных задач, что способствует формированию у студентов математических компетенций. Опыт показывает, что у студентов повышается качество базовых знаний, умений и навыков по математике; развиваются умения осваивать информационные технологии и применять их в процессе математического моделирования; формируются адекватные представления о математической составляющей деятельности выпускника, повышается интерес к будущей профессии. Формирование компетенций выпускника вуза является важным звеном повышения качества высшего образования.
Научно-исследовательская работа студентов, выполняемая во внеаудиторное время, является одним из важных средств формирования исследовательской компетентности будущего специалиста. НИРС, реализуемая кафедрой высшей математики, включает: работу в созданном при кафедре научном кружке; участие в олимпиадах и конкурсах, в том числе в регулярно проводимом сотрудниками кафедры «Математическом аукционе»; выступления с докладами на научных конференциях в учреждении высшего образования, на республиканских и международных конференциях с последующей публикацией результатов исследований в материалах конференций.
В заключение хотим остановиться еще на одной проблеме - недостаточном аналитическом мышлении абитуриентов в результате полученного школьного образования. У них выработана привычка действовать по формулам, в лучшем случае - по аналогии. Они практически не умеют обосновывать, а тем более самостоятельно искать решения и устанавливать новые свойства и т. д. Без умения строго рассуждать и обосновывать (без доказательств) невозможно научиться математическим методам, но школа перестала, по существу, работать над этой стороной математического образования. Что же делать?
В связи с вышесказанным, на кафедре высшей математики в весеннем семестре на отдельных потоках в порядке эксперимента проводится экзамен не в традиционной форме, где теория и практика имели примерно одинаковый вес. В основу новой формы экзамена положено воспитание студента технического вуза как пользователя («user») математических методов
для решения прикладных задач, при этом обоснование, а стало быть, и понимание используемого математического обеспечения, к сожалению, отодвигается на второй план.
Приведем примерную структуру нового билета по математическим дисциплинам: всего 3 теоретических и 3 практических вопроса. В теоретических вопросах требуется сформулировать утверждение (теорему) или метод и, возможно, дать их геометрическую и/или физическую интерпретацию. Первые два практических вопроса относятся к 2-4 самым важным темам в семестре, и эти темы заранее сообщаются студентам, третий практический вопрос охватывает все остальные темы курса (какая именно из оставшихся 6-8 тем будет отражена в вопросе, студентам заранее неизвестно). Экзамен продолжительностью 60-90 минут проводится в письменной форме. Каждый практический вопрос оценивается 2 = 1 + 1 - двумя баллами, каждый теоретический - 1 = 0,5 + 0,5 -одним баллом. В результате, решив полностью две практические задачи по заранее известным темам, можно получить оценку 2 • 2 =4 (четыре), при этом максимально возможная оценка по билету - это 9 = 2 • 3 + 3 (девять). После формулировок теорем и утверждений из билета, которые студент помнит, он приводит и их обоснования (доказательства, если он это сделать в состоянии). Те из студентов, кто по письменному экзамену набирает 7 баллов и выше, идут после проверки письменных работ на устное собеседование по их билетам, где оценка может быть повышена. Следовательно, оценка от 1 до 6 совпадает с баллами, от 7 до 10 получается в результате устного собеседования. Таким образом, доказательства становятся необходимыми только на оценку 10 (десять).
Заключение. Широкое использование демократических принципов, самоуправление, самовоспитание, самообразование, воспитание в духе общности и социальной ответственности, партнерство педагога и обучаемого и т. п. должны стать тенденциями изменения в образовании. Педагогическим условием активизации процесса перехода развития личности в ее творческое саморазвитие является такое образование, которое способствует тому, чтобы личность студента сама все более осознанно и целенаправленно овладевала технологией самопознания и самореализации. Опыт организации системной воспитательной работы на кафедре высшей математики БГТУ свидетельствует о том, что наиболее эффективно она
реализуется через учебный процесс, через педагогику сотрудничества, т. е. через переход преподавателя с позиции носителя знаний на позицию организатора успешной учебной деятельности студента. Влияние личности преподавателя, его нравственный облик, поведение, искренность, общая и духовная культура, идеалы являются средством нравственного воспитания студентов. Высокий профессиональный авторитет преподавателя позволяет при этом развивать культуру умственного труда личности, способность к непрерывному самообразованию и самовоспитанию, потребность в обновлении имеющихся знаний, умении усваивать новую информацию и использовать ее для принятия решений в профессиональной деятельности. При этом представляется весьма актуальным всемерно поддерживать целеустремленность, трудолюбие, ответственность студентов, умение прогнозировать и объективно оценивать личные и коллективные трудовые достижения, способность к профессиональному самосовершенствованию, развитию самосознания личности как самостоятельного субъекта общественных отношений и воспитанию моральных качеств (милосердия, любви, доброты и др.).
Литература
1. Концепция непрерывного воспитания детей и учащейся молодежи в Республике Беларусь (приложение к постановлению Министерства образования 14.12.2006 № 125). Зарегистрировано в Национальном реестре правовых актов Респ. Беларусь 30.12.2006 г. № 8/15613.
2. Педагогика и психология высшей школы / ред. М. В. Буланова-Топоркова. Ростов-на-Дону: Феникс, 2002. 544 с.
3. Марченко В. М., Борковская И. М., Пыжкова О. Н. Уровневая технология преподавания высшей математики в вузе // Труды БГТУ. Сер. VIII, Учеб.-метод. работа. 2009. Вып. X. С. 98-107.
4. Марченко В. М., Борковская И. М., Пыж-кова О. Н. КСР или УСР - к вопросу об организации самостоятельной работы студентов // Труды БГТУ. 2011. № 8: Учеб.-метод. работа. С. 141-145.
5. Марченко В. М., Борковская И. М., Пыж-кова О. Н. О методическом обеспечении и системе оценки знаний студентов в уровневой образовательной технологии // Труды БГТУ. 2012. № 8: Учеб.-метод. работа. С. 39-41.
Поступила 18.06.2014