УДК 666.973.6

Н.Н. ФЕДОСОВ, директор, Е.С. КЛИНЧУК, главный инженер, Т.Л. ВЕРБИЦКАЯ, главный технолог ОАО «Сморгоньсиликатобетон» (г. Сморгонь, Республика Беларусь)

Новые строительные материалы

Строительная отрасль сегодня — одна из самых динамично развивающихся. Что же является предпосылкой успешного развития строительного отрасли сегодня? Это прежде всего использование энергоэффективных строительных материалов, перспективность которых оценивается не только эксплуатационными показателями, но и распространенностью и доступностью сырьевой базы.

На ОАО «Сморгоньсиликатобетон» в 2005 г. на технологической линии фирмы «Маza-Henke» освоено производство стеновых блоков из ячеистого бетона, соответствующих требованиям СТБ 1117—98. При их производстве образуются отходы автоклавного ячеистого бетона из подрезного слоя.

В УП «НЙИСМ» в течение 2006—2008 гг. проводились научные исследования по рациональному использованию отходов производства автоклавного ячеистого бетона в технологии производства строительных материалов. По результатам данных работ разработаны составы легких бетонов и составы сухих строительных смесей на основе отходов производства автоклавного ячеистого бетона.

Технология производства данных видов строительных материалов освоена OAO «Сморгоньсиликатобетон».

Разработаны технология производства и технические условия на перемычки и блоки лотковые из легких бетонов с использованием в качестве заполнителя и наполнителя фракционированного дробленого автоклавного ячеистого бетона.

Перемычки и блоки лотковые из конструкционнотеплоизоляционных блоков предназначены для перекрытий проемов в наружных и внутренних стенах жилых и общественных зданий. Блоки и перемычки применяются в несущих и самонесущих стенах зданий. В самонесущих стенах — высотой до двух этажей включительно, в ненесущих — без ограничения этажности. Класс бетона по прочности при сжатии для перемычек не ниже В3,5 и для блоков — В2,5. По данным ЦНИИСК БНТУ, контрольная нагрузка для перемычек составляет порядка 50 кН/м (при требуемой 18 кН/м).

Основным преимуществом данной перемычки является то, что коэффициент теплопроводности [Вт/(м·°С)] у бетона на основе отходов от производства изделий из ячеистого бетона при его средней плотности 1000—1300 кг/м³ согласно экспериментальным данным колеблется в пределах 0,19—0,64 Вт/(м·°С).

На основе отходов производства автоклавного ячеистого бетона на ОАО «Сморгоньсиликатобетон» выпускаются и сухие строительные смеси.

Сухие смеси — многокомпонентные специализированные системы, в которых кроме минерального вяжущего и заполнителя содержится комплекс химических добавок, обеспечивающих необходимые реологические свойства смеси, регулирующих скорость схватывания и твердения вяжущего и обеспечивающих необходимые физико-механические свойства раствора после затвердевания. Разработка составов основывалась на требованиях действующих ТНПА на материалы данного класса СТБ 1307 и П1 к СНиП 3.04.01—87.

Технические характеристики сухих строительных смесей на основе сухих отходов производства ячеистого

Таблица 1

Наименование показателя	Нормы для смесей		
Паименование показателя	кладочная	штукатурная	
1. Марка по подвижности	Пк2	Пк2-Пк3	
2. Прочность раствора в проектном возрасте, не менее	M25	M50	
3. Средняя плотность раствора, кг/м ³ , не более	1000	1000	
4. Морозостойкость, циклов, не менее	35	75	
5. Прочность сцепления с основанием, МПа	0,6	0,8	
6. Теплопроводность образцов, высушенных до постоянной массы, λ , Вт/(м· $^{\circ}$ С), не более	0,2	0,2	
7. Паропроницаемость образцов раствора, µ, мг/(м·ч·Па), не менее	0,155	0,155	

Таблица 2

Nº п.п.	Марка по плотности	Отпускная влажность по массе, %	Средняя плотность в сухом состоянии, кг/м ³	Теплопроводность в сухом состоянии при температуре (20±5)°C, Вт/(м·К)	Предел прочности при сжатии, МПа	Предел прочности при изгибе, МПа	
1	D 150	19,7	171	0,054	0,57	0,28	
2	D 200	27,2	217	0,06	0,83	0,38	
3	D 250	29,6	245	0,07	0,9	0,41	

Таблина 3

Плотность испытанных	Коэффициент паропроницаемости µ, мг/(м ^{3.} ч·Па)	Сорбционная влажность W _в , мас. % при относительной влажности воздуха, ф %				
образцов ρ ₀ , кг/м ³		40	60	80	90	97
250	0,308	2,53	3,02	3,56	4,82	8,9
200	0,337	2,59	3,05	3,51	4,71	9,34
150	0,368	2,48	3,04	3,59	4,78	9,11

бетона, выпускаемых ОАО «Сморгоньсиликатобетон», представлены в табл. 1.

В соответствии с требованиями ТКП 45-2.04-43—2006 «Строительная теплотехника» теплопроводность обычного цементно-песчаного строительного раствора, широко применяемая в практике строительства, составляет $0.52~\rm BT/(m^{\circ}C)$ в высушенном до постоянной массы состоянии, это в $2-2.5~\rm pasa$ выше, чем у составов строительных растворов на основе отходов производства ячеистого бетона.

В настоящее время проведены исследования и внедрена технология производства плитного утеплителя из ячеистого бетона марок по средней плотности D150–D 250 кг/м³.

Учитывая, что плиты из ячеистого бетона изготавливаются из сырья, имеющегося в Белоруссии они значительно дешевле минераловатных и пенополистирольных плит и могут составить конкуренцию последним в применении для теплоизоляции ограждающих конструкций зданий с нормальным, сухим и влажностными режимами помещений. По прочностным и противопожарным характеристикам теплоизоляционные плиты из ячеистого бетона плотностью 150—250 кг/м³ превосходят такие широко применяемые теплоизоляционные материалы, как минераловатные и пенополи-

стирольные плиты, а по теплотехническим характеристикам приближаются к ним. Физико-механические свойства теплоизоляционных плит приведены в табл. 2.

Теплоизоляционные плиты из ячеистого бетона плотностью D 150— D 250 имеют высокие теплозащитные показатели (табл. 3).

На основании результатов предварительных исследований можно утверждать, что теплоизоляция из ячеистых бетонов по теплотехническим свойствам не уступает теплоизоляции из минераловатного утеплителя и при использовании ее в комплексной системе утепления материальные затраты могут быть снижены в 2—3 раза.

Использование экологически безопасного теплоизоляционного материала — ячеисто-бетонных плит автоклавного твердения обеспечит надежную изоляцию теплового промышленного оборудования при температуре применения до 1000° C за счет использования в составе теплоизоляционного материала волластонита.

В настоящее время наше предприятие разрабатывает проект строительства каркасного энергоэффективного дома. Для осуществления данного проекта в ближайшее время планируется выпуск панелей из ячеистого бетона для наружных и внутренних стен, покрытий и перекрытий.

