Научная статья на тему 'О НЕКОТОРЫХ МЕТОДАХ ЭКОНОМИИ ПРИ ВЕДЕНИИ КОММЕРЧЕСКОГО УЧЕТА ВОДЫ И ТЕПЛА'

О НЕКОТОРЫХ МЕТОДАХ ЭКОНОМИИ ПРИ ВЕДЕНИИ КОММЕРЧЕСКОГО УЧЕТА ВОДЫ И ТЕПЛА Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
36
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Каргапольцев В. П., Лупей А. Г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «О НЕКОТОРЫХ МЕТОДАХ ЭКОНОМИИ ПРИ ВЕДЕНИИ КОММЕРЧЕСКОГО УЧЕТА ВОДЫ И ТЕПЛА»

КАРГАПОЛЬЦЕВ В.П., начальник лаборатории теплоэнергоресурсов Кировского Центра стандартизации и метрологии

ЛУПЕЙ А. Г.,

зам. главного метролога

ОАО «Ленэнерго»

ЯЦ

доя

шя

ПРИ ВЕДЕНИИ КОММЕРЧЕСКОГО УЧЕТА ВОДЫ И ТЕПЛА

В последнее десятилетие проводится массовое внедрение приборов учета воды и тепла, разрабатываются новые нормативные документы по учету. Общая координации действий в этой сфере отсутствует, поэтому документы очень часто противоречат друг другу, имеют много слабых мест. «Правила учета тепловой энергии и теплоносителя» утверждены только в 1995 году, но уже сейчас многие специалисты признают, что они морально устарели. ГОСТ Р 51649-2000 «Теплосчетчики для водяных систем теплоснабжения. Общие технические условия» принят только в 2000 году, но и сейчас установленные в нем требования к испытаниям не выполняются. В частности, приборы не проходят испытания на электромагнитную совместимость, хотя качество электроэнергии в наших коммунальных сетях оставляет желать лучшего. Сегодня ни один из испытательных центров не проводит предусмотренные ГОСТом испытания на предмет проверки защищенности от несанкционированного доступа в память приборов.

Нужно учитывать также и подход наших потребителей к самой проблеме энергосбережения. После установки прибора учета многие потребители задумываются - а как снизить платежи за тепло и воду? Казалось бы, ответ прост и логичен - надо экономить на фактическом потреблении! Однако на практике иногда все оказывается не так. Потребитель часто решает проблему более простым способом - манипуляциями с прибором учета. А поскольку теплосчетчик достаточно сложен по устройству, алгоритмам работы, монтажу, эксплуатации, то и возможностей фальсификации здесь намного больше. Доказать же, что потребитель сознательно искажает показания приборов, очень сложно по ряду причин.

Каким образом сегодня корректируются показания приборов? Начнем с водосчетчиков и не будем касаться таких «древних» методов, как манипуляции с пломбами.

Способ, иногда применяемый владельцами приусадебных участков для снижения затрат на воду, расходуемую для поли-

ва. Потребитель решает установить водосчетчики. Он покупает самый дешевый и ненадежный (по отзывам соседей и знакомых) водосчетчик, согласует его применение с поставщиком воды. В соответствии с отечественными стандартами минимальный расход, фиксируемый водосчетчиком, составляет 30 л/ч. Есть еще порог чувствительности, на котором счетчик должен начать вращаться, но при существующем качестве водопроводной воды уже через две-три недели счетчик кое-как вращается и на минимальном расходе. Кран открывается так, чтобы расход составлял менее 30 л/ч. При этом счетчик вообще не фиксирует разбор воды, т.е., установив прибор, потребитель получает возможность законно не платить за воду. Установив расход, например, в 20 л/ч, можно получить за сутки 480 литров чистой питьевой воды абсолютно бесплатно!

Другой, чуть более сложный способ. Он уже требует определенных затрат, но более удобен для городской квартиры. При монтаже счетчика требуется установка сетчатого фильтра с пробкой, которая, как известно, не пломбируется, поскольку периодически требуется чистка фильтра. Потребитель покупает в хозяйственном магазине гибкий шланг (подводку), вкручивает его на место снятой сливной гайки фильтра и получает воду в обход счетчика. При приходе инспектора «Водоканала» для проверки счетчика (что случается весьма редко), инспектора достаточно подержать за дверью пару минут, чтобы за это время вывернуть гайку шланга и поставить штатную пробку.

Следующий способ для той же конструкции узла учета воды более прост: к стакану сетчатого фильтра прикрепляется тонкая проволока и пропускается в трубу по ходу воды. Проволока тормозит вращение турбинки счетчика и показания значительно занижаются.

Большинство применяемых сейчас водосчетчиков - так называемые «сухоходы». Они состоят из двух частей: турбинка,

мжж регулирования тэк: регюны и федерация

вращающаяся в воде, и счетный механизм, отделенный от тур-бинки герметичной перегородкой. На турбинке крепятся один или несколько маленьких магнитов. Вода вращает крыльчатку, под воздействием вращения магнитов за герметичной перегородкой вращается металлическое кольцо, вращение кольца передается на счетный механизм. Суть следующего способа занижения показаний - торможение крыльчатки путем установки наружных магнитов, положение которых определяется опытным путем.

После знакомства со всеми этими способами несколько по-иному начинаешь смотреть на положительные заключения различных организаций по результатам внедрения водосчет-чиков. Понятно, что если установить в жилом квартале квартирные счетчики воды, то сумма их показаний (например, за месяц) будет меньше расчетной величины, определенной по соответствующим нормативам. Это не подвергается сомнению. Однако ни в одном из отчетов, ни в одной из многочисленных статей авторы не встречали упоминания о том, что где-то после установки квартирных водосчетчиков уменьшилось общее водопотребление города, района, поселка. На практике одновременно с внедрением водосчетчиков растет небаланс между результатами учета отпуска и потребления, и рассмотренные выше манипуляции с приборами вынужденно списываются на потери в распределительных сетях.

Теплосчетчик состоит из трех основных блоков - расходомер, термопреобразователи, тепловычислитель, и корректировки возможно вносить, манипулируя любым из блоков.

Тахометрические расходомеры теплосчетчиков имеют те же варианты корректировки, что и названные выше для водосчетчиков.

Электромагнитный расходомер конструктивно состоит из двух магнитных катушек, установленных под и над трубой, двух измерительных электродов, расположенных горизонтально. На катушки подается переменное напряжение известной частоты и формы. С электродов снимается сигнал, пропорциональный расходу жидкости. Для корректировки показаний прибора снаружи датчика расхода устанавливаются дополнительные

магнитные катушки, напряжение на которые подается в про-тивофазе напряжению катушек прибора. Таким образом подавляется полезный сигнал и занижаются показания. К счастью, этот способ пока не получил широкого распространения, т.к. требует определенной квалификации исполнителя.

Вихревой расходомер конструктивно состоит из треугольной призмы, вертикально установленной в трубе, измерительного электрода, вставленного в трубу далее по течению жидкости, и установленного снаружи трубы постоянного магнита. Манипуляции сводятся к искажению магнитного поля постоянного магнита расходомера. Для этого применяют набор постоянных магнитов. Их расположение выбирают опытным путем. Таким способом возможно значительно поднять нижнюю границу диапазона измерений прибора. Другой способ искажения показаний вихревых расходомеров - завихрение и закручивание потока воды, например, смещением при монтаже прокладки между фланцами прибора и трубопровода, что тоже занижает показания.

Термопреобразователи устанавливаются в подающий и обратный трубопроводы и подключаются линиями связи к теп-ловычислителю. Несложный, но эффективный способ занижения показаний теплосчетчика - подключение параллельно термопреобразователю, установленному на подающем трубопроводе, резистора с переменным сопротивлением. Такое включение занижает температуру подаваемой из теплосети воды, причем величина требуемой «экономии» регулируется подбором сопротивления резистора.

Все указанные способы «энергосбережения» не идут ни в какое сравнение с возможностями корректировки показаний микропроцессорного тепловычислителя. Вот характерная цитата из журнала «Законодательная и прикладная метрология»: «цифровые устройства позволяют обманывать с невиданными ранее возможностями». Авторы вынуждены согласиться с этим утверждением, ибо это есть очень точное описание ситуации в теплоучете, складывающейся в последние годы.

Известно, что действующие «Правила учета тепловой энергии и теплоносителя» требуют измерения и регистрации боль-

22-я минута 12-го часа 27.02.03. Вес импульса М2 уменьшен на ЗУо.-!^

5М1сред=-1,68%

■М1, т за час - М2, т за час -сШ1,% от М2

Дата, время

-1-1-1-1-1—г-

т— со 05 т- ь. со да т— со да со да т- г-» со да Г—

Г} со т- т- со со т- «о со Г* т- СО со т~ т- «о со т— со

о о ео СО о о со со о в со ео О о со п в о со со о

см N о О (М см в о ем см о О см см о О со со о о со

о О ем см о о см см о о см см о о ем см о о «о м о

к» ю о о (О СО о о ь- о о 40 00 о о ^ о о сч

04 сч та еч! ю N см см ф см со ем ем ем 1-» ем г- см см см ю см ®0 см о о ¿9 о о

Рис. 1. Изменение во времени среднечасовых расходов М1 и М2 на вводе системы отопления и относительного расхождения их показаний

того количества величин; эти требования возможно реализовать только на базе цифровых приборов. И за прошедшие 7-8 лет в Госреестр средств измерений РФ внесено порядка 400 теплосчетчиков и расходомеров, большинство из которых цифровые. В 2000-м году вышел ГОСТ Р 51649-2000. Не случайно в нем содержится следующее требование: «программное обеспечение теплосчетчиков должно обеспечивать защиту от несанкционированного вмешательства в условиях эксплуатации».

В самом деле, теплосчетчик - это прибор коммерческого учета, некий аналог кассового аппарата. Всеми признано, что кассовый аппарат должен иметь фискальную память, защищенную от несанкционированного доступа. К сожалению, осознание необходимости защиты теплосчетчиков и расходомеров от вмешательства пришло с большим опозданием, и до сих пор ни один из государственных центров испытаний средств измерений такие испытания не проводит.

Что же сегодня происходит на практике? Теплосчетчик, как цифровой прибор, имеет соответствующее программное обеспечение. Потребитель тепловой энергии обычно вместе с теплосчетчиком приобретает и программное обеспечение, при помощи которого он может вывести данные из памяти прибора через интерфейс на компьютер, в локальную сеть, на принтер и т.д. Но на предприятии-изготовителе существует, кроме того, калибровочное программное обеспечение. Оно используется для настройки прибора при выпуске из производства, а также для корректировки калибровочных коэффициентов в случаях, когда прибор не прошел очередную поверку. Понятно, что калибровочные программы должны быть недоступны широкому кругу лиц.

К сожалению, сейчас складывается тревожная ситуация, связанная с тем, что изготовители приборов нередко передают специальные калибровочные программы внедренческим предприятиям. Почему? Видимо, потому, что качество приборов оставляет желать лучшего, в процессе эксплуатации при многоле.них межпроверочных интервалах (МПИ) характеристики приборов «плывут», появляются сверхнормативные расхождения показаний расходомеров в подающем и обратном трубопроводах, «зависает» программное обеспечение и т.д. У энергоснабжающих организаций часто возникают сомнения в достоверности показаний приборов. И тогда сервисная фирма или потребитель обращаются на завод-изготовитель с просьбой отремонтировать прибор. Очевидно, что изготовитель не заинтересован в том, чтобы его прибор имел плохую репутацию в регионе, где он эксплуатируется, и передает сервисной фирме калибровочную программу. Представитель сервисной фирмы загружает программу в ноутбук, подключает ноутбук к штатному интерфейсному разъему теплосчетчика, снимает и анализирует архивные данные, пересчитывает калибровочные коэффициенты и вводит их новые значения в память теплосчетчика. В результате таких «наладочных» работ нуждающийся в ремонте теплосчетчик снова «хорошо показывает» или начинает демонстрировать заметную «экономию».

Интерфейсный разъем не может быть опломбирован энер-госнабжающей организацией, поскольку он предназначен для периодического съема архивов при подготовке ежемесячных отчетов. Сервисная фирма также заинтересована в наличии у нее такой программы с тем, чтобы у поставщика и потребителя не было претензий к точности выполняемых измерений и качеству обслуживания приборов. Потребитель тепловой энер-

гии заинтересован в сотрудничестве с сервисной фирмой, имеющей калибровочную программу, для исключения конфликтов с энергоснабжающей организацией при сбоях в работе прибора и, в отдельных случаях, для решения вопросов «практического энергосбережения».

Таким образом, и изготовители приборов, и сервисные (внедренческие) фирмы, и потребители тепла заинтересованы в негласном распространении специальных программ, способных в обход существующих защит, блокировок и пломб проникать в память микропроцессорных вычислителей. Понятно, какими будут результаты коммерческого учета при таком единстве интересов.

При анализе результатов измерений, накопленных теплосчетчиками на месте их эксплуатации, факты несанкционированного вмешательства в метрологические или эксплуатационные настройки становятся очевидными, при этом наиболее часто встречаются случаи тайного вмешательства в метрологические настройки каналов измерения расхода теплоносителя.

Обратим внимание на рис. 1, где в наглядном графическом виде показан пример «ремонта» теплосчетчика прямо на месте эксплуатации, без его отключения и демонтажа, видимо, с применением ноутбука и «сервисной» программы.

По данным энергоснабжающей организации данный узел учета оснащен весьма современным теплосчетчиком и введен в эксплуатацию осенью 2002 г. Но уже к февралю 2003 г. сервисная организация, обслуживающая этот узел учета, обнаружила заметное отставание показаний канала М1 от соответствующих показаний канала М2 (измеренная «утечка» и несанкционированный водоразбор составили около минус 120 тонн за месяц).

Отрицательное расхождение каналов измерений М1 и М2 в закрытой системе на -1,7% «наладчику» показалось неприличным, и «эффективное» решение проблемы было найдено: на 22-й минуте 12-го часа 27-го февраля (видимо, после снятия данных для февральского отчета) цена импульса расходомера обратной воды была уменьшена ровно на 3,0%1 И это при том, что допускаемая погрешность измерения расхода для данных расходомеров равна ±1%. Таким образом, отрицательная поправка к показаниям расходомера М2 троекратно (!) превысила метрологический допуск!

В результате такой тайной «наладки» (энергоснабжающая организация, как всегда, оказалась не в курсе этого события) образовалась «утечка» положительная (около 100 тонн в месяц). И здесь вполне уместно предположить, что таким вот образом сервисная организация решила скомпенсировать убытки, ранее причиненные поставщику тепла своим безответственным «сервисом».

Конечно же, сервисная организация не призналась в факте самовольного и незаконного вмешательства в работу защищенного и всеми опломбированного коммерческого узла учета, тут же предложив собственную «правдоподобную» версию этого явления: коль скоро «наладчики» сервисной фирмы тут ни при чем, то скачкообразное уменьшение показаний канала измерений М2 ровно на 3% произошло как бы «само по себе».

Приведем еще один наглядный пример тому, как «сами по себе» по рабочим дням и в рабочее время изменяются важнейшие настройки тепловычислителей, непосредственно влияющие на результаты учета и, следовательно, на объемы пла-

тежей за потребляемые тепловую энергию и теплоноситель.

На рис. 2 приведен график изменения во времени среднечасовых относительных расхождений измеренных часовых энергий \А/ (хранящихся в часовых архивах) и их упрощенных расчетных аналогов Wpаcч=0,00^[M^(tl-t2)+(M^M2)•(t2-txв)]. При этом для определения У/расч были использованы значения М1, М2, 11 и \2 из соответствующих часовых архивов, а среднечасовые расхождения для каждого часа были рассчитаны по формуле 5УУ=[(УМл/расч)/\А/расч]100%.

Как видно из рис. 2, в начальный период времени среднечасовые значения 5\¥ близки к нулю, что однозначно свидетельствует о том, что до 16-го часа 19-го декабря в теплосчетчике применялась полная формула расчета теплопотреб-ления \Л/=0,001 -[М1 -(Ы -Ь2)+(М1 -М2)-(Ь2-Ьхв)]. Но 19-го декабря кто-то решил, что теплосчетчик, видимо, «много показывает», и на 16-м часе суток (примерно в 15:40) скачкообразно возникла систематическая нехватка энергии в часовых архивах на среднем уровне -4,7%.

Более детальное изучение этого явления показало, что в этот момент времени таинственным образом выполнено переключение опломбированного тепловычислителя на «неполное» уравнение измерений \А/от=0,001 -[М1 -(Ы -Н2)], что и привело к потере (обнулению) «учетной» составляющей Wгвc=0,001 -[(М1-М2)-(Ь2-11хв)] и, как следствие, к систематическому занижению теплопотребления на уровне -4,7%. Однако и в данном случае сервисная организация активно отрицала факт тайного переключения уравнений измерений тепловой энергии, и, коль скоро «наладчик» не был пойман с поличным в присутствии свидетелей, то и доказать преднамеренность тайного искажения результатов учета весьма непросто. А вдруг в самом деле разработчик такого «современного» теплосчетчика и сервисная организация тут ни при чем, а вся эта «экономия» то и дело происходит исключительно из-за случайных программных сбоев, которые почему-то никогда не случаются ранним утром или поздним вечером, по выходным или праздничным дням?

По данным авторов, уже многие типы цифровых тепло-

счетчиков могут быть перенастроены без снятия пломб через интерфейс или клавиатуру при помощи калибровочных программ или известных кодов доступа. Для входа в калибровочную программу достаточно предъявить «пароль», т.е. одновременно нажать некоторую комбинацию клавиш на лицевой панели прибора. Известны типы теплосчетчиков и расходомеров, у которых для входа в режим корректировки калибровочных данных необходимо к известному месту корпуса прибора просто поднести специальное устройство.

Однако публично доказать факт несанкционированного доступа, а особенно его преднамеренный характер, практически невозможно - официальные структуры пока не проявляют практического интереса к этой проблеме, а энергоснаб-жающие организации просто не имеют специалистов требуемой квалификации для компетентного проведения сложных экспертиз программного обеспечения, применяемого в тех или иных теплосчетчиках или расходомерах.

На основании вышеизложенного авторы считают необходимым в ближайшее время:

- скорректировать отечественные стандарты на водосчет-чики в части снижения минимального измеряемого расхода до 6 литров в час, что приведет их в соответствие европейским стан да ртам;

- разработать и внедрить в практику проливные поверочные установки с минимальным воспроизводимым расходом 6 л/ч;

- разработать для персонала сбытовых подразделений водо- и теплоснабжающих организаций, предприятий Госэ-нергонадзора методики выявления фальсификаций при ведении учета водо- и теплопотребления;

- считать обязательным при испытаниях для целей утверждения типа теплосчетчиков и расходомеров проведение испытаний по обеспечению надежной защиты от несанкционированного вмешательства в условиях эксплуатации.

Одна из проблем, возникающих при эксплуатации расхо-домеров-счетчиков - проведение периодической поверки для подтверждения характеристик приборов требованиям уста-

1

>5

о (-

о.

X ©

Ф X о

0 X о го а. >5 У

0 и

X го

Й у о.

® о 1-

о X го а. о

л X о"

Ц >х 0 5 «5

5 X

О X

0 ®

X а.

1- ®

О « X

-1 -

-3 -

-4 -

• > Номер часа в архиве

^ ■"МрЧге ОУ а>* (Ч" г*^ т- 10 со^ ЦСгХ СМ^Ь-ГОСМ-'ФСОСВт- ч- т- V т- СМ ■ 1 1 1 1 т- Ю О СО Ь- ч-■ч- <0 СО т- ГО <0 см см см со со со

В четверг, 19.12.02, на 16-м часу суток, произведена несанкционированная замена формулы расчёта тепла \А/=М1*(М -Ихв)-М2*(И241Хв) - на формулу У\?=М1*(М-112) \

> )

: 8\Л/=[(\Л/-\Л/расч)/\Л/расч]*100%

Рис. 2. Изменение во времени относительного расхождения часовых измеренных и расчетных энергий

новленных норм точности. Для подтверждения требуемой точности необходимо обеспечение средств измерения расхода эталонной базой - проливными поверочными установками.

В последние годы номенклатура применяемых приборов учета объемного расхода жидкостей значительно расширилась как за счет освоения производства расходомеров отечественными производителями, так и за счет поставок из-за рубежа. Метрологическая база для их обслуживания в регионах, как правило, отсутствует. Существующие поверочные установки имеют низкий класс точности, невысокую производительность, не всегда позволяют провести поверку приборов, предназначенных для использования в составе информационно-измерительных систем.

Отсутствие специализированных поверочных установок приводит к тому, что приборы больших типоразмеров поверяются на пониженных расходах поверочной жидкости. Метрологические характеристики расходомеров при больших расходах считаются неизменными без достаточных обоснований. Поэтому учет расходов жидкостей далеко не всегда можно считать достоверным.

Основные требования, предъявляемые к проливным поверочным установкам, могут быть изложены в следующих пунктах:

1) установки должны обеспечивать воспроизведение расходов и поверку расходомеров в достаточно широком диапазоне расходов с сохранением своих характеристик по погрешности;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2) необходимо обеспечение возможности поверки расходомеров как новых типов (с встроенными интерфейсами 155232, 135485, с выходными электрическими аналоговыми или импульсными) сигналами, так и расходомеров устаревших серий, имеющих только возможность визуального считывания показаний;

3) установки должны иметь высокий уровень автоматизации с возможностью задания и поддержания с необходимой стабильностью конкретных значений расхода и давления, управления исполнительными устройствами, контроль параметров рабочей среды (жидкости), контроль параметров окружающей среды, ведение базы данных по поверяемым приборам, протоколирования результатов поверки и их документального оформления;

4) программное обеспечение установок должно быть разработано таким образом, чтобы методики поверки расходомеров на установках, во-первых, максимально соответствовали установленным в нормативных или эксплуатационных документах требованиям, во-вторых, для их корректировки требовалось минимальное вмешательство оператора;

5) в программном обеспечении установок должны быть предусмотрены возможности проведения необходимых градуировок, регулировок, настроек измерительных каналов с сохранением результатов этих операций, а также возможность поверки самих установок с минимальными затратами;

6) в установках должна быть предусмотрена возможность защиты от несанкционированного доступа к встроенным средствам измерения, контроля и управления (как на аппаратном, так и на программном уровнях) для исключения возможных настроек и регулировок, которые могут повлиять на метрологические характеристики установок;

7) в целях обеспечения безопасности персонала необходимо предусмотреть устройство «светофор» для сигнализации об аварийных ситуациях, наличие устройств защитного отключения;

8) металлоконструкции установок следует выполнять из нержавеющей стали. Это требование обусловлено наличием в датчиках поверяемых расходомеров остатков технологических жидкостей, приводящих к ускоренной коррозии металлоконструкций установки;

9) в установках должна быть предусмотрена встроенная постоянно действующая система водоочистки для устранения из воды различных примесей;

10) применение экономичных малошумящих циркуляционных насосов. Использование насосов общепромышленного исполнения недопустимо из-за создаваемого ими высокого уровня шума и вибрации, недопустимых в поверочных лабораториях;

11) применение эталонных расходомеров и тензодатчиков производства ведущих мировых производителей. Применение датчиков расхода отечественного производства в качестве эталонных проблематично из-за их нестабильности во времени (в особенности на малых типоразмерах 6-10 мм). Отечественные тензодатчики также нестабильны во времени из-за деформаций балки, вызванной неоднородностью структуры заготовки и общепромышленным способом механической обработки заготовки;

12) использование преобразователей частоты со встроенными фильтрами радиопомех и сетевыми дросселями для минимизации влияния электромагнитных помех на поверяемые приборы и элементы поверочной установки. Применение преобразователей частоты позволяет также решить еще одну проблему - исключить пульсации расхода жидкости, генерируемые насосами;

13) должна быть предусмотрена поверка всех встроенных эталонных средств измерений без их демонтажа с мест эксплуатации;

14) широкое распространение массовых расходомеров класса точности 0,15 % требует, чтобы класс точности установок был не хуже 0,05 %;

15) наиболее целесообразно иметь два способа поверки - объемный и массовый. Массовый метод (статического взвешивания) позволяет добиться более высокого класса точности. Применение весовых устройств является более предпочтительным по сравнению с мерными баками и по другим причинам: мерные баки имеют ограниченную зону измерения (горловина) или низкую точность из-за больших диаметров; весовое устройство имеет большой диапазон измерений, а его погрешность не зависит от конфигурации взвешиваемого сосуда; поверка с помощью весового устройства достаточно проста, что позволяет автоматизировать процесс поверки и исключить субъективные ошибки оператора. Применение объемного метода поверки сличением показаний поверяемого и эталонного расходомера позволяет значительно уменьшить затраты времени на поверку, при этом для поверки самих эталонных расходомеров можно использовать встроенные в установку весы;

16) необходимо предусмотреть систему контроля наличия утечек воды из гидравлического тракта;

17) возможность обеспечения в гидравлическом тракте установки давления, предусмотренного методиками поверки на проливаемые расходомеры;

18) система деаэрации должна обеспечивать отделение воздуха, его удаление из гидравлического тракта. Следует предусмотреть в трубопроводах прозрачные участки для визуального контроля за наличием пузырьков воздуха в воде;

19) установки должны быть блочными (изготовлены в заводских условиях) и транспортабельны для обеспечения возможности перевозки к заказчику любым видом транспорта;

20) важным требованием является компактность установки для исключения значительных затрат на строительство новых помещений;

21) кроме необходимых технических характеристик проливная установка должна иметь современный дизайн и обеспечивать персоналу комфортные условия для работы.

i Надоели баннеры? Вы всегда можете отключить рекламу.