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On limits of algebraic subgroups

E.B. Vinberg

We shall consider complex algebraic varieties and groups. Both analytic and Zariski
topology will be used. Unless stated otherwise, the analytic topology is meant.

For elements g¢;,...,¢, of an algebraic group G, we denote by (g,,...,9,) the Zariski
closure of the subgroup generated by gi,...,9,. If (g1,...,0,) = G, we say that G is
Zariski generated by g1,...,g, . Any algebraic group is Zariski generated by finitely many ele-
ments. In particular, any connected reductive group is Zariski generated by two elements
[Vi]. Closeness of algebraic subgroups can be evaluated by the closeness of their Zariski
generating sets.

As usually, we denote the tangent Lie algebras of Lie groups G, H,... by the corre-
sponding gothic letters g,h,...

Weset GP=Gx---xG .
~————r
p
Let H be an algebraic subgroup of an algebraic group G, and g¢,,¢5,--- € G . Suppose
that there exists a limit
=lim Ad(g,)h

in the relevant Grassmanian, and set
L = hmgﬂngTI = {hmgnhng;l : hlyhz) e E H}

(Here hy,hs,... are supposed to be-chosen in such a way that limg,h,g;! should exist.)
Obviously, L 1is a subgroup of G .

Theorem 1. L is an algebraic subgroup with tangent algebra [ .

Theorem 2. If H s reductive, then any reductive algebraic subgroup S C L s conjugale to a
subgroup of H .

Page and Richardson [PR] proved the following stability property of semisimple sub-
algebras of Lie algebras:

Let 5 be a semisimple subalgebra of a Lie algebra b, and b a sufficiently small deformation of b .

Then there exists a subalgebra s’ C b' which is isomorphic to s and close to s (as a subspace).
A simple proof of this was given by Neretin [Ne, Lemma in Section 1.4].

Since close semisimple subalgebras of a Lie algebra are conjugate, the above stability
property implies the following theorem: A

(*) Let 5 be a semisimple subalgebra of a Lie algebra g . Then any subalgebra of g, containing a
subspace of dimension dims sufficiently close to s, contains a subalgebra conjugate to s and close to

5 .

Making use of this theorem; we prove the following version of it for algebraic groups.
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(s1,-.., 5p)
a Zariski generating set of S . For any neighbourhood U of e in G there exists a neighbourhood Vv

of s in GP such that any reductive subgroup H C G satisfying the condition HP OV # @, contains
a subgroup gSg=! with g€ U .

Theorem 3. Let 5 be a connected semisimple subgroup of an algebraic group G | and s =

It seems that the assumption on reductivity of H in Theorems 2 and 3 1s superfluous, but I cannot
avoid it.

This work was supported by the grant 95-01-00783a of the Russian Foundation of Fundamental Re-
search and the grant RM1-206 of the Civilian Research and Development Foundation.

1. A property of the exponential mapping. Let G C GL,(C) be an algebraic linear group.

Proposition 1. There exists a positive number ¢ = cg S 7 such that the exponential mapping
exp:g— G

maps diffeomorphically the (open) set U(g, ¢) of elements of g , whose eigenvalues ) satisfy the con-

dition |ImA} < ¢, onto the (open) set U(G,c¢) of elements of G, whose eigenvalues ) satisfy the
condition |arg)| < c .

Proof. The assertion is known for GLn(C), with ¢ = 7 [MN]. It follows that for any positive ¢ £ «

~ 4
the exponential mapping maps diffeornorphically U(g,¢) onto an open subset of U(G,¢) . We are to
prove that, for some ¢ ,

§EUL(C)e) & expf G implies € eg. =

Let & =& + &, be the additive Jordan decomposition of ¢ . Then exp§ = expé, - expé, is the
multiplicative Jordan decomposition of expl  If £¢ U(alu(C),c) , then ¢, ¢, € U(glo(C),c), and if

exp§ € G, then exp&; expl, € G . So it suffices to prove (1) for semisimplé and nilpotent elements.

If ¢ is nilpotent and expé € G, then expté € G for any t€ ¢ and hence € €g.

Let now ¢ be semisimple. If the element exp ¢ belongs to the connected component of G containing
the unit, then it belongs to a maximal torus 7 of G'.In a basis consisting of weight vectors, 7 is

defined by equations of the form

J

in the diagonal entries (eigenvalues) A; ’s. The tangent algebra t of T is defined by the equations

Yomidi=0 (i=1,... m) 2)

J
Obviously, ¢ is diagonal in the same basis. Let Ay,... A, be its eigenvalues. Then

H(e)‘f)”‘f =elimuN = (t=1,...,m),
J

whence

DomiA =0 (mod2ry/T), (t=1...,m). (3)

J
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If ¢ e U(gl.(C),c) with
2

= max; Zj I N I’ (4)
then (3) implies (2),ie., £€g.

If the element exp§ belongs to another connected component of G, say, G, then it belongs to
a maximal toric subvariety S of G, (see [Vi]), which is still diagonal in some basis and is defined by

equations cf the form
X7 =m (=1....m p;je2),
j

where p; ’s are some roots of 1, not all of them being equal to 1 . Obviously, £ is diagonal in the same

basis. Let A1,..., A, be its eigenvalues. Then
H(G)‘J)p” =25 Puts =y (i:l,“.,m). (5)
J
Let px be a primitive g -th root of 1, where ¢>1.1If £ € U(gl.(C),c) with
<= 6
c = 1 1
qZ]- kaj | (6)
then (5) cannot be satisfled, which is a contradiction.
Thus, if ¢ satisfies the inequalities (4) or (6) for all connected components of G, the implication (1)
holds. O
2. A criterion for algebraicity of a complex Lie group. Let G be a complex Lie group, and
Gy its connected component containing the unit.
It is known that, for an algebraic group G,

(A)if g = g59. isthe (multiplicative) Jordan decomposition of an element ¢ € G | then g, € G, g, €
Gy .

Let us call a semisimple linear operator compact, if its eigenvalues are of modulus 1, and positive. if

they are positive. Any semisimple linear operator g can be uniquely represented in the form

9= g8p, (7)
where g, (resp. g, ) is a compact (resp. positive) semisimple linear operator and g.g, = gpg. . Let us
call (7) the polar decomposition of ¢ .

It is easy to see that, for an algebraic group G,
(B) if g = gc.gp is the polar decomposition of a semisimple element g € G , then g. € G, 9, € Go .

It is also easy to see that, if ¢ :G — H is a homomorphism of algebraic linear groups and g = g.g,

is the polar decomposition of an element g € (7 | then ©(g) = ¢(g.)(gp) is the polar decompesition of

the element ¢(g) € H . The analogous property of the Jordan decomposition i1s well-known.
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Proposition 2. A complex linear Lic group G is algebraic if and only if (A) and (B) hold.

Proof. Let {A) and (B) hold, and let G be the Zariski closure of G .

Tt is known (see, e.g., [VO]) that the group (Gy,Gy) is algebraic. Obviously, it is normal in G and

hence in G . Passing to the quotient (/((Gg,Go) we may assume that G is abelian.

Let Gg be the Zariski closure of Gy . We have Go =T x U , where T is an algebraic torus and U
an abelian unipotent group. In view of (A) the subgroup Gy C Gy is the direct product of its projections
to T and U . Since any connected Lie subgroup of U is algebraic, we have Gg =17 x U, where T’

is a connected Lie subgroup of T .

Let 1 (resp. 1, ) be the real Lie subgroup of T consisting of the elements whose eigenvalues are
of modulus 1 (resp. positive). Then T =T, x T, and, for the tangent algebras, we have t, = it | so
T 1s the complex hull of the compact torus T, . In view of (B) 7" is the complex hull of a compact
subtorus TC, C T, . Since the complex hull of a compact torus is an algebraic torus, we have T =T | so
Go=TxU=Gy.

Passing to the quotient G/Gy , we may assume that Go = {e}, i.e. G is discrete. In this case it
follows from (A) and (B) that G is periodic. By a theorem of I.Schur (see, e.g., [CR]), any periodic
subgroup of GL,(C) is conjugate to a subgroup of U, . If, in addition, it is discrete, it 1s finite. So

under our assumption G is finite and hence algebraic. O

3. Proof of Theorem 1. For any n € [ there exist 7y, 75, - € b such that
limAd{g.), = 1

and hence

litng, (exp n, )97t = exp 1.

It follows that

explC L. (8)
Let ¢ = ¢y be chosen as in Proposition 1. Take any h € U(L,¢) . Let hy, hy, - € H be such that
limg”/'zng;l = h. (9

We may assume that h, € U(H,¢) for any n . Then h, =expn, and hence
gnhngyt = exp Ad{gn)nn
for some 5, € U(h, ¢} . In view of (9) we must have
limAd(g)n, =n€l, expn=h.

Thus,
U(L,c) Cexpl. (10)

It follows from (8) and (10) that I is a (complex) Lie group with tangent algebra [ . To prove that
it is algebraic, we are to check that (A) and (B) hold for L .
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Let h € L be defined by (9). Then
limg, (hn)sgnt = hs, im gn(hn)ugn! = ha,

so hg,h, € L . Moreover,
limgn(ha)gnt = ht €L

for any t € C , whence hy, € Ly .
The property (B) 1s checked in the same manner. U

4. Some invariant theory. Let us recall that, for an action of an algebraic group on an algebraic
variety, any orbit is Zariski open in its Zariski closure (see, e.g.. [VO]). It follows that the Zariski closure
of an orbit coincides with its closure in the analytic topology. In particular, an orbit 1s Zariski closed if

and only if it is closed in the analytic topology.

Let now a reductive algebralc group G act on an affine algebraic variety X . The algebra of poly-
nomials on X is denoted by C[X], and the subalgebra of G -invariant polynomials by C[X]¢ . The
categorical quotient of X with respect to the action of G, l.e. the spectrum of C[X]¢ , is denoted
by X/ G , and the factorization morphism X — X/JG defined by the embedding C[X)% c C[X] is
denoted by ¢ . A standard fact of invariant theory is that each fiber of 7 contains exactly one Zariski
closed orbit. (For details see, e.g., [VP].)

Consider the action of a reductive group G on G?P by simultaneous conjugations. Denote by =g

the factorization morphism

g : GP — GPJG.

It is known [Ri] that the orbit of a p-tuple g =(g;....,g,) € G? is closed if and only if the subgroup

(g) = {g1,...,9p) Zariski generated by g is reductive.
For any reductive subgroup H C G the embedding HF C GP gives rise to a morphism
HPJH — GFJG.
The main result of [Vi] is that this morphism is finite. In particular, its image g (H7) 1s closed in
GP G

5. Proof of Theorem 2.. First reduce the proof to the case when G is reductive. Let G bea
maximal reductive subgroup of G containing H , and U the unipotent radical of G . We have

-~

G =UG  (asemidirect product}.

Let
gn = unﬁn (un S lj; Z]—n € 6)

Passing to a subsequence, we may assumc that there exists a limit
I} = lim Ad(7,)h

and thercby a limit

Ly =limg, Hg "

Let T be the projection of L to G . Obviously, L C L; .

424
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Let now S be'the pProjection of § to ¢ Since both § and S are maximal reductive subgroups
in US, they are conjugate in /S and the more in G . We have

§cch1,

so if the theorem holds for reductive groups, S is conjugate to a subgroup of H ip G and, hence, §
Is conjugate to g subgroup of H in ¢

Suppose now that G is reductive. Let s=(s,.. 8p) €SP bea Zariski generating set of § There
exist p-tuples h, € AP such that
s = lim gnhpgrt,

Applying g gives
Tg(s) = lim 7e(hy,).

Since TG(HP) is closed in G?JG (see the preceding section), we get
TG(s) € TG(HP),
L.e. there exists a p-tuple h € HP sych that

Ta(s) = ng(h).

The fiber of TH containing h contajns a closed H -orbit. Replacing h with 4 representative of
this orbit (lying in the same fiber of 7 ). We may assume that the /1 -orbit of B itself is closed. Then
the subgroup (h) C H Zariski generated by h is reductive and, hence, the G -orbit of h is closed.
Since any fiber of TG contains only one closed orbit, it follows that the G -orbits of g and h coincide.

so the subgroups Zariski generated by s and h are conjugate. Thus, S s conjugate to a subgroup of

6. Zariski dense subgroups. The following auxiliary result is needed feir the proof of Theoren: 3.

Proposition 3. Any Zariski dense subgroup T of a connected semusimple algebrac group G

contains a finitely generated Zariski dense subgroup.

Proof. Let us first brove that I' contajns a countably generated Zariskj dense subgroup. Let
I''CT bea countably generated subgroup whose Zariski closure T, = G1 has the maximal dimension
Then the connected component Gy of G, does not change if adding to T, any element of T . [t
follows that G1o is a normal subgroup of G . Passing to the quotient modulo Gip . we may assume
that G = {e} . This means that any countably generated subgroup of I js finite, which is obviously
impossible, unless (G = {e} .

Let now T' be countably generated, and let I2CT bea finitely generated subgroup whose Zariski
closure T, = G2 has the maximal dimension. As above, we reduce the proof to the case Gay = {e} |

which means that any finitely generated subgroup of T' is finite. In this case we are to prove that

We may assume G C GL,(C) . According to a theorem of C. Jordan (see, e.g., [CR]), there exists
an integer m (depending on n ) such that any finite subgroup of GL,(C) contains an abelian normal

subgroup of index <m, or, equivalently, admits 4 homomorphism with an abelian kernel to a group of

order < m .
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Under our assumption we have ['= U:’?__l I, , where
rcr.c...

are finite groups. Passing to a subsequence, we may assume that each T; admits a homomorphism ;
with an abelian kernel to one and the same group A of order < m . Again passing to a subsequence,
we may assume that any 7 € ' has one and the same image in A under all ;’s for sufficiently large
i . Denote this image by ¢(7) . In such a way we obtain a homomorphism ¢ : I' — A, whose kernel
N is obviously abelian. Since I' is Zariski dense in G , the Zariski closure of N is an abelian normal

sdbgroup of G .Hence N is finite, which is impossible, unless G = {e} . O

7. Proof of Theorem 3. Suppose the conclusion of the theorem is false. Then for some neighbour-
hood U of ¢ in G there exist reductive subgroups Hy, Hy, - C G and p-tuples hi, hy, ... (h, € HE)
such that

s = lim hy, : (11)

but for any n and g € U
ang'sy—l- (12)

We are going to show that one may assume all Hy,’s to be conjugate to one and the same connected
going g

semisimple subgroup, and then to apply the theorem of Page and Richardson cited in the introduction.

Any reductive group H is a product of its connected component Hg and some finite group (see,
e.g., [Vi]). In view of this the Jordan theorem (see the preceding section) implies the existence of an
integer m (depending on G ) such that for any reductive subgroup H C G the group H/Ho admits

a homomorphism with an abelian kernel to a group of order < m .

Passing to a subsequence, we may assume that for each n the group H,/H,o admits a homo-
morphism with an abelian kernel to one and the same greup A of order < m . Denote by ¥n the
composition of this homomorphism and the canonical homomorphism H,, — H,/Hno . Again, passing

to a subsequence, we may assume that ¥n(h,) is one and the same p-tuple (81,...,6p) € AP .

Let F be a free group on p generators and o @ [ — A the homomorphism taking the i-th
generator to §; . Its kernel is a (normal) subgroup of finite index in F and hence finitely generated. Let

wy, ..., w, besome generators of it. These are some words in p letters.

The subgroup generated by the elements wy(s),. .., wy(s) € S has finite index in the subgroup r
generated by s1,...,8p and hence is Zariski dense in S . At the same time the subgroup generated by
wi(hy),. .., wy(h,) is contained in the kernel of ©,, . Replacing s with the g—tuple (wy(s),. .., wy(s))

and h, with the g-tuple (wi(hn),...,wy(hs)), we reduce the proof to the case when the group

H,/Hno is abelian for any n .

Assuming this and coming back to the former notation, consider the commutator subgroup T of I'.
Since T is Zariski dense in S, I' is Zariski dense in S’ = S . By Proposition 3 I’ contains a finitely

generated subgroup T, which is still Zariski dense in S . Let F be a free group on p generators and

wy, ..., wy € F' some words such that wi(s), ..., wy(s) generate I'; . Note that under our assumptions
wi(hn), ..., we(ha) € Hno - Replacing s with the p-tuple (wy(s), ..., we(s)) and h, with the p-
tuple (wy(hn), ... wq(hn)) . we reduce the proof to the case when the group Hp is connected for any

n.
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Repeating this trick, we reduce the proof to the case when H, is connected and semisimple for any

Since there are only finitely many conjugacy classes of connected semisimple subgroups in G, we
may assume that each subgroup H, is conjugate to one and the same connected semisimple subgroup

H C G . Furthermore, we may assume that there exists a limit
[=1lim §,

and thereby a limit

F 1. 77
L= lu“ iln

in the sense of this paper (see the introduction). By Theorem 1 L is an algebraic subgroup with tangent

algebra I.

It follows from (11) that L D S . Hence (D s , and, for sufficiently large n , h, contains a subspace
of dimension dim s arbitrarily close to s . By the theorem (*) stated in the introduction this implies
that, for sufficiently large n, h, contains a subalgebra Ad(g)s (and, hence, H, contains the subgroup
9Sg™1) with g € U, which contradicts (12).
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