Научная статья на тему 'Низкоуглеродные и низкоэмиссонные коровники для молочных коров'

Низкоуглеродные и низкоэмиссонные коровники для молочных коров Текст научной статьи по специальности «Животноводство и молочное дело»

CC BY
37
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОБУСТРОЙСТВО КОРОВНИКОВ / ЭНЕРГОЗАТРАТЫ / ЗАТРАТЫ ЧЕЛОВЕЧЕСКОГО ТРУДА / ЭКСПЛУАТАЦИЯ МОЛОЧНОЙ КОРОВЫ / УДОЙ МОЛОКА

Аннотация научной статьи по животноводству и молочному делу, автор научной работы — Мазур К.

Проведен анализ литературы на тему обустройства современных коровников. Предложен вариант коровников для молочных коров, отвечающих параметрам низкой эмиссии и общепринятым нормам энергозатрат. При сооружении коровников на более чем 80 голов скота были приняты во внимание технологично-функциональные решения, предложенные коммерческими организациями. Современные места содержания скота обеспечивают животным хорошее самочувствие, низкое вовлечение человеческого фактора, а также способствуют уменьшению энергозатрат. В работе представлены результаты многофакторного теста коровников без разделения на стойла, включающего в себя автоматизацию обработки продукции. В течение многолетнего комплексного исследования, проведенного Институтом Технологий и естественных наук (бывший Институт Строительства, механизации и электрификации в сельском хозяйстве), тестировались коровники без стойл для молочных и забойных коров. В центре исследования находились условия окружающей среды, технологично-функциональные решения, а также затраты человеческого труда, электричества и механизации вместе со стоимостью эксплуатации. Среднегодовой удой молока в течение исследования составил 7771 кг в 2015 году (Польская Федерация разводчиков КРС и производителей молока, 2015). Исследуемые Институтом Технологий и естественных наук коровники показали в среднем результат удоя в 8000 кг.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Низкоуглеродные и низкоэмиссонные коровники для молочных коров»

УДК 631.223.2

НИЗКОУГЛЕРОДНЫЕ И НИЗКОЭМИССОННЫЕ КОРОВНИКИ ДЛЯ

МОЛОЧНЫХ КОРОВ

К. Мазур — Институт технологии и естественных наук, Польша

E-mail: k.mazur@itp.edu.pl

Проведен анализ литературы на тему обустройства современных коровников. Предложен вариант коровников для молочных коров, отвечающих параметрам низкой эмиссии и общепринятым нормам энергозатрат. При сооружении коровников на более чем 80 голов скота были приняты во внимание технологично-функциональные решения, предложенные коммерческими организациями. Современные места содержания скота обеспечивают животным хорошее самочувствие, низкое вовлечение человеческого фактора, а также способствуют уменьшению энергозатрат. В работе представлены результаты многофакторного теста коровников без разделения на стойла, включающего в себя автоматизацию обработки продукции. В течение многолетнего комплексного исследования, проведенного Институтом Технологий и естественных наук (бывший Институт Строительства, механизации и электрификации в сельском хозяйстве), тестировались коровники без стойл для молочных и забойных коров. В центре исследования находились условия окружающей среды, технологично-функциональные решения, а также затраты человеческого труда, электричества и механизации вместе со стоимостью эксплуатации. Среднегодовой удой молока в течение исследования составил 7771 кг в 2015 году (Польская Федерация разводчиков КРС и производителей молока, 2015). Исследуемые Институтом Технологий и естественных наук коровники показали в среднем результат удоя в 8000 кг.

Ключевые слова: обустройство коровников, энергозатраты, затраты человеческого труда, эксплуатация молочной коровы, удой молока.

Modern livestock buildings should ensure the proper welfare, including proper microclimate, proper resting and lying area. By designing of functional layout according to Fernandez ME. It should be taken into account animal welfare and easiness of handling, because of characteristics of cattle barns influences on human labour demand and its productiveness. [Fernandez M.E. et al. 2008].

Mechanization and automation of animal production in essential way influences both on quality of working environment, animal welfare and economics of production. In Poland, starting from 2007 are designed and built cattle barns with automatic milking systems and from 2012 also with automatization of preparation and discharge of feed. Current trends of automatization including not only production treatments, but also of environmental microclimate conditions. Widespread become automatic microclimate steering

systems, depending on whether conditions.

According to Polish Ministry of Agriculture and Rural Development from 28 of June 2010 year in matter of minimal conditions of livestock animal housing different from those, the protection norms were established -microclimate factors (ventilation rates, dust, air temperature and humidity and harmful gases concentration) in livestock rooms should be maintained on the no-harmful levels [Regulation 2010].

These regulations are the consequences of such directives implementation:

- Directive of Council 91/629/ EEC from 19 November 1991 y. about minimal standards of calves protection,

- Directive of Council 97/182/ EC from 24 February 1997 r. about minimal conditions of calves protection,

- Directive of Council 97/2/EC from 20 January 1997 r. for minimal

standards in calves protection.

According to Law Regulation about Animal Protection, everybody who is housing livestock animals, should ensure them proper housing conditions [Animal Protection Act 1997].

Milking and preliminary treatment of milk

Milking robots, as the most modern automatic facilities, introduced in Poland in the last decade in tens of dairy farms work without of human presence, doing all operations in milking, it means: recognize the cow, massage the teats, fit on the teat cups, take off depending of quarters milking order, wash the teat cups after each cow and spray the teats after each milking for maintaining the hygiene. Moreover they measure the milking yield and portion of granulated concentrated feed is given to the cows.

For positioning of teats several kinds of sensors are used (ultra-sound, laser, camera) [Brunsch R. 1996].

ВлаЭимгрсШ ЗемлеЗЪдеф

№ 4 (78) 2016

Milking robot consists of at least one, placed in non-central part of the barn, milking box with one aggregate [Lexer D. 2005]. Milking robot is integrated electronically with computer herd management system. The use of milking robots allows for increase in frequency of milking, decrease of human labour requirements from about 65 to 75 % [Domasiewicz T. 2010] as well as increase of milk yield from 5% to 25% [Gaworski 2010].

According to Schick M. the use of milking robots, in comparison with traditional milking leads to significant, even double, decrease in human labour requirements of this treatment [Schick 2000].

N^ss and B0e Significant obtained in research of cattle barns with AMS lower human labour inputs [N^ss G, B0e K.E. 2011]. In comparative tests of 5 cattle barns, conducted by Freiberger, the labour inputs for milking in traditional way equaled 4-5 working-minutes per cow and per a day, while in barns with milking robots it equaled from 0,13 to 1,06 working-minutes per cow [Freiberger 2005]. It is reasonable to use the milking robots in family dairy farms in order to increase the productiveness and decrease own labour requirements [Gazzarin et al. 2014]. Companies delivering on polish market mentioned solutions of automatic milking are (in alphabetical order): DeLaval, Gea Farm Technologies, Insentec and Lely.

Preparation and discharge of feed

One of conditions of profitable milk production is optimization of feeding. [ Majchrzak M., Borusiewicz A. 2015]. Milk production in herds with size over 80 LU requires introduction of feeding groups. More precise feed discharge according to nutritional needs for particular feeding groups, namely: heifers, dry cows, dairy cows depending on milk yield, young cattle and calves is possible owing to automatization of this process. There are several technical solutions on the market, delivering different levels of

automatization of feed preparation and discharge, from partially to fully automatized [Oberschatzl R., Haidn B. 2014].

Main companies on the market purchasing in Poland the AFS (Automated Feeding Systems) are as follows (in alphabetical order): GEA Farm Technologies, Lely and Pellon.

Automatization in feeding cattle could concern concentrates as well as bulk feeds. For dosing of concentrates in free stall cattle barns there are used: feeding stations in which individual portions are given to cows depending on milk yield. It is possibility to use from 1 to 4 feed types, including mineral additives and fluids. Concentrates could also be fed in milking parlor or in milking robot. All elements of system are steered and controlled by herd management system. Second type of AFS concerns the facilities for preparing and discharge of bulk feed TMR and PMR.

Possible are following facilities as parts of AFS:

1) vertical or horizontal mixer wagon, scales steers the process of wagon loading. The signal from the scales transmitted to the control box initiates and stops the belt and feeders.

2) tables for silage storage in amounts enough for diurnal consumption. The capacity of each table equals from 9 to 18 m3. The 4 tables could be steered by the system as well as 2 feed dozers. The tables are also initiated by impulse transmitted from mixer wagon's scales.

3) feeding wagons for concentrates, powered by batteries with capacities for example 1,6m3 or from the mains power RA135 with capacity, for example, up to 3,5m3. The loading of wagons is controlled by photocell, whereas discharging of feed is steered by herd management system or, independently from the wagon's steering panel. The wagons could drive up to 20 times per day.

4) the fourth element are silos for concentrates and the last mineral

additives or vitamins dozers. Manure removing and storage

In the scope of this treatment it is possibility of mechanization and automatizing both littering work as well as manure removing. For littering there are use littering machines mounted on the tractor. The automatized variant are belt conveyors, from which the bedding material is dropped down. The disadvantage of such solution is, the same as for belt conveyor of feed discharge is big dustiness.

Moreover, more and more popular are slurry separators. The separated organic matter after drying could be dedicated for bedding of boxes, what will ensure additional comfort for cattle in the box on the resting matt.

The example of slurry separator used in Denmark in cattle barn without litter, with 4 milking robots Lely and deep on 1,2 m slurry channels is showed on phot.1. In this cattle barn is also used the technology of slurry acidification.

Automation of ventilation

Hartung and Philips indicated that in livestock air there are over hundred gaseous ingredients, which is flowing out from the cattle building through outlets [Burton C.H., Turner C. 2003]. By this amount of harmful gases it is necessary to ensure the continuous air exchange. Table 1 presents the recommended air exchange rates in cattle barn buildings.

In order to ensuring of proper ventilation, the cubage for one cow should equal at least 50 m3.

Too small air inlet or outlet openings could cause insufficient air exchange, what leads to increase of temperature, air humidity, concentration of harmful gases, dustiness over permitted norms by standards. Ngwabie et al. stated the decrease in cow activity by low levels of air exchange [Ngwabie et al. 2011].

In modern objects meaningful is ensuring proper microclimate not only in rooms for animals, but also in the milking and waiting area as well as rooms for milk cooling. In

№ 4 (78) 2016

g/ia3uMipclíiü Земледелии)

Photo 1. The view of slurry separator in action

milking and milk cooling area the air temperature should be above zero, to guarantee proper conditions for work of equipment, especially in cold seasons.

Automatization of natural ventilation process is conducive to improving of air quality inside the livestock buildings.

There are automatic curtains opened from top, from bottom or top-bottom.

The opening and closing, apart the manual way is in 2 variants:

- Electrical empowering with wall-mounted switch,

- Full automatized steered by temperature, wind, rain and lighting sensors.

There are also solutions with remote steering, by the help of information sent from mobile phone.

Because inflow openings regulated by the opening degree of curtains act as lighting, when we introduce automatization we obtain beside air inflow regulation, also natural lightness regulation. To switch/switch off the artificial light could be used

dusk sensors and the light intensity could be fluently regulated by the controllers.

Many researchers have dealt with exploitation costs, investment costs and labour inputs, also mechanical and electrical energy inputs. Many authors only describe housing systems. Most of them shows individual investigation's results of particular elements. But there was lack of complex testing of constructional, technological-functional solutions of free-stall cattle barns in Poland.

Specific objectives of research are functional-technical assessment of free stall cattle barns for dairy cows, including the level of mechanization, determination of influence of housing system on energetic and labour inputs, determination of model of assessment of technological-technical solutions in order to choice the best solutions and, finally, design of model of technological-functional solutions cattle barn. Elaborated proposition could be used by design offices and investors specialized in dairy cattle housing.

Scope of research

Scope of research consisted of 5 free-stall cattle barns fulfilled initially following criteria: at least 4th mechanization level, namely daily labour inputs not exceeding 10 working minutes per one cow, average annual milk yield above 8000 l of milk in extra class and herd size above 80 LU. These building were located in mazovia and podlaskie voivodeship. The multi-criterial assessment was done, namely environmental conditions, labour inputs, electrical and mechanical inputs and exploitation costs.

Specific scope of research gained following factors:

- technical elements, which characterized the cattle barns tested,

- technological elements, such as labour inputs, electrical and mechanical energy,

- economical elements, such as

investments inputs,

- microclimate parameters.

Methodology

Methodology consisted of following stages, showed on diagram - fig.1.

In order to design the livestock building, which is low-emission and low energetic, it should be declared the minimum architectonical-buildings requirements. In first stage it should also preliminary number of animals, based on herd structure [Fiedorowicz G. 2007] and for it we preliminary building sizes should be chosen. The chosen number of livestock define later all dimensions of technological lines.

In first stage of research the objects were chosen, namely free stall cattle barns, fulfilled preliminary criteria described in scope of research section, thereafter in second stage buildings were described, housing and breeding systems and environmental conditions. The third stage gained the research, which in fourth stage were showed by the use of following technological card, showed in the figure 3. Due to dimensions of this table, the filled values especially the types and symbols of machines were not showed.

It is established basing on aiming function, which describes the minimization of unitary exploitation costs of object regarding to 1 LU or to 1kg of milk.

Equations (1) to (3) show the method of calculation of these costs [Muzalewski 2010];

C = Cm + Cm (PLN-LU-Var1) (1) N

Ce- exploitation costs (PLN- year"1),

Cm- costs of maintenance (PLN- year"1),

Cus - operating costs (PLN- year"1)

N - number of Livestock Units

Costs of maintenance

Costs of maintenance (C ) were

v m'

the sum of amortization costs of

ВлаЭимгрскт ЗемлеЗЬлед

№ 4 (78) 2016

Table 1. Recommended air exchange rates in cattle barn buildings with mechanical ventilation system

Type of animal Air exchange m3-h"1-LU"1

winter summer

Dairy cows 90 350-400

Calves in prophylactic area 20 80

Calves up to 6 months 20 80-120

Heifers over 6 months 60 250

Source: Romaniuk, Overby 2005

Stage 1. Choice of objects according to specific criteria

Stage 2. Description of objects, housing and breeding system and environmental

conditions

Stage 3. Research of objects and determination of technical, technological, quality

and economical indicators

Stage 4. Assessment of objects

ОТ

OTech OQ OE

Stage 5. Model of assessment and choice of best solutions according to specific

criteria

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fig. 1. Stages of methodology scheme

buildings, machinery insurance (eq.2)

and their

С С " 71 т

+ Cl ♦ С (PLN.year-1) (2)

Cib - replacement value of buildings (PLN),

Tb- the assumed stability of the building (number of years),

Cbins- insurance costs of building (PLNyear-1),

C im- price (value) replacement of machinery or equipment (PLN),

Tm- the assumed stability of the machinery (number of years),

C. - costs of insurance of

ui

machinery and equipment (PLNyear-1) (Muzalewski 2010).

C™ - costs of electrical energy of machinery and equipment for mechanization C™- costs of repair of machinery and equipment (PLN-year-1),

Operating costs

Choice of most advantageous solutions

The final assessment and choice of solution was made according to following aiming function, which was minimum unitary exploitation cost of object

Kutrz +Kuz

kej =

N

-» minimum

DJP

K -cost of maintenance

utrz

Ku. - cost of usage Ndjp - number of animals

The limitations to the aiming function - exploitation costs are boundary investments inputs, permitted boundary of electrical and mechanical energy inputs, limited possible labour inputs in working hours per day per LU, permitted gas concentrations (ammonia, carbon dioxide) and other limitations, which could in essential way influence on choice of object for realization.

№ 4 (78) 2016

The base for assessment and choice of best technological-functional solution was fulfilling of following limitations:

III - concentrations of harmful gases:

IV - Unitary electrical and mechanical energy inputs

where kgr inwest, n gr r , Sgr CO2 Sgr NH3 , egr are limitations given by investor, standards and branch norms.

The tested solutions are ordered according to formulated aiming function, namely exploitation costs aiming to minimum. The best solution is such, which fulfilled all limitations.

Research apparatus

For microclimate measurements there were used:

- thermo- hydro-meters with concentrators equipped with internal memory of 3500 records, thermohigrobarometers for continuously measurement of air temperature, humidity and pressure.

- double-gas meters with CO2 and NH3 measurements,

- multi-gas meter for methane, ammonia and hydrogen sulfide, nitrogen oxide measurements

- lux meter,

The results concern the measurements inside the cattle barns, additionally it was measured also air temperature and relative humidity outside the buildings.

Research results

Multi-criterial assessment of cattle barns.

The frame model of multi-criterial assessment was realized basing on economic, technological and quality criteria:

- unitary investment costs of buildings with assisted objects and equipment in machines for mechanization and robotization of

$/ia0UMipckiu 3eM/tetoi№

No. Kind of Wavof Time of Duration Name ai

Table 3.Labour inputs of 5 cattle barns tested

No.

Korabie

3Jakac

4

Ogródek

5

Bobino

Labour inputs

6.57

18.163

11,132

3.662

5.491

4,197

0.425

8.156

1,034

llrlV

3.158

1.034

1.095

0.876

1,642

Total labour inputs

[working-

hour-year^-LU"1]

Пгуеаг

31.249

5.346

11.752

32.686

18,006

Total labour inputs [working-hour"1 • day" ^LU"1]

nrday

0.085

0.014

0.042

0.089

0,049

Table 4. Unitary electric and mechanical energy inputs in cattle barns tested, E [kWh-yearMU-1], EI - electrical energy for treatment I, EII - electrical energy for treatment II, EIII - electrical energy for treatment III, EIV - for treatment IV

technological treatments,

- unitary electrical and mechanical energy consumption,

- labour inputs,

- microclimate conditions.

Technological assessment

Technological assessment

consisted of: labour inputs, electrical energy inputs and mechanical energy inputs.

The results were showed in the tables 3, 4 and 5.

Labour inputs

Electrical and mechanical energy inputs

Table 4 shows the unitary electrical and mechanical energy inputs in cattle barns tested, respectively for treatments I, II, III and IV.

Quality assessment - analysis of microclimate parameters

Quality assessment gained analysis of microclimate parameters.

In tested free stall cattle barn objects the temperature did not exceed 26 oC. The average air relative humidity was between 64 % to 69,3 %, so thermal - humidity conditions were accomplish with recommended values by standards.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Also when describing the average harmful gases concentration values , they did not exceeded the

recommended values and equaled for ammonia from 3,23 ppm to 15 ppm and for carbon dioxide from 665.5 ppm to 2500 ppm. Maximum harmful gases concentrations were noted in cattle barn with self - cleaning sloping pen.

Economic analysis In economic assessment unitary investment costs of cattle barns were summed, as well as equipment and mobile machines for mechanization, automation and robotization of technological treatments, costs of labour and energy and exploitation.

Unitary investment costs of cattle barn tested.

Unitary exploitation costs Final assessment and choice of best solution.

Basic function of assessment model are unitary exploitation cost aiming to minimum (aim function) kje —> minimum [PLN • year'1 •LU~l]

With follwing limitations: a) unitary energy inputs

Ел <Eñ [kWh-LU

i

•year 1 ]

where: E - unitary energy inputs obtained during tests

E0- unitary energy inputs, described by regulations, aiming to improvement of energetic effectiveness.

For example, percentage share of non-conventional energy XOZE among total energy inputs X1

will be equaled:

X

• 100% > 15%

E0 = 726 kWh-year-1-LU-1 for cattle barn with robotization

b) concentrations of green-house gases and ammonia

WGHG<WgrGHG[ppm]

WCOi<WgrCOi [ppm]

WH^<WsrH2S [ppm]

WNH3 <WgrNHi [ppm]

W - concentration of harmful

gas [ppm]

IW3uMipckiù Землейлецъ

№ 4 (78) 2016

Table 5. Unitary investment costs of cattle barn tested, including cattle barns, equipment and machines for mechanization, automatization and robotization of technological treatments.

No Of catle barn Unitary investment costs

kib kii kin kiin kiiv ki PLN-LU1 year1

1 8250,11 846,42 2733,47 6069,97 22,97 17922,94

2 7264,79 1060,0 5123,0 1650,0 157,73 15255,52

3 13259,34 5492,17 6112,29 1632,53 187,6 26683,93

4 4358,11 1446,43 3718,34 380,95 21,16 9924,99

5 7561,80 1463,30 4575,12 1389,71 2,94 14992,86

Table 6. Total unitary exploitation costs of cattle barns, equipment and machines for mechanization, automatization and robotization of technological treatments.

No of cattle barn Unitary exploitation costs

keb kel kell kelll keiv ke [PLN-LU1-year1] ke [PLN-LU1-year1]

1 360,92 727,43 1767,78 663,19 0,56 3519,88 0,45

2 248,42 1149,02 622,44 651,45 0,16 2671,49 0,35

3 369,26 1245,54 999,31 272,67 0,36 2887,15 0,34

4 144,87 389,92 1662,65 747,85 5,52 2950,81 0,31

5 211,30 454,26 993,63 429,20 0,19 2088,57 0,26

W ^ - limited concentration of

grGHG

greenhouse, harmful gas [ppm] WgrCa < 3000 ppm

WgrHlS <0,5ppm

WgrNH3 < 20 ppm

c) unitary investment costs

k.j - unitary investment costs of proposed object

k - unitary investment costs

igr '

possible for realization by investor k = 15 000 PLN-LU"1 for cattle

igr

barn with high, V mechanization level, k = 27 000 PLN-LU-1 for cattle

igr

barn with robotization

d) unitary labour inputs

nrgr = 5 working-minutes-LU-1 •day-1 As the result of research was cattle barn no 4, which fulfilled all limitations was chosen. Basing of this results it was proposed the new, modern, low- carbon emission and energetically effective solution. The

figure 2 shows proposed solution of free stall cattle barn for 80-100 LU in open cycle. All production treatments are robotized: milking, feed preparing and discharge as well as manure removing and storage.

Summary

The energy effectiveness could be increased by biogas production form manure and other residues [Barwicki J. 2014, Wardal W. J. 2015].

Automation of treatments in milk production requires increased electrical energy inputs when calculating per LU but it could lead to milk yield increase, and there are no significant differences between unitary exploitation costs per one liter of milk in mechanized and robotized cattle barns.

The lowest labour inputs were in free-stall cattle barn without litter, in which two milking robots were used, as well as robot for pushing the feed on the feeding table and robot for cleaning of slatted floor. The highest

exploitation costs were in the cattle barn with deep litter.

From conducted tests it could be stated that:

1. Proposed solutions fulfil the requirements for modern, new livestock buildings for cattle, namely ensuring

- enough space for animals and equipment for mechanization and automation of production treatments,

- functionality, namely proper location of technological elements,

- wright ventilation together with roof's lightening.

2. In buildings with such solutions there is proper microclimate thanks to manually or automatically steered ventilation. Following conditions are ensured:

- average air temperature, in summer period, not higher than 25 oC with the air relative humidity not higher than 80%.

- average carbon dioxide concentration not higher than 2000 ppm, when the recommended level is 3000 ppm, and ammonia not higher than 10 ppm, by the norm of 20 ppm.

3. By the choice of best solution made by investor, f.e. dairy cattle barn one should be lead by minimization of exploitation costs of obtaining of 1 liter milk, having limits such as:

- in the scope of microclimate: CO2 concentration not higher than 3000 ppm, NH3 concentration not higher than 20 ppm and temperature between 4 °C and 26 °C.

- mechanization level 5th characterized by labour inputs not higher than 10 working-minutes per day per LU - or 6th with 5 working-minutes per day per LU respectively.

References

1. Animal Protection Act, 1997. Poland, Dz.U. nr 111, poz. 724

2. Barwicki J. 2014, Some developments processes in biogas production from agriculture residues. Проблемы интенсификации животноводства с учетом охраны окружающей среды и производства альтерна^вных и^очников

№ 4 (78) 2016

IJ/iaôuMipckiù ЗешебЪлеЩ)

7

Fig. 2. Technological - functional scheme of cattle barn for 80-100 LU in open cycle.

A - Combi-boxes for dry cows and heifers, B - Dairy cows, C - Separated cows, I - Combi - boxes for dry cows and heifers with manure walking alley on slatted floor; II - feeding alley; III- Resting boxes for dairy cows; IV - Manure walking alley with slatted floor, V - Waiting room; VI - Sector of milking robot; VII - Milk room, VIII - Machinery room, X - Social room; XI - Calving pen; XII- Feed room for feeding storages and dozers; XIII - Feeding area with feeding boxes; XIV - Walking yard; 1- Milking robot; 2 - Cooler; 3 - Heat recovery, 4 - Compressor; 5 - Feeding stalls with blockade; 6 - Blockade after milking; 7 - Slurry tank 505m3; 8 - Return from walking yard; 9 - Exit on the walking yard; 10 - Robot for discharge of mixed bulk feeds and concentrates; 11- Railway for feeding robot, 12- Water bowl; 13- Cow brush; 14 - Dozer of concentrates; 15 - Cow separator; 16 - robot for manure scraping, 17- Feeding silo.

энергии, в том числе биогаза, Wydawnictwo ITP, p. 20-26.

3. Brunsch R., Kauffmann O., Lupfert T. 1996, Rinderhaltung in Laufställen, Eugen Ulmer GmBh & Co., Stuttgart, ss. 132

4. Burton C.H., Turner C. 2003, Manure Management: Treatment Strategies for Sustainable Agriculture, Silsoe Research Inst., Silsoe, Bedford, UK, pp.450

5. Domasiewicz T. 2010, Zakup robota udojowego w aspekcie czynnika ekonomicznego i organizacji pracy, streszczenia wyktadów III Konferencja - Wystawa Ferma Bydta, Wyzsza Szkota Agrobiznesu w tomzy, 20-21 listopada, tomza, p.26-28

6. Fiedorowicz 2008. Technika w chowie bydta z podstawowymi elementamizootechniki, wyd. II zmienione i uzup., IBMER, Warszawa

7. Freiberger F. 2005. Automatisches Melken in modernen Milchviehställen, KTBL Schrift 430,

ss. 141

8. GaworskiM. 2010, Zakup robota udojowego w aspekcie czynnika ekonomicznego i organizacjipracy w oborze, streszczenia wyktadow III Konferencja - Wystawa Ferma Bydta, Wyzsza Szkota Agrobiznesu w tomzy, 20-21 listopada, tomza, p. 33-35

9. Gavan C., Motorga V. 2009. The effect of supplemental light on milk production in Holstein dairy cows, Lucrari§tiintifice Zootehnie §iBiotehnologii, vol. 42 (2) (2009), Timi§oara, p. 261 -265

10. Gazzarin. Ch. Nydegger F., Zähner M. 2014, Wie wirtschaftlich ist der Roboter? Agroscope Transfer, Nr 3, p. 1-8

11. Lexer D. 2005. Automatische Melksysteme - Technische Gestaltung und Auswirkingen auf Verhalten und Gesundheit von Milchkühen, Gumpensteiner Bautagung HBLFA Raumberg - Gumpenstein, p. 33-35

12. Majchrzak M., Borusiewicz

A. 2015. Naktady energetyczne na przygotowanie i zadawanie pasz za pomocq mieszajqcych wozów paszowych. Энергетические затраты на приготовление и раздачу кормов с помощью кормосме сителей) Инновационные технологии в адаптивно-ландщафтном земледелии, Monografía pod red. W. Romaniuk, ISBN 978-5-9906871-3-4. Suzdal. p. 428-438

13. Muzalewski, 2010. Exploitation costs, ITP, Falenty, ISBN 978-83-62416-05-9, pp.

14. Nffiss G., Stokstad G. 2010. Dairy barn layout and construction: effects on initial building costs, Biosystems Engineering, 109(3), str. 196- 202.

15. Ngwabie, N.M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S. 2011. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows,

g/ia3uMipckiü ЗемлейдеЩ)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

№ 4 (78) 2016

Atmospheric Environment, Volume: 45, Issue: 37, December, 2011, p. 6760-6768

16. Oberschatzl R., Haidn B., Neiber J., Neser S. 2015. Automatic feeding systems for cattle - A study of the energy consumption of the techniques, CIOSTA&CIGR XXXVI International Conference, Sankt Petersburg, 26-28 May 2015. p. 617625

17. Oberschatzl R., Haidn B. 2014. Automatic Feeding Systems for Cattle Technology - Performance - Notes on Planning, DLG Expert Knowledge Series 398, pp. 20

18. Polish Federation of Cattle breeders and Milk Producers 2015. Wyniki oceny wartosci uzytkowej krow mlecznych, pp. 16.

19. Regulation 2010. Ministry of

Agriculture and Rural Development, Regulation from 28th June, in matter of minimum requirements for conditions for maintaining livestock species, Dz. U. Nr 116, poz. 778

20. Romaniuk W. Overby T., 2005, Cattle housing systems, Handbook, Institute for Building, Mechanization and Electrification of Agriculture, pp. 172

21. Romaniuk W., Majchrzak M. 2013. Przygotowanie i zadawanie pasz tresciwych i objçtosciowych oraz sposoby ich magazynowania w gospodarstwach rodzinnych i farmerskich. Inzynieria w Rolnictwie. Monografia. Nr 13. ISBN 978-8362416-59-2. pp. 124.

22. Romaniuk W., Borek K. 2015. Технологические и функциональные решения беспривязных коров-

ников и возможности совместной. In Monograph: Инновационные технологии в адаптивно - ландшафтном земледелии, ФГБНУ Владимирский НИИСХ, Suzdal, Rosja , scientific editor: W. Romaniuk, p. 439-453.

23. Schick, M., Volet M.-R.. Kaufmann R 2000. Modelling of time requirements and milking capacity in automatic milking systems with one or two milking stalls, p. 32-37

24. Wardal W.J. 2015. Kierunki doskonalenia technologii produkcji biogazu. In monograph: ,scientific red. Romaniuk W. and Jankowska-Huflejt H.: Produkcja energii odnawialnej, w tym biogazu, w aspekcie ochrony srodowiska". Wyd. ITP, Falenty-Warszawa. ISBN 978-83-62416-929, p. 91-98 (in Polish, with English summary)

LOW CARBON AND LOW-EMISSION CATTLE BARNS FOR DAIRY COWS

K. Mazur

The review of literature dealing with design of modern cattle barn solution was made. It was proposed of modern cattle barn for dairy cows, which fulfilled low-emission and low conventional energy inputs criteria. Technological- functional solutions offered by commercial companies were taken into account by designing of modern proposals of cattle barns for over 80 LU of cattle. Modern livestock buildings should ensure the animal welfare, low human labour inputs and low conventional energy inputs. In work it was shown results of multi-criterial tests of free-stall cattle barns including these with automation of production treatments. During the many year complex research conducted at Institute of Technology and Life Sciences (formerly at Institute for Buildings, Mechanization and Electrification of Agriculture) it was tested free stall cattle barns for dairy and beef cows. The research was aiming the environmental conditions, technological-functional solutions and labour, electrical and mechanical inputs as well as exploitation costs. Mean annual milk yield from cows under assessment of productivity equals for 2015 year 7771 [Polish Federation of Cattle breeders and Milk Producers 2015]. The tested by ITP cattle barns being under breeding assessment had average milk yield over 8000 kg.

Keywords: arrangement of barns, power consumption, cost of human labor, the exploitation of the dairy cow, milk

Светлой памяти выдающегося агрохимика, академика РАН, талантливого ученого Василия Григорьевича Минеева посвящена монография «Удобрения зерновых культур как фактор продовольственного импортозамещения в Верхневолжье».

Ее авторы Г.Н. Ненайденко и Л.И. Ильин рассмотрели основные направления систем удобрения зерновых культур и их значимость в самообеспечении основными продуктами питания областей Верхней Волги. В работе дана почвенная и климатическая характеристика этого региона, показаны лучшие сочетания и рациональные приемы удобрения зерновых культур по данным многолетних экспериментов авторов и других исследователей в Верхневолжье.

В главе «<Удобрение зерновых культур и перспективы продовольственного импор-тозамещения» на примере хозяйств Владимирской области проведен анализ и перспективы развития зерновой отрасли. На этой основе освящены направления развития кормопроизводства, животноводства, птицеводства в перспективе до 2025-2027гг.

Издание богато большим объемом справочного материала. Оно рассчитано на специалистов сельскохозяйственных предприятий, фермеров, а также аспирантов и магистров агрономических специальностей аграрных

Библиографическая характеристика: Ненайденко Г.Н. Ильин Л.И. Удобрения зерновых культур как фактор продовольственного импортозамещения в Верхневолжье/Г.Н. Ненайденко, Л.И. Ильин; ФГБНУ « Владимирский НИИСХ», ФГБОУ ВО «Ивановская ГСХА им. акад. Д.К. Беляева».- Иваново, 2017.-332с.

№ 4 (78) 2016

gfiaôuMipckiù ЗемдеЗЬдецТ)

i Надоели баннеры? Вы всегда можете отключить рекламу.