Научная статья на тему 'Нозокомиальная пневмония - принципы ранней диагностики и профилактики'

Нозокомиальная пневмония - принципы ранней диагностики и профилактики Текст научной статьи по специальности «Клиническая медицина»

CC BY
341
68
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НОЗОКОМИАЛЬНАЯ ПНЕВМОНИЯ / НОЗОКОМИАЛЬНЫЙ ТРАХЕОБРОНХИТ / БИОМАРКЕРЫ / ПРОФИЛАКТИКА / СЕПСИС / АНТИБИОТИКИ / ИНГАЛЯЦИОННЫЕ / NOSOCOMIAL PNEUMONIA / NOSOCOMIAL TRACHEOBRONCHITIS / BIOMARKERS / PROPHYLAXIS / SEPSIS / ANTIBIOTICS / INHALATION

Аннотация научной статьи по клинической медицине, автор научной работы — Кузовлев Артем Николаевич, Мороз В.В.

Нозокомиальная пневмония (НП) и нозокомиальный трахеобронхит (НТ) представляют актуальную проблему анестезиологии-реаниматологии. В обзоре литературы изложены результаты собственных исследований по информативности новых молекулярных биомаркеров в ранней диагностике НП, а также современные принципы ее профилактики. Перспективным направлением ранней диагностики НП и ее осложнений является изучение новых молекулярных биомаркеров, в частности белка клеток Клара (CCP) и сурфактантных протеинов. Эффективная профилактика НП должна быть основана на комплексе современных доказательных методов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по клинической медицине , автор научной работы — Кузовлев Артем Николаевич, Мороз В.В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

NOSOCOMIAL PNEUMONIA - PRINCIPLES OF EARLY DIAGNOSIS AND PREVENTION

Nosocomial pneumonia and nosocomial tracheobronchitis present an urgent problem of anesthesiology and critical care medicine. This review presents the results of our own research on the informativity of new molecular biomarkers in the early diagnosis of nosocomial pneumonia, as well as modern principles for the prevention of nosocomial pneumonia. A promising direction for the early diagnosis of nosocomial pneumonia and its complications is the study of new molecular biomarkers, in particular, Clara cell protein and surfactant proteins. Effective prevention of nosocomial pneumonia should be based on a complex of modern evidence-based methods.

Текст научной работы на тему «Нозокомиальная пневмония - принципы ранней диагностики и профилактики»

Нозокомиальная пневмония — принципы ранней диагностики и профилактики

А.Н. Кузовлев, В.В. Мороз

Федеральный научно-клинический центр реаниматологии иреабилитологии, Москва

Нозокомиальная пневмония (НП) и нозокомиальный трахеобронхит (НТ) представляют актуальную проблему анестезиологии-реаниматологии. В обзоре литературы изложены результаты собственных исследований по информативности новых молекулярных биомаркеров в ранней диагностике НП, а также современные принципы ее профилактики. Перспективным направлением ранней диагностики НП и ее осложнений является изучение новых молекулярных биомаркеров, в частности белка клеток Клара (CCP) и сурфактантных протеинов. Эффективная профилактика НП должна быть основана на комплексе современных доказательных методов.

Ключевые слова:

нозокомиальная пневмония, нозокомиальный трахеобронхит, биомаркеры, профилактика, сепсис, антибиотики, ингаляционные

u Для корреспонденции: Кузовлев Артем Николаевич, д-р мед. наук, заместитель директора ФНКЦ РР по фундаментальным научным исследованиям; заведующий лабораторией клинической патофизиологии НИИ общей реаниматологии им. В.А. Неговского ФНКЦ РР, Москва; e-mail: artem_kuzovlev@mail.ru

В' Для цитирования: Кузовлев А.Н., Мороз В.В. Нозокомиальная пневмония — принципы ранней диагностики и профилактики. Вестник интенсивной терапии имени А.И. Салтанова. 2019;2:40-7.

Нозокомиальная пневмония (НП) — заболевание, характеризующееся появлением на рентгенограмме новых очагово-инфильтративных изменений в легких спустя 48 ч и более после госпитализации в сочетании с клиническими данными, подтверждающими их инфекционную природу (новая волна лихорадки, гнойная мокрота или гнойное отделяемое трахеобронхиального дерева, лейкоцитоз и др.), при исключении инфекций, которые имелись в инкубационном периоде на момент

Nosocomial pneumonia — principles of early diagnosis and prevention

A.N. Kuzovlev, V.V. Moroz

Federal Research and Clinical Center of Intensive Care Medicine andRehabilitology, Moscow

Nosocomial pneumonia and nosocomial tracheobronchitis present an urgent problem of anesthesiology and critical care medicine. This review presents the results of our own research on the informativity of new molecular biomarkers in the early diagnosis of nosocomial pneumonia, as well as modern principles for the prevention of nosocomial pneumonia. A promising direction for the early diagnosis of nosocomial pneumonia and its complications is the study of new molecular biomarkers, in particular, Clara cell protein and surfactant proteins. Effective prevention of nosocomial pneumonia should be based on a complex of modern evidence-based methods.

Keywords:

nosocomial pneumonia, nosocomial tracheobronchitis, biomarkers, prophylaxis, sepsis, antibiotics, inhalation

u For correspondence: Artem N. Kuzovlev, MD, DrMed, vice-director for science, head of the laboratory of clinical pathophysiology of critical states of the V.A. Negovsky research institute of general reanimatology Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow; e-mail: artem_kuzovlev@mail.ru

B For citation: Kuzovlev AN, Moroz VV. Nosocomial

pneumonia — principles of early diagnosis and prevention. Alexander Saltanov Intensive Care Herald. 2019;2:40-7.

поступления больного в стационар [1]. Нозокомиаль-ный трахеобронхит (НТ), связанный с проведением искусственной вентиляции легких, — трахеобронхит, развившийся не ранее чем через 48 ч от момента интубации трахеи и начала проведения искусственной вентиляции легких (ИВЛ), при отсутствии признаков легочной инфекции на момент интубации [1].

По данным Яковлева С.В. и соавт. [2], распространенность нозокомиальных инфекций в стационарах Москвы

DOI: 10.21320/1818-474X-2019-2-40-47

составила 7,61 %, внебольничных инфекций — 28,53 %. Наибольшая распространенность нозокомиальных инфекций отмечена в отделениях реанимации — 26,28 % и неврологии — 13,73 %; распространенность нозокомиальных инфекций в терапии и хирургии была примерно одинаковой — 4,76 и 4,12 %, а в урологии — наименьшей, 2,92 %. Среди нозокомиальных инфекций наиболее частыми были инфекции нижних дыхательных путей — 42,4 %. Актуальные возбудители нозокомиальных инфекций у взрослых характеризовались множественной устойчивостью к антибиотикам. НП — наиболее распространенная нозокомиальная инфекция у больных на ИВЛ (9-27 %). В Российской Федерации в 2006 г. было зарегистрировано 25 852 случая НП (заболеваемость 0,8/1000 больных). НП развивается у 0,5-0,8 % госпитализированных больных, а в отделении реаниматологии — в 10-15 раз чаще (9-24 % при ИВЛ более 48 ч) [1-3].

В США для выявления осложнений, связанных с проведением ИВЛ, и эпидемиологического мониторинга за ними (не для клинической диагностики!) используют понятие ventilator-associated event — VAE (событие, связанное с ИВЛ), которое объединяет ventilator-associated condition — VAC (состояние, связанное с проведением ИВЛ), infection-related ventilator-associated complication — IVAC (связанное с инфекцией осложнение, развившееся на фоне проведения ИВЛ) и possible VAP (возможная пневмония на фоне проведения ИВЛ). Диагностические критерии VAE: ухудшение оксигенации после периода стабильности или улучшения клинического статуса больного; системные признаки инфекции; лабораторные признаки инфекции дыхательных путей. Рентгенологические признаки, как наиболее субъективные, исключены из алгоритма диагностики VAE. Данное событие может быть вызвано разнообразными причинами, такими как НП, НТ, острый респираторный дистресс-синдром, кардиогенный и некардиогенный отек легких, тромбоэмболия легочной артерии, ателектазиро-вание и др. Использование данных эпидемиологических критериев позволяет выявить группы больных с наибольшим риском внутрибольничного инфицирования, сопоставить ситуацию в различных учреждениях, оценить эффективность эпидемиологических мероприятий, выявить проблемы и спланировать алгоритмы их решения [1, 4]. В Европе данные критерии не используются.

Ранняя диагностика НП и ее осложнений основывается на использовании чувствительных и специфичных молекулярных биомаркеров в комплексе с клиническими и инструментальными методами.

Биомаркеры — ключ к ранней диагностике нозокомиальной пневмонии

Опыт использования комплексных клинических, лабораторных и инструментальных методов диагности-

ки НП показывает, что диагноз НП достоверен при наличии клинических, рентгенологических и микробиологических критериев. Критерии диагностики НП общеизвестны и изложены в национальных рекомендациях [1]. Полный комплекс критериев выполняется только у 31 % больных. У 47 % больных выявляется лишь сочетание клинических и лабораторных или клинических и рентгенологических, или лабораторных и рентгенологических критериев. У 22 % пациентов удается выявить только один из трех групп диагностических признаков, что делает диагноз НП сомнительным [5]. Биомаркеры обладают значительными перспективами в отношении диагностики и мониторинга эффективности лечения НП, т. к. они позволяют в минимальные сроки и наименее инвазивно получить информацию о состоянии больного. Любой биомаркер должен использоваться только в сочетании с клинической оценкой больного [6].

В наших исследованиях доказано, что белок клеток Клара (CCP) является чувствительным и специфичным диагностическим молекулярным биомаркером наличия Pseudomonas aeruginosa при НП: содержание белка клеток Клара < 17,5 нг/мл, диагностический диапазон 4,5-15,2 нг/мл, чувствительность 92,7 %, специфичность 72,0 %, площадь под кривой 0,84; 95%-й доверительный интервал (95% ДИ) 0,713-0,926; p = 0,0001. Кроме того, по результатам нашего исследования был разработан способ оценки эффективности ингаляционной антибиотикотерапии НП, включающий контроль содержания CCP в сыворотке крови до начала антибактериальной терапии и после первой ингаляции, отличающийся тем, что определяют содержание CCP в сыворотке венозной крови за 1 ч до первой ингаляции антибиотика и через 1 ч после ингаляции с помощью иммуноферментного анализа; увеличение содержания CCP по крайней мере в 1,5 раза свидетельствует об эффективности ингаляционной антибактериальной терапии. Полученные результаты подтверждаются данными ряда экспериментальных работ, в которых показано, что Pseudomonas aeruginosa выраженно угнетает экспрессию проксимальной части промотора гена CCP в альвеолоцитах. Угнетение активности промотора данного гена вызвано главным образом фактором некроза опухоли-а, секретируемым Pseudomonas aeruginosa [7]. В исследовании Hayashida S. et al. на модели мышей, но-каутных по гену CCP, было показано, что интратрахе-альное введение культуры Pseudomonas aeruginosa инги-бирует синтез CCP [8].

Секреторные клетки в терминальных бронхиолах были описаны немецким анатомом Максом Клара (18991966) в 1937 г. [9]. С 1955 г. в литературе появился термин «клетки Клара» (СС10, СС16, утероглобин) [10], CCP был обнаружен в 1984 г. [11]. Клетки Клара представляют собой безреснитчатые клетки, не продуцирующие слизь клетки, расположенные в терминальных бронхиолах. В легких человека они составляют 15-20 % эпи-

телиоцитов, в то время как в легких мышей — 70-90 %. Клетки Клара секретируют ряд биологически активных веществ, которые участвуют в защите и репарации бронхиального эпителия, деградации слизи, регуляции воспаления, детоксикации ксенобиотиков [12]. Повышение содержания CCP в крови при ОРДС связано с повреждением структур аэрогематического барьера и терминальных бронхиол с последующим проникновением белка в кровь. Содержание CCP в бронхоальве-олярном лаваже может выступать в роли предиктора развития острого респираторного дистресс-синдрома (ОРДС) у больных в критических состояниях. По данным Determann R. et al. (2009), развитие ОРДС при НП сопровождается трехкратным приростом CCP в плазме [13]. В исследовании Negrin L. et al. (2017) [14] было показано, что CCP (содержание на 2-е сут после политравмы 30,51 нг/мл, чувствительность 71,4 %, специфичность 69,85 %) информативен для прогнозирования развития НП на фоне ОРДС у травмированных с политравмой. В исследовании Lin J. et al. (2018) доказано, что CCP является чувствительным (90,4 %) и специфичным (79,8 %) маркером повреждения структур аэрогемати-ческого барьера при ОРДС (диагностический уровень 33,3 нг/мл), коррелирует со степенью тяжести ОРДС (т. е. со степенью повреждения структур аэрогематиче-ского барьера), уровень CCP выше у умерших и ассоциирован с большей длительностью пребывания в отделении реаниматологии [15].

Сурфактантные протеины являются важной частью иммунной системы легких. Сурфактант легких человека представляет собой многомолекулярный комплекс, состоящий из фосфолипидов и холестерина (всего 90 %) и сурфактантных протеинов (10 %). Сурфактантные протеины состоят из гидрофильных белков с высокой молекулярной массой, SP-A и SP-D и низкомолекулярных SP-B и SP-C, которые необходимы для формирования биофизических свойств сурфактанта. Сурфактант является не только поверхностно-активным веществом в легких, но участвует в мукоцилиарном клиренсе и обмене жидкости в легких [16]. Сурфактантный протеин D (SP-D) представляет собой молекулу распознавания паттернов, принадлежащую к семейству коллектинов. Человеческие коллектины также включают в себя сурфактантный протеин A (SP-A), который имеет распределение в организме и функции, частично перекрывающиеся с SP-D. Основная функция SP-D — регуляция уровня липидов сурфактанта, а также участие в гомео-стазе фосфолипидов вне легких. Кроме того, SP-D экспрессируется в мышечных клетках и эндотелии, где функционирует как противовоспалительное вещество [15].

В нашем исследовании установлено, что сурфак-тантный протеин D является чувствительным и специфичным диагностическим молекулярным биомаркером повреждения структур аэрогематического барьера при НП, осложненной ОРДС: содержание сурфактант -

ного протеина D > 111,2 нг/мл, чувствительность 68,2 %, специфичность 92,3 % (площадь под кривой 0,85; 95% ДИ 0,684-0,945; p < 0,0001). Комбинированный анализ содержания в крови сурфактантного протеина D, индекса оксигенации и индекса внесосудистой воды легких позволяет значительно повысить площадь под кривой: чувствительность 81,0 %, специфичность 100,0 %, диагностический уровень сурфактантного протеина D > 93,7 нг/мл (площадь под кривой 0,96; 95% ДИ 0,817-0,998; p < 0,0001), индекс оксигенации < 280, индекс внесосудистой воды легких > 8,3 мл/кг [17].

При ОРДС повышение SP-D в плазме обусловлено повреждением структур аэрогематического барьера с повышением его проницаемости для SP-D, а также пролиферацией альвеолоцитов II типа и увеличением синтеза SP-D. Содержание SP-D в плазме крови отражает степень повреждения клеток альвеолярного эпителия II типа и повышение проницаемости аэроге-матического барьера при ОРДС. Исследований по диагностической значимости SP-D при НП в доступной литературе было найдено крайне мало. Работ по динамике SP-D при НП, осложненной ОРДС, а также по совместному анализу SP-D, индекса оксигенации и индекса внесосудистой воды легких найдено не было. У мышей, дефицитных по SP-D, значительно более выражена клеточная реакция на территории легких в ответ на инсталляцию липополисахаридов [18]. У детей с НП содержание SP-D в бронхоальвеолярном лаваже повышается, и данное повышение наиболее выражено у больных с Pseudomonas aeruginosa в бронхоальвеолярном лаваже [19]. Эти данные подтверждены в исследовании Tekerek N. et al. [20]. В работе Park J. et al. [21] показано, что содержание в крови SP-D выше при ОРДС, развивающемся на фоне НП (87 % больных в данном исследовании имели прямой ОРДС), причем чувствительность SP-D для диагностики ОРДС составила 74 %, специфичность — 63 %, площадь под ROC-кривой — 0,71 (содержание SP-D — 12,7 нг/мл). Известно, что содержание в крови SP-D выше при прямом ОРДС, чем при непрямом.

Современные принципы профилактики нозокомиальной пневмонии

Принципы профилактики НП основаны на знании факторов риска, этиологии и патогенеза данного инфекционного осложнения критических состояний [1-2]. К факторам риска НП, связанным с течением основного заболевания, относятся: пожилой возраст, мужской пол; алкоголизм и наркомания; наличие тяжелых сопутствующих заболеваний (хроническая обструктив-ная болезнь легких, заболевания центральной нервной системы, язвенная болезнь желудка); уровень сознания больного; степень выраженности полиорганной недо-

статочности, в особенности почечная недостаточность; ОРДС, проведение экстракорпоральной оксигенации; состояние после клинической смерти и оживления; ожоги; перенесенное экстренное оперативное вмешательство; реоперация; перенесенное оперативное вмешательство (нейрохирургия, торакальная хирургия, кардиохирургия); пониженное питание; иммуносу-прессия различного генеза; постельный режим, необходимость проведения зондового питания, дисфагия, аспирация, выраженный болевой синдром [22-26]. К факторам риска НП, связанным с инвазивным характером лечебного процесса, относятся: гемотрансфузия в периоперационном периоде; интубация трахеи или трахеостомия длительностью более 48 ч, реинтубация, экстренная интубация; санация трахеобронхиального дерева, частая смена дыхательного контура; горизонтальное положение головного конца кровати; применение назогастрального зонда; необходимость инвазивно-го мониторинга, длительное применение инвазивных устройств; транспортировка больного [22-26].

Также НП может развиваться и вследствие наличия недостатков организации лечебного процесса: перегруженность отделений, нехватка персонала и площадей, дефицит расходного материала, отсутствие или недостаточность специальной подготовки персонала, несоблюдение правил профилактики и отсутствие системы мониторинга госпитальных инфекций с анализом резистентности штаммов к антибиотикам, дезинфектан-там [23-28].

К общим мероприятиям по профилактике любой нозокомиальной инфекции относятся: эпидемиологический надзор и локальный микробиологический мониторинг; изоляция больных с инфекционными осложнениями и носителей полирезистентной нозокомиальной микрофлоры; достаточная комплектация отделения персоналом, обучение персонала доказательным приемам ухода за больными; использование одноразового расходного материала; соблюдение рекомендаций по стратегии и тактике антимикробной терапии; сокращение периоперационного периода; ранняя реабилитация в послеоперационном периоде; своевременная санация внелегочных очагов инфекции; своевременное удаление всех инвазивных устройств; обработка рук персонала [1-2; 22-25].

Профилактика НП должна включать в себя комплекс мероприятий, включающий в себя наиболее эффективные и исключающий вредные. Отдельные меры не будут эффективными [29-32].

1. Обработка полости рта водным раствором хлогексидина [33]. Обработка полости рта антисептиками была выбрана в качестве профилактики НП исходя из представлений о патогенезе НП — микроаспирация содержимого ротовой полости. Первое исследование хлор-гексидина проводилось в 1996 г. — было продемонстрировано 69%-ное снижение частоты

развития НП; летальность в группе хлоргекси-дина составила 1,2 % против 5,6 % в группе без его использования [34]. Данный антисептик был выбран в первую очередь с четом его безопасности в стоматологии [35-36]. В крупном мета-анализе 2007 г. [37] было показано 40%-ное снижение частоты развития НП; в последующем метаанализе 2011 г. [38] — 33 %, а в Кокранов-ском обзоре 2016 г. — 26%-ное снижение частоты развития НП [39]. В международные и отечественные рекомендации по НП была включена обработка полости рта раствором хлоргекси-дина [2; 40-41]. Тем не менее ни в одном рандомизированном исследовании эффективность данной методики не была доказана, а в метаана-лизах объединяли исследования, выполненные на разных группах пациентов с разной продолжительностью ИВЛ, а также слепые и открытые исследования. Кроме того, диагностические критерии НП субъективны и низкоспецифичны [42].

Метаанализ [43], в котором отдельно были проанализированы пациенты кардиохирурги-ческого и некардиохирургического профиля, показал, что снижение частоты развития НП обусловлено в первую очередь результатами исследований в категории кардиохирургических пациентов. Не было выявлено влияния на продолжительность ИВЛ, время пребывания в отделении реаниматологии или в стационаре. Более того, было доказано, что летальность выше при использовании хлоргексидина, что особенно выражено в категории некардиохирургических пациентов. Риск летального исхода закономерно возрастает параллельно увеличению концентрации раствора хлоргексидина, который используется для обработки полости рта [44-45].

Повышение летальности при применении хлоргексидина может быть связано с микроаспирацией части антисептика с развитием ОРДС [46-49] или с системной токсичностью препарата [50]. Другой возможный риск, связанный с обработкой полости рта хлоргексиди-ном, — повреждение слизистой полости рта при использовании 2% раствора [51]. К сожалению, нет достаточно убедительных доказательных данных в пользу того, что для профилактики НП достаточно гигиенической обработки полости рта без антисептиков [42].

По данным последнего метаанализа [33], эффективность данной методики была доказана исключительно в категории кардиохирурги-ческих пациентов, которые находятся на ИВЛ не более 24 ч. Также необходимо принимать во внимание методологические аспекты исследований по эффективности хлоргексидина

в профилактике НП: обработка полости рта хлоргексидином (антисептик) неизбежно снижает частоту положительных культур мокроты [34]. В одноцентровом ретроспективном исследовании Descheppeг М. [53] (2018) было показано увеличение риска летального исхода при использовании хлоргексидина.

2. Подъем головного конца кровати на 3540° [53, 54]: снижение частоты НП, но нет влияния на длительность ИВЛ, время пребывания в отделении реаниматологии, летальность. В испанском исследовании была предпринята попытка использовать положение пациента на боку с опущенным головным концом кровати (латеральный Тренделенбург) с целью профилактики НП [55]: частота развития НП в этой группе была ниже, но не было выявлено влияния на другие исходы (длительность ИВЛ, время пребывания в отделении реаниматологии, летальность). В группе с применением положения латеральный Тренделенбург чаще развивалась рвота.

3. Смена дыхательного контура только при наличии видимого загрязнения или поломки.

4. Профилактика тромбозов глубоких вен.

5. Минимизация медикаментозной седации, перерывы в седации [56-59].

6. Использование интубационных трубок с аспирацией секрета надманжеточного пространства — по данным последнего метаанализа, не было доказано влияния данной методики на длительность ИВЛ, время пребывания в отделении реаниматологии, летальность [60]. В настоящее время нет доказательств, что специализированный дизайн манжеты интуба-ционной трубки каким-либо образом снижает частоту развития НП или влияет на исходы [61].

7. Пробиотики позволяют снизить частоту развития НП, но не влияют на другие исходы. Результаты данных исследований в значительной степени зависят от микробного состава используемых препаратов [61-63].

8. Селективная деконтаминация ротовой полости или желудочно-кишечного тракта. Данное профилактическое мероприятие эффективно работает в странах с низкой антибиотикорезистент-ностью (например, в Нидерландах, где и были

получены основные положительные результаты по данной проблеме). Необходимо отметить, что профилактика стресс-язв желудочно-кишечного тракта ассоциирована с повышенным риском развития НП [65-66].

9. Предпочтительное использование неинвазив-ной вентиляции легких, если клиническая ситуация позволяет [1-2].

10. Протоколизированный перевод больного на самостоятельное дыхание [1-2].

11. Одним из альтернативных, требующих дальнейшего изучения, подходов является применение ингаляционных антибиотиков при НТ с целью профилактики развития НП. Данные крупного метаанализа 2016 г. показывают, что в настоящее время доказательных данных для рекомендации использования ингаляционных антибиотиков при НТ недостаточно [67]. С другой стороны, по данным наиболее актуального метаанализа 2018 г., применение ингаляционных антибиотиков при НТ позволяет снизить частоту развития НП (ОШ 0,53; 95% ДИ 0,34-0,84), но не влияет на летальность. Причем данный эффект максимально выражен именно при ингаляционном применении антибиотиков (ОШ 0,46; 95% ДИ 0,22-0,97), но не при инстилляции антибиотиков в трахею (ОШ 0,57; 95% ДИ 0,28-1,15) [68].

Таким образом, НП и НТ представляют актуальную проблему анестезиологии-реаниматологии. Перспективным направлением ранней диагностики НП и ее осложнений является изучение новых молекулярных биомаркеров, в частности ССР и сурфактантных протеинов. Эффективная профилактика НП быть основана на комплексе современных доказательных методов.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов. Кузовлев А.Н., Мороз В.В. — литературный поиск, подготовка обзора литературы, оформление в соответствии с правилами журнала.

ORCID авторов

Кузовлев А.Н. — 0000-0002-5930-0118 Мороз В.В. — 0000-0002-8880-7364

Литература/References

[1] ГельфандБ.Р. Нозокомиальная пневмония у взрослых. Российские национальные рекомендации. М.: МИА, 2016.

[Gelfand B.R. Nozokomial'naya pnevmoniya u vzroslyh. Rossijskie nacional'nye rekomendacii. M.: MIA, 2016. (In Russ)]

[2] Яковлев С.В., Суворова М.П., Белобородов В.Б., Басин Е.Е., Елисеева Е.В., Ковеленов С.В, и члены исследовательской группы ЭРГИНИ. Распространенность и клиническое значение но-зокомиальных инфекций в лечебных учреждениях России:

исследование ЭРГИНИ. Антибиотики и химиотерапия. 2016; 61(5-6): 32-42.

[YakovlevS.V., Suvorova M.P., Beloborodov V.B., BasinE.E., Eliseeva E.V., KovelenovS.V, i chleny issledovatel'skoj gruppy ERGINI. Rasprostranennost' i klinicheskoe znachenie nozokomial'nyh infekcij v lechebnyh uchrezhdeniyah Rossii: issledovanie ERGINI. Antibiotiki i himioterapiya 2016; 61(5-6): 32-42. (In Russ)]

[3] Кузовлев А.Н., Шабанов А.К., Тюрин И.А. Динамика концентрации ингаляционного тобрамицина в крови и бронхоальвео-лярной лаважной жидкости при нозокомиальной пневмонии (предварительное сообщение). Общая реаниматология. 2018; 14(5): 32-37. DOI: 10.15360/1813-9779-2018-5-32-37

[Kuzovlev A.N., Shabanov A.K., Tyurin I.A. Dinamika koncen-tracii ingalyacionnogo tobramicina v krovi i bronhoal'veolyarnoj lavazhnoj zhidkosti pri nozokomial'noj pnevmonii (predvaritel'-noe soobshchenie). Obshchaya reanimatologiya. 2018; 14(5): 32-37. DOI: 10.15360/1813-9779-2018-5-32-37. (In Russ)]

[4] KlompasM.,KleinmanK.,MurphyM. Descriptive epidemiology and attributive morbidity of ventilator-associated events. Infect. Control. Hosp. Epidemiol. 2014; 35(5): 502-510. DOI: 10.1086/675834

[5] Дмитриева Н.В., Петухова И.Н. Послеоперационные инфекционные осложнения. Практическое руководство. М.: Практическая медицина, 2013.

[Dmitrieva N.V., Petuhova I.N. Posleoperacionnye infek-cionnye oslozhneniya. Prakticheskoe rukovodstvo. Moscow: Prak-ticheskaya medicina, 2013. (In Russ)]

[6] Josefson P., Stralin K., Ohlin A., et al. Evaluation of a commercial multiplex PCR test (SeptiFast) in the etiological diagnosis of community-onset bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2011; 30(9): 1127-1134. DOI: 10.1007/s10096-011-1201-6

[7] Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М. Новые диагностические кандидатные молекулярные биомаркеры острого респираторного дистресс-синдрома. Общая реаниматология. 2014; 10(4): 6-10. DOI: 10.15360/1813-9779-2014-4-6-10

[Moroz V.V., Golubev A.M., Kuzovlev A.N., Pisarev V.M. Novye diagnosticheskie kandidatnye molekulyarnye biomarkery ostro-go respiratornogo distress-sindroma. Obshchaya reanimatologiya. 2014; 10(4): 6-10. DOI: 10.15360/1813-9779-2014-4-6-10. (In Russ)]

[8] Hayashida S, Harrod K.S., Whitsett J.A. Regulation and function of CCSP during pulmonary Pseudomonas aeruginosa infection in vivo. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2000. 279(3): 452459.

[9] Clara M. Zur Histobiologie des Bronchalepithels. [On the histobi-ology of the bronchial epithelium.]. Z mikrosk. Anat. Forsch. 1937; 41: 321-334.

[10] Policard A., Collet A., Giltaire-Ralyte L. Observations microélectroniques sur l'infrastructure des cellules bronchiolaires. [Electron microscopic observations on the ultrastructure of bronchiolar cells.] Les Bronches. 1955; 5: 187-196.

[11] Singh G., Katyal S.L. An immunologic study of the secretory products of rat Clara cells. J. Histochem. Cytochem. 1984; 32: 49-54.

[12] Snyder J., Reynolds S., Hollingsworth J., et al. Clara cells attenuate the inflammatory response through regulation of macrophage behavior. Am. J. Respir. Cell Mol. Biol. 2010; 42(2): 161-171. DOI: 10.1165/rcmb.2008-0353OC

[13] Determann R., WolthuisE., ChoiG., BresserP., etal. Lung epithelial injury markers are not influenced by Use of Lower Tidal Volumes during Elective Surgery in Patients without Pre-existing Lung Injury. Am. J. Physiol. Lung. Cell Mol. Physiol. 2008; 294: 344-350.

[14] Negrin L.L., Halat G., Kettner S., et al. Club cell protein 16 and cy-tokeratin fragment 21-1 as early predictors of pulmonary complications in polytraumatized patients with severe chest trauma. PLoS One. 2017; 12(4): e0175303. DOI: 10.1371/journal. pone.0175303

[15] Lin J., Zhang W., Wang L., Tian F. Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome. J. Clin. Lab. Anal. 2018; 32(2): DOI: 10.1002/jcla.22262

[16] SorensenG.L. Surfactant Protein D in Respiratory and Nonrespiratory Diseases. Front. Med. (Lausanne). 2018; 5: 18. DOI: 10.3389/ fmed.2018.00018

[17] Мороз В.В., Голубев А.М., Кузовлев А.Н. и др. Сурфактант-ный протеин D — биомаркер острого респираторного дистресс-синдрома. Общая реаниматология. 2013; 9(4): 11. DOI: 10.15360/1813-9779-2013-4-11

[Moroz V.V., Golubev A.M., Kuzovlev A.N., et al. Surfaktantnyj protein D — biomarker ostrogo respiratornogo distress-sindroma. Obshchaya reanimatologiya. 2013; 9(4): 11. DOI: 10.15360/18139779-2013-4-11. (In Russ)]

[18] King B., Kingma P. Surfactant Protein D Deficiency Increases Lung Injury during Endotoxemia. Am. J. Respir. Cell Mol. Biol. 2011; 44(5): 709-715. DOI: 10.1165/rcmb.2009-0436OC

[19] Said A., Abd-Elaziz M., Farid M., et al. Evolution of surfactant protein-D levels in children with ventilator-associated pneumonia. Pe-diatr Pulmonol. 2012; 47(3); 292-299. DOI: 10.1002/ppul.21548

[20] Tekerek N.U., Akyildiz B.N., Ercal B.D., Muhtaroglu S. New Bio-markers to Diagnose Ventilator Associated Pneumonia: Pentraxin 3 and Surfactant Protein D. Indian J. Pediatr. 2018; 85(6): 426-432. DOI: 10.1007/s12098-018-2607-2

[21] Park J., Pabon M., Choi A.M.K., et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts. BMC Pulm. Med. 2017; 17(1): 204. DOI: 10.1186/s12890-017-0532-1

[22] TimsitJ.F., Esaied W., Neuville M., et al. Update on ventilator-associated pneumonia. F1000Res. 2017; 6: 2061. DOI: 10.12688/ f1000research.12222.1

[23] Reignier J., Darmon M., Sonneville R., et al. Impact of early nutrition and feeding route on outcomes of mechanically ventilated patients with shock: a post hoc marginal structural model study. Intensive Care Med. 2015; 41(5): 875-886. DOI: 10.1007/s00134-015-3730-4

[24] FitchZ.W., Whitman G.J. Incidence, risk, and prevention of ventilator-associated pneumonia in adult cardiac surgical patients: a systematic review. J. Card. Surg. 2014; 29(2): 196-203. DOI: 10.1111/ jocs.12260

[25] Schwebel C., Clec'h C., Magne S., et al. Safety of intrahospital transport in ventilated critically ill patients: a multicenter cohort study. Crit. Care Med. 2013; 41(8): 1919-1928. DOI: 10.1097/ CCM.0b013e31828a3bbd

[26] Bornstain C., Azoulay E., De Lassence A., et al. Sedation, sucral-fate, and antibiotic use are potential means for protection against

early-onset ventilator-associated pneumonia. Clin. Infect. Dis. 5; 38(10): 1401-1408.

[27] Rello J., LodeH., Cornaglia G., etal. A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med. 2010; 36(5): 773-780. DOI: 10.1007/s00134-010-1841-5

[28] Bouadma L., Deslandes E., Lolom I., et al. Long-term impact of a multifaceted prevention program on ventilator-associated pneumonia in a medical intensive care unit. Clin Infect Dis. 2010; 51(10): 1115-1122. DOI: 10.1086/656737

[29] Muscedere J., Sinuff T., Heyland D.K., et al. The clinical impact and preventability of ventilator-associated conditions in critically ill patients who are mechanically ventilated. Chest. 2013; 144(5): 1453-1460. DOI: 10.1378/chest.13-0853

[30] Morris A.C., Hay A.W., Swann D.G., et al. Reducing ventilator-associated pneumonia in intensive care: impact of implementing a care bundle. Crit. Care Med. 2011; 39(10): 2218-2224. DOI: 10.1097/ CCM.0b013e3182227d52

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[31] Speck K., Rawat N., Weiner N.C., et al. A systematic approach for developing a ventilator-associated pneumonia prevention bundle. Am. J. Infect. Control. 2016; 44(6): 652-656. DOI: 10.1016/j. ajic.2015.12.020

[32] Oostdijk E.A.N., Kesecioglu .J, Schultz M.J., et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA. 2014; 312(14): 1429-1437. DOI: 10.1001/jama.2014.7247

[33] Rabello F., Araujo V.E., Magalhaes S. Effectiveness of oral chlor-hexidine for the prevention of nosocomial pneumonia and ventilator-associated pneumonia in intensive care units: Overview of systematic reviews. Int. J. Dent. Hyg. 2018; 6(4): 441-449. DOI: 10.1111/idh.12336

[34] DeRiso A.J. II, Ladowski J.S., Dillon T.A., et al. Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery. Chest. 1996; 109(06): 1556-1561.

[35] Gjermo P. Chlorhexidine in dental practice. J. Clin. Periodontol. 1974; 1(03): 143-152.

[36] Briner W.W., Grossman E., Buckner R.Y. Effect of chlorhexidine gluconate mouthrinse on plaque bacteria. J. Periodontal. Res. 1986; 21(Suppl. 16): 44-52.

[37] Chan E.Y., Ruest A., Meade M.O., Cook D.J. Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 2007; 334(7599): 889.

[38] Labeau S.O., Van de Vyver K., Brusselaers N., et al. Prevention of ventilator-associated pneumonia with oral antiseptics: a systematic review and meta-analysis. Lancet Infect. Dis. 2011; 11(11): 845-854. DOI: 10.1016/S1473-3099(11)70127-X

[39] Hua F., Xie H., Worthington H.V., et al. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst Rev 2016; 10: CD008367.

[40] Coffin S.E., Klompas M., Classen D., et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals. Infect Control. Hosp. Epidemiol. 2008; 29(Suppl. 1): 31-40.

[41] Muscedere J., Dodek P., Keenan S., Fowler R., Cook D., Heyland D.; VAP Guidelines Committee and the Canadian Critical Care Trials Group. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: diagnosis and treat-

ment. J. Crit. Care. 2008; 23(01): 138-147. DOI: 10.1016/j. jcrc.2007.12.008

[42] Klompas M. Oropharyngeal Decontamination with Antiseptics to Prevent Ventilator-Associated Pneumonia: Rethinking the Benefits of Chlorhexidine. Semin Respir Crit. Care Med. 2017; 38(3): 381-390. DOI: 10.1055/s-0037-1602584

[43] Klompas M., Speck K., Howell M.D., et al. Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: systematic review and meta-analysis. JAMA Intern. Med. 2014; 174(05): 751-761. DOI: 10.1001/jamaint-ernmed.2014.359

[44] Price R., MacLennan G., Glen J.; SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ 2014; 348: g2197. DOI: 10.1136/bmj.g2197

[45] Klompas M., Li L., Kleinman K., et al. Associations between ventilator bundle components and outcomes. JAMA Intern. Med. 2016; 176(09): 1277-1283. DOI: 10.1001/jamainternmed.2016.2427

[46] Hirata K., Kurokawa A. Chlorhexidine gluconate ingestion resulting in fatal respiratory distress syndrome. Vet. Hum. Toxicol. 2002; 44(02): 89-91.

[47] Kempen P.M. A tale of silent aspiration: are guidelines good for every patient? Anesth. Analg. 2015; 121(03): 829-831. DOI: 10.1213/ ANE.0000000000000852

[48] Orito K., Hashida M., Hirata K., et al. Effects of single intratracheal exposure to chlorhexidine gluconate on the rat lung. Drug. Chem. Toxicol. 2006; 29(01): 1-9.

[49] Xue Y., Zhang S., Yang Y., et al. Acute pulmonary toxic effects of chlorhexidine (CHX) following an intratracheal instillation in rats. Hum. Exp. Oxicol. 2011; 30(11): 1795-1803. DOI: 10.1177/0960327111400104

[50] Massano G, Ciocatto E., Rosabianca C., et al. Striking aminotransferase rise after chlorhexidine self-poisoning. Lancet. 1982; 1(8266): 289.

[51] Plantinga N.L., Wittekamp B.H., Leleu K., et al. Oral mucosal adverse events with chlorhexidine 2 % mouthwash in ICU. Intensive Care Med. 2016; 42(04): 620-621. DOI: 10.1007/s00134-016-4217-7

[52] Deschepper M., Waegeman W., Eeckloo K., et al. Effects of ch-lorhexidine gluconate oral care on hospital mortality: a hospital-wide, observational cohort study. Intensive Care Med. 2018; 44(7): 1017-1026. DOI: 10.1007/s00134-018-5171-3

[53] Klompas M. What is new in the prevention of nosocomial pneumonia in the ICU? Curr. Opin. Crit. Care. 2017; 5: 378-384. DOI: 10.1097/MCC.0000000000000443

[54] Wang L., Li X., Yang Z, et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst. Rev. 2016; 1: CD009946. DOI: 10.1002/14651858.CD009946.pub2

[55] Li Bassi G., Panigada M., Ranzani O.T., et al. Multicenter randomized clinical trial of lateral-trendelenburg vs. semi recumbent position for the prevention of ventilator-associated pneumonia — the GRAVITY-VAP Trial. Intensive Care Med. 2017; 43(11): 15721584. DOI: 10.1007/s00134-017-4858-1

[56] Esteban A., Frutos F., Tobin M.J., et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure collaborative Group. N. Engl. J. Med. 1995; 332: 345-350.

[57] Ely E.W., Baker A.M., Dunagan D.P., et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N. Engl. J. Med. 1996; 335: 1864-1869.

[58] Kress J.P., Pohlman A.S., O'Connor M.F., Hall J.B. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N. Engl. J. Med. 2000; 342: 1471-1477.

[59] Girard T.D., KressJ.P., Fuchs B.D., et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008; 371: 126-134.

[60] Caroff D.A., Li L., Muscedere J., Klompas M. Subglottic secretion drainage and objective outcomes: a systematic review and meta-analysis. Crit. Care Med. 2016; 44: 830-840. DOI: 10.1097/ CCM.0000000000001414

[61] Bo L., Li J., Tao T., et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2014; 10: CD009066. DOI: 10.1002/14651858.CD009066.pub2

[62] Zeng J., Wang C.T., Zhang F.S., et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial. Intens Care Med. 2016; 42: 1018-1028. DOI: 10.1007/s00134-016-4303-x

[63] Cook D.J., Johnstone J., Marshall J.C., et al. Probiotics: prevention of severe pneumonia and endotracheal colonization trial-PROS-

nocrynnna 23.02.2019

PECT: a pilot trial. Trials. 2016; 17: 377. DOI: 10.1186/s13063-016-1495-x

[64] Weng H., LiJ.G., Mao Z., Feng Y., et al. Probiotics for Preventing Ventilator-Associated Pneumonia in Mechanically Ventilated Patients: A Meta-Analysis with Trial Sequential Analysis. Front Pharmacol. 2017; 8: 717. DOI: 10.3389/fphar.2017.00717

[65] Bos L.D., Stips C., Schouten L.R., et al. Selective decontamination of the digestive tract halves the prevalence of ventilator-associated pneumonia compared to selective oral decontamination. Intensive Care Med. 2017; 43(10): 1535-1537. DOI: 10.1007/s00134-017-4838-5

[66] Daneman N., Sarwar S., Fowler R.A., et al. Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect. Dis. 2013; 13: 328-341. DOI: 10.1016/S1473-3099(12)70322-5

[67] Russell C.J., Shiroishi M.S., Siantz E., et al. The use of inhaled antibiotic therapy in the treatment of ventilator-associated pneumonia and tracheobronchitis: a systematic review. BMC Pulm. Med. 2016; 8; 16: 40. DOI: 10.1186/s12890-016-0202-8

[68] Povoa F.C.C., Cardinal-Fernandez P., Maia I.S., et al. Effect of antibiotics administered via the respiratory tract in the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. J. Crit. Care. 2018; 43: 240-245. DOI: 10.1016/j.jcrc.2017.09.019

i Надоели баннеры? Вы всегда можете отключить рекламу.