Научная статья на тему 'Numerical solution of a 2d inverse gravimetric problem'

Numerical solution of a 2d inverse gravimetric problem Текст научной статьи по специальности «Медицинские технологии»

CC BY
22
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Numerical solution of a 2d inverse gravimetric problem»

Multiscale and high.performance computing for multiphysical problems

in a continuous medium)in the case of a gas.dust medium.Theinteraction of dust and gas was taken into account

using the IDIC method [1, 2] within the SPH method used to solve gas.dynamic equations.

An important feature of the work is the use of the open computational package OpenFPM, which makes it

easy to carry out parallel computations. The main advantage of this package is the ready.made (implemented

by the authors of the package) and intuitive, automatically parallelizable vector data structures, the use of

which isidentical both in the case of calculations on a personal computer and in the case of using supercomputer

resources. The paper analyzes the efficiency of parallelization of numerical solutions of the considered

problems.

The research was supported by the Russian Science Foundation grant number 19.71.10026.

References

1. Stoyanovskaya et.al., Two.fluid dusty gas in smoothed particle hydrodynamics: Fast and implicit algorithm for stiff

linear drag // Astronomy and Computing, 2018, V. 25, P. 25.37.

2. Stoyanovskaya et.al., Fast method to simulate dynamics of two.phase medium with intense interaction between

phases by smoothed particle hydrodynamics: Gas.dust mixture with polydisperse particles, linear drag, one.dimensional

tests // J. of Computational Physics, 2021, V. 430.

Numerical solution of a 2d inverse gravimetric problem

D. Kh. Ivanov

Yakutsk branch of Regional Scientific and Educational Center �Far Eastern Center of Mathematical Research�

Email: [email protected]

DOI 10.24412/cl.35065.2021.1.02.80

A 2d inverse gravimetric problem is considered. The aim is to recover the shape of an homogeneous

ore body from the observation of the vertical gravity at the ground surface. To overcome the ill.posedness of

such problem we restrict the unknown body to a star shaped domain. The numerical solution of the direct

problem is based on solving an auxiliary boundary value problem in a bounded computational domain coupled

with the surface integral. According to that, for solution of the inverse problem we present aniterative algorithm

based on conjugate gradient method and specific regularization term. To demonstrate efficiencies of the

proposed method we investigate a modelproblem of a simplified body with the analytical solution and noised

input data.

Edge generalizedmultiscale finite element method for scattering problem in perforateddomain

U. S. Kalachikova1, E. T. Chung2, M. V. Vasilyeva3, Y. R. Efendiev4

1M. K. Ammosov North.Eastern FederalUniversity, Yakutsk

2The Chinese University of Hong Kong (CUHK), Hong Kong SAR

3COIFPM, University of Wyoming, Laramie, WY 82071, USA

4Texas A&M University, College Station, Texas, USA

Email: [email protected]

DOI 10.24412/cl.35065.2021.1.02.81

In this work we consider scattering problem in perforated domain. The mathematical modelis described

by Helmholtz problem related to wave propagation with absorbing boundary condition.For the solution of the

problem using classic finite element method, we construct unstructured fine grid that resolve perforation on

the grid level.Such classic approximations lead to the large system of equations. To reduce size of the discrete

system, we construct a novel multiscale approximation on coarse grid. We use the Edge Generalized

i Надоели баннеры? Вы всегда можете отключить рекламу.