Научная статья на тему 'Numerical simulation of a stabilizing Poiseuille-type polymer fluid flow in the channel with elliptical cross-section'

Numerical simulation of a stabilizing Poiseuille-type polymer fluid flow in the channel with elliptical cross-section Текст научной статьи по специальности «Строительство и архитектура»

CC BY
19
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Numerical simulation of a stabilizing Poiseuille-type polymer fluid flow in the channel with elliptical cross-section»

38 Section 1

The research was partly supported by the Ministry of Science and Higher Education of the Russian Federation within

the framework of the state assignment (project Nos. 121030500137.5 and ����.�19.119051590004.5).

References

1. Belyaev V. A. Solving a Poisson equation with singularities by the least.squares collocation method // Numer.Anal.

Appl. 2020.V. 13, N. 3, P. 207.218.

Numerical simulation of a stabilizing Poiseuille.type polymer fluid flow in the channel with elliptical

cross.section

A. M. Blokhin1,2, B. V. Semisalov1

1Novosibirsk State University

2Sobolev Institute of Mathematics SB RAS

Email: blokhin@math.nsc.ru, vibis@ngs.ru

DOI 10.24412/cl.35065.2021.1.00.04

Stabilization of the Poiseuille.type flows of an incompressible viscoelastic polymer fluid is studied using

non.linear rheological relations from [1]. Channels of elliptical and circular cross.sections are considered. In [2]

it was shown that the corresponding stationary formulation admits three different solutions. The process of

stabilization of the flow after the jump of pressure gradient in the channel was simulated using the algorithm

from [3]. The stabilized flow shows which of the three solutions of the stationary problem is implemented in

practice. Simulations in a wide range of values of the physical parameters enable us to discover the effect of

"switching"the limiting solution of the non.stationary problem from one solution of the stationary equations

to another. The scenario of this switch is discussed in detail.

The research has been done under the financial support of the Russian Science Foundation (project No. 20.11.

20036)

References

1. Altukhov Yu. A., Gusev A. S., Pyshnograi G. V. Introduction to the Mesoscopic Theory of Flowing Polymer Systems.

Barnaul: Altai State Pedagogical Academy Press, 2012 [in Russian].

2. Blokhin, A.M., Semisalov, B. V. Simulation of the Stationary Nonisothermal MHD Flows of Polymeric Fluids in

Channels with Interior Heating Elements // J. Appl. Ind. Math.2020.V. 14. P. 222�241.

3. Semisalov B. V. Fast Nonlocal Algorithm for Solving Neumann�Dirichlet Boundary Value Problems with an Error

Control // Vychisl. Metody.Programmirovanie. 2016.V. 17, N. 4. P. 500�522 [in Russian].

The discontinuous shapeless particle methodfor quasi.linear transport

S. V. Bogomolov1, A. E. Kuvshinnikov2

1Lomonosov Moscow State University

2Keldysh Institute of Applied Mathematics RAS

Email: kuvsh90@yandex.ru

DOI 10.24412/cl.35065.2021.1.00.06

Simulation of gas dynamic problems deals with the appearance of discontinuities, more precisely, strong

gradients. The quality of computational methods is assessed primarily by their ability to convey this behavior

of a solution as adequately as possible. In our opinion, the discontinuous particle method [1.3] allows one to

cope with these difficulties better than alternative, traditionally more commonly used difference and finite

element methods. This is achieved because the particle method is based on the Lagrange approach, and this,

in turn, provides automatic mesh generation.

i Надоели баннеры? Вы всегда можете отключить рекламу.