ЧЕБЫШЕВСКИЙ СБОРНИК
Том 25. Выпуск 3.
УДК 517 DOI 10.22405/2226-8383-2024-25-3-37-46
О компактности сильно звездных идеалов топологических
пространств
П. Бал, Р. Дас, С. Саркар
Бал Прасенджит — доктор математики, Институт дипломированных финансовых аналитиков Индийского университета Трипура (г. Камалгхат, Индия). e-mail: balprasenjitl 77@gmail. com
Дас Ракхал — доктор математики, Институт дипломированных финансовых аналитиков Индийского университета Трипуры (г. Камалгхат, Индия). e-mail: [email protected]
Саркар Сусмита — магистр, Институт дипломированных финансовых аналитиков Индийского университета Трипуры (г. Камалгхат, Индия). e-mail: susmitamsc94 @gm,ail. com
Аннотация
В этой статье мы вводим понятие сильно звездной I-компактности и изучаем некоторые ее топологические особенности. Мы представляем некоторые свойства конечных пересечений как для I-компактных пространств, так и для сильно звездных 1-компактных пространств. Наконец, мы устанавливаем связь между счетно //¿„-компактным пространством и сильно звездным /^¿„-компактным пространством. Для того чтобы выявить разницу между различными версиями компактности, мы приводим несколько контрпримеров. Также в статье поставлены некоторые открытые проблемы.
Ключевые слова: Звездный идеал, звездный I-компакт, /^¿„-компактное пространство.
Библиография: 21 названий.
Для цитирования:
Бал, П., Дас, Р., Саркар, С. О компактности сильно звездных идеалов топологических пространств // Чебышевский сборник, 2024, т. 25, вып. 3, с. 37-46.
CHEBYSHEVSKII SBORNIK Vol. 25. No. 3.
UDC 517 DOI 10.22405/2226-8383-2024-25-3-37-46
On strongly star ideal compactness of topological spaces
P. Bal, R. Das, S. Sarkar
Bal Prasenjit — Ph.D. in Mathematics, The Institute of Chartered Financial Analysts of India University Tripura (Kamalghat, India). e-mail: balprasenjitl 77@gmail. com
Das Rakhal — Ph.D. in Mathematics, The Institute of Chartered Financial Analysts of India University Tripura (Kamalghat, India). e-mail: [email protected]
Sarkar Susmita — M.Sc. in Mathematics, The Institute of Chartered Financial Analysts of India University Tripura (Kamalghat, India). e-mail: susmitamsc94 @gmail. com
Abstract
In this article we introduce the concept of strongly star I-compactness and study some of its topological features. We represent some finite intersection like properties for both I-compact spaces and strongly star I-compact spaces. Lastly we establish a relation between the countably //¿„-compact space and the strongly star //¿„-compact space. In order to identify the difference between the different versions of compactness we represent some counter examples. And some open problems are also posed in this article.
Keywords: Star Ideal, Star I-compact, //¿„-compact space.
Bibliography: 21 titles.
For citation:
Bal, P., Das, R., Sarkar, S. 2024, "On Strongly Star Ideal compactness of Topological Spaces" , Chebyshevskii sbornik, vol. 25, no. 3, pp. 37-46.
1. Introduction
The the year 1933, the concept of ideals in topological spaces were considered by Kuratowski [15] and has been studied extensively by Vaidvanathaswamy [21] in the year 1946. An ideal I in a topological space (X, t) is a non empty family of subsets of X which satisfies the following properties
(i) X^ I,
(i) A,B e I ^ A u B e I,
(ii) A e I and B c A ^ B e I.
If I is an ideal in a topological space (X, t), then the ordered triplet (X, t, I) is called an ideal topological space (in short ideal space). If I n t = {0}, then I is called a condensed ideal or a boundary ideal [10]. Some simple ideals on a space (X,t) are {0} P(X) (power set of X) and I fin, collection of all finite subset of X The concept of compactness modulo an ideal (also called I-compactness) was first established by Newcomb [17] in the year 1967. Recently this generalization of compactness has attracted a lot of mathematicians in this field [12, 20].
On the other hand, Douwen et. al. [9] generalized compactness with the help of the star operator. In a topological space (X, t ), if M C X and U is a collection of sub sets of X then star of M with respect to U is denoted by St(M,U) and is defined as St(M,U) = {U e U : U n M = 0}. If M = {x}, we write St(x,U) instead of 5i({«},U). In recent days, this operator is being used in the study of selection principles fl, 3, 14], covering properties [2, 4, 5, 8, 6, 7, 19]. In this paper we will use the concept of ideal and star operator simultaneously to generalize the study of compactness of an ideal space.
2. Preliminaries
If A C X, A will denote closure of A. For general symbols and notation of topologv, we follow fill- * _ *
A subset A of a space (X, t ) is said to be a g-closed fl 6] set if A C ^whenever A C U e t. Every closed set is a g-closed set but converse may not be true.
Proposition 1. [11] If f : (X,T,I) ^ (Y, a) is a function, then f (I) = {f (Ii) : Ii e I} is an ideal of Y.
Proposition 2. [11] If I is an ideal of subsets of X and Y C X, then Iy = {Y n I\ : I\ e I} is an ideal of subsets of Y.
Although Newcomb [17] introduced the concept of I-compactness, Rancin [18], Hamlett and Jankovic [13] studied the concept extensively.
Definition 1. [11] A subset A of an ideal space (X,t,I) is said to be compact modulo I or I-compact subset, if for every t-open cover {Ua : a e A.} of A there exists a finite subset {Uai : i = 1, 2, 3,... k} such th at X \ lj£=i Uai e I. If X itself is a I-compact subs et, then (X, t, I) is called an I-compact space.
Definition 2. [9] A topological space (X, t) is called a strongly star compact space if for every open cover U of X, there exists a finite subset F C X such that St(F, U) = X.
3. I-compactness
Since 0 e / for every ideal / of X, every compact space is an /-compact space.
Remark 1. There exists an ideal space (X,t,I) which is I compact but, not, compact.
Let X = N,A = {1, 3, 5, ...},t = {0, X} U {X/P : p e P(A)} and I = P(A).
Clearly (X, t, I) is an ideal space. Let U be an arbitrary non-trivial open cover of X and U = {u1,u2, ...,Uk} is a finite suPset of U. Then there exist pn e P(A) such that Un = X/Pn Vn e {1, 2, 3,..., k} and U = ULi un = Ut=i(x/pn) = X/(ft= i Pn) = X/(nkn=iPn) Therefore, X/ UU' = nkn=lPn e P(A) = I.
Hence (X, t, I) is an I-compact space.
Now consider the countable open cover V = {Vn : n e N}, where Vn = X/{2n-1, 2n+1, 2n+3,...}.
If possible let V = {Vni ,Vn2 ,Vns ...,Vnk} is a finite sub cover of X. Then there exists Wmax = {ni,n2,n3, ...nk} e N.
Therefore, UV = Vnmax = X/{2rimax - 1, 2nmax + 1, 2nmax + 3,...} = X
So, V can not have finite sub cover. Hence (X, t, I) can not a compact space.
Definition 3. In an ideal space (X,t, I), a fam,ily {Ha : a e A} is said to have idealized finite intersection property if for every finite subset Aq e A, P|aeA Ha e I
Theorem 1. For an ideal space (X,t,I), following statements are equivalent:
1. Every family % of closed sets having idealized finite intersection property have P|% = 0
2. (X, t, I) is I-compact.
Proof.
(1) ^ (2)
Let condition (1) holds and U = {Ua : a e A} is an open cover of the ideal space (X,t,I) Therefore, % = {Ha = X/Ua : a e A} is a family of closed sets and
n% = D«ea Ha = flaeA(X/Ua) = x/uaeA ua = x/x = 0
Therefore bv condition (1) the familv % of closed sets must not have IFI property. Thus there exists a finite srbset Ao C A
ruch that. f|«eA Ha e I ^ n«ea0 (X/Ua) e I ^ X/\JaeAo (Ua) e I
So,{Ua : a e A0} is a finite subset of U such that X/{j(Ua) e I. №nce (X,t,I) is an /-compact space.
(2) ^ (1)
Let (X, t, I) is an /-compact space and % = {Ha : a e A} is a family of closed sets having
n% = 0
Then U = {Ua = X/Ha : a e A} is a family of open sets such that U ^aeA(X/Ha) = X/n«€a Ha = X/0 = X.
U is an cover of X. But (X, t, I) is / compact.
Therefore, there exists a finite subset A0 C A Such that X/ |JUa e I
So, {Ha : a e A0} is a finite s r bset of % and Haeao %a e I which is a contradiction to the fact that H has IFI property. Hence, P| % = 0 D
4. Strongly star I-compact space
Definition 4. In an ideal space (X, t,I) a subset B C X is said to be strongly star I-compact subset if for every t-open cover of B, there exists a finite subset M C B Such that X/St(M, U) e I. If X it, self is strongly star I-compact, then we say that (X, t, I) is a strongly star I-compact space.
Since 0 e I, every strongly star compact space is a strongly star I-compact space. But the converse may not true.
Remark 2. There exists a strongly star I-compact space which is not strongly star compact. Let X = N, 0 = {0} U {{n} : n e 2N} U {{1, 2n - 1} : n e N},I = V(2N) and t be the topology generated by ft.
Let U be an arbitrary open cover of X. Then for F = {1}, N/2N C St(F, U) ^ X/St(F, U) C C 2N ^ X/St(F, U) e I.
Therefore, (X, t, I) is a strongly star I-compact space Now, consider the basic open cover ft, then for every finite subset F C X,
St(F, ft) C F U (N/2N) = X Therefore, (X, t, I) can not be a strongly star compact space.
Proposition 3. Every I-compact space is a strongly star I-compact space.
^ Let (X, t, I) is an I-compact space and U be an arbitrary open cover of X. Then there exists a finite subset U' = {U\, U2, U3,..., Uk} C U such th at X/ U^=1 Uk e I
If we take Xi e Ui, Vi = 1,2,3,...,k then F = {x1 ,x2,x3, ...,xj.} C X is finite and Ukl=iUk C St(F,U) ^ X/St(F, U) C X/ Uki=1 Uk e I
Therefore, X/St(F, U) £ I
Hence (X, т, I) is strongly star I-compact space. But the converse of the above proposition may not be true.
Remark 3. There exists a strongly star I-compact space which is not strongly star compact. Let, X = = {$}U {2N} U {{1, 2n — 1} : n £ N} ,1 = P(2N) an d т be the topology generated by p. Clearly, for every open cover U of X, if we take F = {1}, then N/2N С St(F, U) ^ X/St(F, U) С 2N
^ X/St(F, U) £ I Therefore (X,t,I) is a strongly star I-compact.
Now consider the countable open cover U = {Un : n £ N} Where Un = 2N U {1, 3, 5,..., 2n — 1} Suppose that {Uni, Un2, Un3,..., Unk} is a finite subset of X. Then there exists a nmax such that Птах = тах{П1,П2, ...,пк}•
Therefore, Ukl=lUn, = Unmax =2N U {1, 3, 5,..., 2птах — 1} ^ X/ Ul=l Uni — {2Пт(ах + ~1, 2^т<ах + 3, 2^т<ах + 5,...} ^ X/ Ukk=l Uni £ I U can not have a finite subset U such that X/ UU £ I. Therefore (X, t, I) is not I-compact.
L
/-compact space
Strongly star /-compact space
Compact space
Strongly star compact space
Рис. 1: Relation among several variations of compactness.
/
Theorem 2. g-closed subset, of a strongly star I-com,pact space is strongly star I-compact subset.
Proof. Let B be a g-closed subset of a strongly star /-compact space (X, t, I), and let Ube a r-open cover of i.e., B C UW. But B is a g-closed. Therefore, B C UU. So, X/(UU) C X/B. _
Now, V = UU (X/B) become an open cover of X. But X is a strongly star /-compact space. Therefore, there exists a finite subset F C X Such that X/St(F, V) e I. ^ X/(St(F, U) U (X/B)) e / or X/St(F, U) e I. ^ (X/St(F, U)) n B)) e ^ or B/St(F, U) C X/St(F, U) e I. ^ (X/St(F, U)) n B)) e I ot B/St(F, U) e I. ^ B/St(F, U) e / or B/St(F, U) e I.
^ B/St(F,U) e I Therefore, B is a ^^^OTglv star /-compact subset. □
Corollary 1. Every closed subset of a strongly star I-compact space is a strongly star I-compact subset.
Theorem 3. If A and B be two strongly star I-compact subset in an ideal space (X, t, I) then A U B is also an strongly star I-compact subset.
Proof. Let U = {Ua : a e A} be an r-open cover of A u where A and B are strongly star /-compact subset in the ideal space (X,t,I).
Therefore, U is an r-open cover of A as well as for B. Thus there exists a finite sets M C A and N C £ such that A/St(M, U) = h e ^d B/St(N, U) = h e I. Therefore, A = St(M, U) u /1 and B = St(N, U) u h-^ A u B = St(M, U) u St(N, U) u (h u h) ^ A u B = St(M u N, U) u (Ii u h) ^ A u B/St(M u N, U) = (Ii u h) e I
Since M and N are finite, Hence M U N C A U B is also finite.
Hence A U B is a strongly star /-compact subset of X. □
Corollary 2. Finite union of strongly star I-compact subset is a strongly star I-compact subset.
Theorem 4. In a strongly star I-compact space (X, t,I) if B C X is a clopen subset of X, then (B,tb, Ib) is a strongly star Is-compact space.
Proof. ^Let (X,t, I) is strongly star /-compact space and B C X is cl-open. Let U be ar^ open cover of But B is open, therefore, U C r. Also B is closed. Hence V = UU {X/B} is a t open cover of X. But (X,t,I) is ^^^OTglv star /-compact. Therefore, there exists a finite subset M C X such that X/St(M, V) e I ^ B/St(M, V) e IB- We take P = M n B C B Which is a finite subset of B.
Now St(M, V) = St(P, U) U (X/B) or St(M, V) = St(P, U) In both cases B/St(P, U) = = St(M, V) e Ib Hence, (B,tb,Ib) is strongly star /^-compact space. □
Theorem 5. f : (X, t, I) ^ (Y, a) be function from a strongly star I-compact space to a topological space (Y,a) If f is continuous then f (x) is strongly star f (I) compact subset ofY.
Proof.
Let f : (X, t, I) ^ (Y, a) is a continuous function and (X, t, I) is strongly star /-compact. Let, U = {Ua : a e A} be a cover of f (X).
Therefore, V = {f-1(Ua) : a e A} is an cover of ^^ut X is strongly star /-compact. Therefore there exists a finite set F C X, such that X/St(F, V e I. ^ f (X/St(F, V)) e f (I) ^ f (X)/f (St(F, V)) C f (X/St(F, V)) e f (I) ^ f (X )/f (U{f-1(Ua) ev : F n f-1 (Ua) = 0}) e f (I) ^ f (X)/ U {Ua eu : f(F) n Ua = 0} e f(I) ^ f (X/St(F, U)) e f (I)
Here, If (F)| < IF I, ^teefore f (F) is finite. Hence, f (X) is a ^^^OTglv star f (Z)-compact space. □
5. Modified and idealized finite intersection property:
In an ideal space (X, t,I), a familv % of subsets of X is said to have MIFIP if for every finite subset P C X, if n{H e % : P n (X/H) = 0} / I
Theorem 6. In an ideal space (X,t,I), following statements are equivalent:
1. Every family of closed sets having MIFIP has non empty intersection.
2. (X, t, I) is strongly star I-compact space.
Proof. (1) ^ (2)
Let condition 1 holds and U = {Ua : a e A} is an open cover of X. Then % = [X/Ua : a e A} is a family of closed sets such that n% = X/{jaea Ua = X/X = 0.
Since, intersection is empty. The family % Must not have MIFIP. Therefore there exists a finite set P C X such that
0{H e % : P n (X/H) = 0} e I ^f]{X/Ua : a e A and P n Ua = 0} e I ^ X/U{Ua : a e A Mid P n Ua = 0} e I ^ X/St(P, U) e I.
Therefore (X, t, I) is a strongly star /-compact space.
(2) ^ (1) Let (X, t, I) is a strongly star /-compact space and % = {Ha : a e A} be a family of
%=0
Then for the family U = {Ua = X/Ha : a e A} is a family of open sets and UU = X/(naeaHa) = X/0 = X.
Therefore, U is an open cover of X. But X is strongly star /-compact space. So, there exists a finite subset P C X such that X/St(P, U e I. ^ x/{j {U eU : P n U = 0} e I. ^ P{X/U : U e U mid P n U = 0} e I.
^ f]{H e % : P n (X/H) = 0} e I, which is a contradiction to the fact that the family % has n% = 0 □
6. Countably I-compact
Definition 5. An ideal space (X, t, I) is called an countably I-compact space if for every countable open coverU, there exists a finite subset {U\, U2, U3,..., } C U such th at X/(Uk=1Ui) e I
Theorem 7. Every closed subspace of a countably I-compact space is countably I-compact.
Proof. Let (A, ta) be a closed subspace of a countablv /-compact space (X,t,I). Let, Ua = {Uau : n e N} be a TA-open cover of A. Therefore, for every Ua e Ua there exist U e t such that Ua = U n A. Assume that U = {Un : Un n A e UA}
Clearly, V = UU (X/A) is an open cover of X. But X is countably /-compact. Therefore, it has finite subset {X/A, Vi, V2, V3,..., VK} C V such th at X/((Uki=lVi) U (X/A)) = = h e I
(Uk=1 Vi) U (X/A) U h = X A n {(Uk=lVi) U (X/A) U h} = A ^ (A n (Uk=1Vi)) U (A n (X/A)) U (A n h) = A ^ Uk=1(A n Vi)) U 0 U (A n h) = A ^Uk=iUAi U (A n Ii) = A ^ A/ Uk=i UAi = A n Ii e Ia
Therefore (A, ta)is an countable compact subspace of (X,t,I). □
Theorem 8. Every countably Ifin-compact space is strongly star Ifin-compact space.
PROOF. Suppose that (X,t,I) is countablv /-compact but not strongly star /jin-compact. Let U be an arbitrary open cover of X then for every finite subset B C X, X/St(B, U) e Ifin- i-e-X/St(B, u ) = 0'
Consider a point x0 e X
Set other points as xn e X/St({x0,x1, ...,xn-1},U) and construct a countable open cover V = {Vn = St(xn-i,U) : n e N}
Let, А = {xn_i :£ N}. If г/ £ A, we have an open set U £ U (since U is an open cover)such that у £ U. But у £ A, therefore, A nU = 0.
Let, xk-i £ A nU ^U Q St (xk-i, U) ^y £ St (xk-i, U) ^ у £ Vk for som e к £ N. Therefore, V is a countable cover of A. But A is a closed subspace of (X, т, I), A is also countablv //¿n-compact (by Theorem 7). Therefore, there exists finite subset {Vni, Vn2, Vn3,..., Vnp} Q V such that
AAULiVn,) = Ii £ Ifin
^ (u) и Ii = a
^A Q ^ v^Vni) и Ii.
But the construction of V, each V^ can contrnn only one element of A also I, is a finite subset of X A
Hence, (X, т, I) is ад strongly star ijin-compact space. □
Open Problem Does there exists a strongly star //¿n-compact space which is not countablv -f/m-compact.
7. Conclusion
compactness. This covering property can also be expressed in terms of family of closed sets by means of modified and idealized finite intersection property. All countablv //¿n-compact spaces are strongly star //¿n-compact space although their structures are very different. These topological properties can further be used in the study of selection principles and topological games involbing ideals.
СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ
1. Бал П., Бхоумик С. Принцип выбора звезд. Еще одно новое направление // Журнал Индийского Мат. Сообщ.-2017.-81(1-2).-01-06.
2. Бал П., Бхоумик С. О пространствах R-Стар-Линделёфа // Палестинский математический журнал.-2017.-6(2).-480-186.
3. Бал П., Бхоумик С. Некоторые новые принципы выбора звезд в топологии // Филомат.-2017.-31 (13).-4041-4050.
4. Бал П., Бхоумик С. Галд Д. О селективных свойствах Стар-Линделёфа // Журнал Индийского Мат. Сообщ.-2018.-85(3-4).-291-304.
5. Бал П., Кочинац Л.Д.Р. О селективных звездчатых пространствах // Прикладная топо-логия.-2020.-281.-107181.
6. Бал П., Де Р. О сильно звездной полукомпактности топологических пространств // Математический журнал Хайяма.-2023.-9(1).-54-60.
7. Бал П. О классе I-7-открытых накрытий И I-St-7-открытых накрытий // Журнал математики и статистики Хаджеттепе (принято).
8. Бонанзинга \!.. Маесано Ф. Некоторые свойства, определяемые относительными версиями свойств звездных покрытий// Топология и ее приложения.-2022.-306.-107923.
9. Дувен Е.К.В., Рид Г.М., Роско А.В., Три И.Ж.. Свойства покрытий звезд // Прикладная топология,-1991 .-30(1).-71-103.
10. Деви В. Р, Сиврадж, Челвам Т. Т. Коденсированные и полностью коденсированные идеалы. Венгерская математическая академия.-2005.-108(3).-197-205.
11. Энгелькинг Р. Общая топология // Серия Сигма по чистой математике. Пересмотренное и дополненное издание.-Берлин: Хельдерманн.-1980.
12. Гупта А., Каур Р. Компактные пространства относительно идеала // Международный журнал теоретической и прикладной математики.-2014.-92(3).-443-8.
13. Янкович Д, Хэмлетт Т. Р. Новые топологии из старых через идеалы // Американский ежемесячник математики.-1990.-97.-295-310.
14. Kocinac L. D. Принципы выбора звезд: Обзор. Математический журнал Хайяма.-2015.-1(1).-82-106.
15. Куратовски К. Топологии I, Варшава.-1933.
16. Левин Н. Обобщенные замкнутые множества в топологии. Доклады Математического кружка Палермо.-1970.-19.-89-96.
17. Ньюкомб Р. Л. Топологии, которые компактны по модулю идеала. Диссертация на соискание степени доктора наук, Университет штата Калифорния. Санта-Барбара.-1967.
18. Ранчин Д. В. Компактность по модулю идеала, Советская математика. Доклады.-1972.-13.-193-197.
19. Сонг И. К., Сюань В. Ф. Еще о селективно звездно-кубических пространствах // Топология и ее приложения.-2019.-268.-106905.
20. Тягиа Б. К., Сингх С., Бхардвадж М. Идеальные аналоги некоторых вариантов свойства Гуревича // Филомат.-2019.-33(9).-2725-2734.
21. Вайдьянатхасвами Р. Топология множеств. Издательский комплекс «Челси».-1946. REFERENCES
1. Bal, P., Bhowmik, S. 2017, "Star-Selection Principle. Another New Direction", Journal of the Indian Math. Soc., 81(1-2): 01-06.
2. Bal, P., Bhowmik, S. 2017, "On R-Star-Lindelof Spaces", Palestine Journal of Mathematics, 6(2): 480-186.
3. Bal, P., Bhowmik, S. 2017, "Some New Star-Selection Principles in topology", Filomat, 31(13): 4041-4050.
4. Bal, P., Bhowmik, S., Gauld D. 2018, "On Selectively Star-Lindelof Properties", Journal of the Indian Math. Soc., 85(3-4): 291-304.
5. Bal, P., LDR Kocinac. 2020, "On Selectively Star-ccc Spaces", Topology Appl, 281: 107181
6. Bal, P., De, R. 2023, "On strongly star semi-compactness of topological spaces", Khayyam Journal of Mathematics, 9(1): 54-60.
7. Bal, P. "On the class of I-7-open cover AND I-St-7-open cover", Hacettepe Journal of Mathematics and Statistics (accepted).
8. Bonanzinga, М., Maesano, F. 2022, "Some properties defined by relative versions of star-covering properties", Topology and its Applications, 306: 107923.
9. Douwen, E.K.V., Reed, G.M., Roscoe, A.W., Tree, I.J. 1991, "Star covering properties", Topology Appl, 30(1): 71-103.
10. Devi, V.R., Sivraj, Chelvam, T.T. 2005, "Codense and completely codense ideals", Acta. Math. Hungar., 108(3): 197-205.
11. Engelking, R. 1980, "General Topology", Sigma Series in Pure Mathematics. Revised and complete ed Berlin: Heldermann, 1980.
12. Gupta, A., Kaur, R. 2014, "Compact spaces with respect to an ideal", International Journal of Pure and Applied Mathematics, 92(3) : 443-8.
13. Jankovic, D., Hamlett, T.R. 1990, "New Topologies from old via ideals", Amer. Math. Monthly, 97: 295-310.
14. Kocinac, L.D. 2015, "Star selection principles: A survey", Khayyam Journal of Mathematics, 1(1); 82-106.
15. Kuratowski, K. 1933, "Topologie I", Warszawa.
16. Levin, N. 1970, "Generalised closed sets in topology", Rend, Circ. Mat. Palermo, 19: 89-96.
17. Newcomb, R.L. Topologies which are compact modulo an ideal. Ph.D. Thesis, Uni. Of Cal. At Santa Barbara, 1967.
18. Rancin, D. V. 1972, "Compactness modulo an ideal", Soviet Math. Dokl, 13: 193-197.
19. Song, Y. K., Xuan, W. F. 2019, "More on selectively star-ccc spaces", Topology and its Applications, 268 : 106905.
20. Tvagia, В. K., Singh, S., Bhardwaj, M. 2019, "Ideal Analogues of Some Variants of the Hurewicz Property", Filomat, 33(9): 2725-2734.
21. Vaidvanathaswamv, R. 1946, "Set Topology", Chelsea Publishing Complex.
Получено: 28.02.2024 Принято в печать: 04.09.2024