Научная статья на тему 'Nitrogen and sulphur load in percolation water from agriculture landscape are affected by climate change'

Nitrogen and sulphur load in percolation water from agriculture landscape are affected by climate change Текст научной статьи по специальности «Строительство и архитектура»

CC BY
31
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CLIMATE CHANGE / IMPACT ASSESSMENT / NITROGEN LOAD / SULPHUR LOAD / WATER BALANCE / MORAINE LANDSCAPE

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Frank Eulenstein, Uwe Schindler, Lothar Muller, Matthias Willms, Marion Tauschke

Global and climate changes influence the basic conditions for agriculture. Therefore there is not only a demand for a strict climate protection but also for an adaptation of agriculture to changing conditions. For a study region of 60x40 km within the moraine landscape of North-East Germany, mainly used for agriculture, water balance, nitrogen and sulphur loads as well as crop yields were calculated for the actual and for a possible future situation. The comparison between the Scenario 2050 and the Initial Situation in 2000 revealed significant changes of the water balance (decrease in percolation water, increase in actual evapotranspiration) as well as of the concentration of nitrogen and sulphur in the percolation water. For the study region the crop yields decrease only slightly if the CO2 fertilizing effect is taken into account. Adaptation measures in response to changing climate conditions to achieve an economically secured and sustainable agriculture are recommended.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ПОСТУПЛЕНИЕ АЗОТА И СЕРЫ В ФИЛЬТРАЦИОННЫЕ ВОДЫ В СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЛАНДШАФТАХ, ЗАТРОНУТЫХ ИЗМЕНЕНИЕМ КЛИМАТА

Влияние глобальных и климатических изменений является базовыми условиями для ведения сельского хозяиства. Таким образом, существует не только потребность в строгом сохранении климата, но также и адаптации сельского хозяиства к меняющимся условиям. Для изучения был выбран регион 60x40 км в пределах моренных ландшафтов Северо-Восточной Германии, в основном используемый для сельского хозяйства. Для существующей и возможной в будущем ситуаций были рассчитаны водный баланс, количество азота и серы, а также урожайность. Сравнение между сценарием 2050 года и исходной ситуации в 2000 году, показало значительные изменения водного баланса (уменьшение поступления воды, увеличение фактического испарения), а также изменения концентрации азота и серы в фильтрационных водах. Для изучаемого региона урожайность уменьшается незначительно, если учитывается эффект увеличения CO2. Для поддержания экономически обеспеченного и устоичивого сельского хозяиства рекомендуются меры по адаптации в ответ на изменение климатических условий.

Текст научной работы на тему «Nitrogen and sulphur load in percolation water from agriculture landscape are affected by climate change»

ПЛОДОРОДИЕ ПОЧВ

UDC 550.47

!'3Frank Eulenstein, *'3Uwe Schindler, ^Lothar Müller, *Matthias Willms, *Marion Tauschke, 2Abdulla Saparov, 2Konstantin Pachikin, 2Azimbay Otarov,

3Askhad K. Sheudzhen NITROGEN AND SULPHUR LOAD IN PERCOLATION WATER FROM AGRICULTURE LANDSCAPE ARE AFFECTED BY CLIMATE CHANGE

1Leibniz-Centre for Agricultural Landscape Research (ZALF), D-15374 Müncheberg, Eberswalder Straße 84, Germany, e-mail: feulenstein@zalf.de, 2 Kazakh Research Institute of Soil Science and Agrochemistry after U.U. Uspanov, 050060 Almaty, 75 V al-Farabi avenue, Kazakhstan, e-mail: ab.saparov@mail.ru 3Kuban State Agrarian University, Russian Federation

Abstract. Global and climate changes influence the basic conditions for agriculture. Therefore there is not only a demand for a strict climate protection but also for an adaptation of agriculture to changing conditions. For a study region of 60x40 km within the moraine landscape of North-East Germany, mainly used for agriculture, water balance, nitrogen and sulphur loads as well as crop yields were calculated for the actual and for a possible future situation. The comparison between the Scenario 2050 and the Initial Situation in 2000 revealed significant changes of the water balance (decrease in percolation water, increase in actual evapotranspiration) as well as of the concentration of nitrogen and sulphur in the percolation water. For the study region the crop yields decrease only slightly if the CO2 fertilizing effect is taken into account. Adaptation measures in response to changing climate conditions to achieve an economically secured and sustainable agriculture are recommended.

Key words: climate change, impact assessment, nitrogen load, sulphur load, water balance, moraine landscape.

INTRODUCTION One of the most fundamental questions facing humanity today is how global climate change will impact the terrestrial ecosystems, i.e. the cultivated landscapes. For a sustainable development of rural areas a highly productive and environmentally sound agriculture plays an essential role. It can be expected, that climate change has an increasing impact on agricultural productivity and the environment as well [1, 2]. For European agricultural production the entire range, spanning from local dramatic losses to relatively positive effects, is assumed [3, 4, 5]. Another common result is that a changed landscape water balance causes endangering water deficiency for non-production ecosystems [6]. Results, however, rest on modelling that is usually based on roughly discriminated land use types, e.g. cropland/ grassland/forest [7] with a low spatial resolution, or otherwise selective examinations.

Although Wessolek and Asseng's [6] model predicts yields and water balance for North-East Germany with a high temporal resolution, their statement for 2050 is restricted to one crop at two sites with characteristic soil substrates .

Model-based research on climate impact on regions is still dominated by agriculture and considers mostly yield development, landscape water balance, nutrient dynamics and nutrient loads or en-dangerment of habitats separately. There are hardly any comprehensive eco-systemic simulations based on extensive, real site and land use data of an entire landscape section collected over several years.

Against this backdrop, an eco-systemic sensitivity analysis on the reaction of a well and detailed documented area dominated by agriculture under the actual climate situation of 2000 and under a regional climate change scenario as-

sumed for 2050 [8] are shown in an exemplary manner. It is based on an unchanging continuation of current land use practice, taking extensive field-specific data of a typical agrarian landscape in the partially drought endangered climate of North-East Germany as a representative example. Coherently modelled and interpreted for this study region are first, elements of the water balance, second, nutrient loads and percolation water concentrations for nitrate and sulphate, and third yields of agricultural crops. Climate change impacts on agriculture could be reduced using adapted and/or new land use systems and management practices.

MATERIALS AND METHODS

Study region

As part of the Brandenburgian district "Maerkisch-Oderland" the study region is located within the moraine landscape of North-East Germany. The area extends about 60x40 km and is situated approximately 50 km east of Berlin, i.e. between Berlin and the river Oder. The north-west and the south-west of the study region are parts of sandy-loamy moraine plateaus called "Barnimer Platte" and "Lebuser Platte", respectively, with about 60 m MSL for both plateaus. The south-eastern part of the study region is located in the valley bottom of the "Oderbruch" region at 5-12 m MSL with mostly clayey alluvial soils. The recent climate of the study region is a semi-continental climate with a significantly decreased precipitation gradient from west to east. In the study region, the major part of the land is used for agriculture (about 54,000 ha) across 54 farms from 50 to 7,200 ha with 1,085 ha on average. Winter cereals are grown on 45 % of the arable land of the study region, followed by silage maize and rape with about 9 % each, alfalfa with 3 % and sugar beet with 2 %. Land in the study region that is not used for agriculture represents predominantly forestry and has not been taken into consideration.

Model and simulation platform

To assess the consequences of regional climate changes in North-East German landscapes to the components of climatic water balance as well as the nitrate and sulphate concentration in the percolation water the complex dynamic simulation models HERMES for soil nitrogen and SULFONIE for soil sulphate both developed by Kersebaum [9, 10], Willms et al. [11] and Eulenstein [12] were applied. The nitrogen and sulphur models take into account mineralization, denitrification and transport (by soil water) processes, an atmospheric deposition as well as the uptake by plants. The models run in a daily mode and with 0.1 m soil depth compartments, the modelling is confined to the rooting zone (max. 2 m). Both models contain a layer model for soil water and take into account a capillary rise from below 2 m. The potential evapotranspiration is determined according to Haude [13] using crop-specific monthly factors.

Scenario definition

For the study region simulation runs for two scenarios are characterizing different climatic levels (Initial Situation 2000 and Scenario 2050) were defined. Within each scenario the simulation runs over a 9 year time period (Initial Situation 2000: 1993-2001; Scenario 2050: 2046-2054) representing the basis for the comparison with respect to climate impacts on the study region.

The weather data (temperature, precipitation, sunshine duration/ radiation) for the Initial Situation 2000 were taken from the meteorological station Muencheberg as daily real weather data. For the Scenario 2050 daily weather data for Muencheberg were taken from the climate scenario defined by the Potsdam Institute of Climate Impact Research [8] using a special statistical method. This climate scenario underlying Scenario 2050 is based on the ECHAM4-OPYC3 climate model of the Max Planck Institute for Meteorology Hamburg (Germany) assuming the moderate emission scenario A1B-

CO2 (increase of annual mean temperature Federal State of Brandenburg. The climatic by 1.4 K; decrease of annual precipitation conditions of both scenarios are compared by 112 mm) with a regionalization for the in table 1.

Table 1 - Scenario definition by meteorological data and elements of climatic water balance

Parameters Initial Situation 2000 Scenario 2050

1993-2001 2046-2054

Annual mean temperature (°C) (Station Muncheberg) 8.1 9.5* (increase of 1,4K)

Mean precipitation (mm a-1) (Station Muncheberg) 569 457* (decrease of 112)

Sunshine duration (h a-1) 1698 1842

Act. evapotranspiration (mm a-1) 417** 437**

Perculation water (mm a-1) 143** 12**

Change of storage (mm a-1) 9** 8**

* based on stochastic simulation per day (Figure 1), from Gerstengarbe et al. [8] ** simulated with HERMES |"9, 101

The crop rotations, mean values for the nutrient balances (Calculation method is described in: [14] and the yields for the Initial Situation 2000 were determined by means of yearly field-specific samplings from each farm within the study region. The average amount of mineral and organic nitrogen fertilizers was 102 kg N ha-1 a-1 and 38 kg N ha-1 a-1, respectively, and the amount of mineral and organic sulphate fertilizers was 12 kg S ha-1 a-1 and 5 kg S ha-1 a-1, respectively. For Scenario 2050 crop rotations and fertilizer inputs were taken unchanged from the initial situation.

At both scenarios atmospheric depositions of 8 kg N ha-1 a-1 and 6 kg S ha-1 a-1 were assumed.

•For the purposes of sensitivity analysis, for Scenario 2050 the following basic

conditions were also kept constant (as in Initial situation 2000):

•soils with soil characteristics •spectrum and percental distribution of agricultural grown crops including the according agro-management •level of plant breeding

RESULTS AND DISCUSSION Initial Situation 2000 From the measured climate data (table 1, figure 1) a potential evapotranspiration of 510 mm a-1 is calculated for the Initial Situation 2000. With 417 mm a-1, the real evapotranspiration remains nearly 100 mm below that value. In the Initial Situation 2000, the modelled mean water storage up to a depth of 2 m amounts to 404 mm in autumn.

Figure 1 - Time series of precipitation and temperature for station Muncheberg (Top: Initial Situation 2000, Bottom: Scenario 2050 [8])

The infiltration rate (deeper than 2 m displaced soil water) averages at 143 mm a-1. It correlates with the variances of the annual precipitation to a large extent. Values as low as 60-120 mm a-1 occur predominantly in the area of the clayey soils of the "Oderbruch" section with a high soil moisture capacity.

The nitrogen surplus of the period of examination averages at 55 kg ha-1 across all areas, the sulphur surplus at 15 kg ha-1 (table 2). The annual nitrogen discharges of the Initial Situation 2000 differ between 25 and 100 kg ha-1 around the average of 60 kg ha-1-

The difference between assessed N balance and modelled N discharge in a soil depth of 2 m indicates a reduction of the N storage in the soil layer up to a depth of 2 m of at least 5 kg ha-1. Minor gaseous N losses in addition may increase this reduction

The modelled nitrate concentration in the percolation water varies between

150 and 300 mg l-1, with an average of 232 mg l-1. There are comparable relations between load and concentration with sulphur and sulphate, respectively.

The yield level of the Initial Situation 2000 is characterized by average crop yields of 5 t for winter cereal, 23 t for silage maize and 2,5 t for rape.

Scenario 2050

Although precipitation is 20 % lower, an increase of the current evapotranspiration by 20 mm to 437 mm a-1 is calculated for Scenario 2050 (table 1). This results from warmer winter periods, whereas increased temperature of the summer periods induces no additional evapotranspiration.

With 313 mm, the average water storage up to a depth of 2 m calculated for autumn is 91 mm lower than in the Initial Situation 2000. The average percolation rate goes down to 12 mm a-1.

Parameters Initial Situation 2000 Scenario 2050

N (kg ha-ia-1) S (kg/ha-1a-1) N** (kg ha-ia-1) S** (kg ha-ia-1)

Atmospheric deposition 8* 6* 8** 6**

Input mineral fertilizer 102* 12* 102** 12**

Input farm yard manure 38* 5* 38** 5**

N2 fixation by legume 9* - 9** -

Losses of farm yard manure by storage and application -12* - -12** -

Output harvesting products -90* -7* -90** -7**

Surplus 55* 15* 55** 15**

Load in percolation water 60*** 24*** 40*** 8***

Concentration in percolation water Nitrate (mg NO3 l-1) Sulphate (mg SO4 l-1) Nitrate (mg NO3 l-1) Sulphate (mg SO4 l-1)

232*** 49*** 751*** 132***

* surveyed from aggregated plot budget of 54 farms with total 53573 ha ** under assumption of similar management as in Initial Situation 2000 *** simulated with HERMES / SULFONIE [9, 10, 111

Table 2 - Budgets and percolation water dynamics of N and S

At the clayey sites of the "Oderbruch" section, a decrease in percolation water of 100-140 mm a-1 predominates, which reveals in the failure of significant infiltration rates in 8 of the 9 simulated years. At the sandy sites, there is an even stronger decrease. However, due to the high infiltration rates in the Initial Situation 2000, this only locally induces the absence of any infiltration.

For Scenario 2050, an average nitrogen discharge of 40 kg ha-1 is predicted if the nitrogen surplus remains unchanged at 55 kg ha-1 (table 2). The resulting increase of the nitrogen storage in a depth up to 2 m is due to a strong deceleration of the downward movement of the nitrate, as infiltration rates decrease until 2050. This process, which also applies to the sulphur dynamics, still continues in the Scenario 2050 time span.

As a result of decreased infiltration rates the modelled nitrate concentrations in the percolation water increase to a mean value of 751 mg l-1 (table 2) with a maximum of 900 mg l-1. The amounts of discharge of sulphur and percolation water concentration of sulphate respond correspondingly.

Differences Scenario 2050 to Initial Situation 2000

The conducted sensitivity analysis reveals dramatic changes of the water balance as well as the concentration of the examined nutrients N and S in the percolation water if the current land use practice is maintained until 2050 while yields decrease only slightly or hardly at all if the CO2 fertilizing effect is taken into account.

Increase of the real evapotranspiration by 20 mm a-1 only results from the warmer winter periods, due to insufficient soil water supply during summer. Decreased precipitation and increased real evapotranspiration reduce ground-water recharge under agricultural land to 12 mm a-1 on average. Due to variability of site and weather conditions, years without any local groundwater recharge may occur.

The N load of the percolation water declines from 60 to 40 kg ha-1 a-1, the S load from 24 to 8 kg ha-1 a-1. These lower values, which may be considered landscape-ecologically favorable, result (if input remains constant as defined, cf. table 2) in N enrichment in the upper 2 m of the soil still progressing during Scenario 2050. Despite the decrease of the loads, the concentration of nitrate in the percolation water more than triples on average (from 232 to 751 mg NO3 l-1) as a result of even more dramatically decreasing infiltration rates. The sulphate concentrations respond correspondingly.

Whether, when, and how strongly these small amounts of highly eutrophic percolation water impact the ground water and neighboring ecosystems, depends particularly on the occurrence of highrainfall weather extremes, a general unpredictability in this study.

CONCLUSION Adaptation measures by agriculture In conclusion of these simulation results for the study region different adaptation measures in response to the changing climate conditions for an economically secured and sustainable agriculture are proposed:

•site-specific optimization of the whole production system for an effective water use and for the conservation of the soil organic matter

•integration of new drought resistant crops and varieties into adapted crop rotation

•scheduling of nitrogen fertilization in dependence of plant ontogenesis and water availability

•application of conservation soil tillage and direct sowing methods

•all-the-year coverage of arable land for reducing evaporation and surface runoff

•effective usage of irrigation especially for potatoes, vegetables and special crops

•establishment of agro-forestry or hedge systems to reduce erosion and evaporation especially in affected areas.

ACKNOWLEDGEMENTS

This contribution was supported by the German Federal Ministry of Food and Agriculture and the Ministry of Infrastructure and Regional Planning of the Federal State of Brandenburg (Germany).

REFERENCES

1 Eulenstein, F., Olejnik J., Willms M., Chojnicki B. H., Schlindwein S.L., Schindler U., Müller L. Possible effects of climate changes on land use in North Central Europe and consequences for land use planning. - Eisforia, - 3 (1). 2005. - P. 16-32.

2 Lana M.A. Regionalization of climate change impacts and adaptation strategies for maize in Santa Catarina State, Brazil. Dissertation zur Erlangung des Doktorgrades Abteilung Acker und Pflanzenbau der Agrar und Ernahrungswissenschaftlichen Fakultät der Christian-Albrechts-Universitat zu Kiel. - 2013. - P. 65-69.

3 Maracchi G., Sirotenko O., Bindi M. Impacts of present and future climate variability on agriculture and forestry in the temperate regions // Europe: Climatic Change. -2005. - V 70/1-2. - P. 117-135.

4 Ewert F., Rounsevell M.D.A., Reginster I., Metzger M.J., Leemans R. Future scenarios of European agricultural land use I. Estimating changes in crop productivity // Agriculture Ecosystems & Environment. - 2005. - V. 107/2-3. - P. 101-116.

5 Audsley E., Pearn K.R., Simota C., Cojocaru G., Koutsidou E., Rounsevell M.D.A., Trnka M., Alexandrov V. What can scenario modelling tell us about future European scale agricultural land use, and what not? // Environmental Science & Policy. - 2006. - V. 9. -P.148-162.

6 Wessolek, G., Asseng S. Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany // European Journal of Agronomy. - 2006. - V. 24. - P. 333-342.

7 Rounsevell M.D.A., Reginster I., Araujo M.B., Carter T.R., Dendoncker N., Ewert F., House J.I., Kankaanpaa S., Leemans R., Metzger M.J., Schmit C., Smith P., Tuck G. A coherent set of future land use change scenarios for Europe // Agriculture Ecosystems & Environment. - 2006. - V. 114/1. - P. 57-68.

8 Gerstengarbe F.W. Badeadeck F., Hatterman V., Krysanova W., Lahmer P., Lasch M., Stock F., Suckow F., Wechsung P., Werner C. Studie zur klimatischen entwicklung im land Brandenburg bis 2055 und deren auswirkungen auf den wasserhaushalt, die forst-und landwirtschaft sowie die ableitung erster perspektiven / PIK Report No. 83. - Potsdam Institut fur Klimafolgenforschung. - Potsdam.

9 Kersebaum K.C. Die simulation der stickstoffdynamik von ackerböden. Diss. Univ. of Hannover, Hannover. - 1989. - P. 84-89.

10 Kersebaum, K.C. Application of a simple management model to simulate water and nitrogen dynamics // Ecological Modelling. - 1995. - V. 81. - P.145-156.

11 Willms M., Eulenstein F., Olejnik J., Kersebaum K.C. Simulation des SchwefelHaushaltes von landwirtschaftlich genutzten Boden mit dem Modell SULFONIE. In: Land - und Ernahrungswirtschaft im Wandel: Aufgaben und Herausforderungen fur die Agrar-und Umweltinformatik. Referate der 26. GIL Jahrestagung 2006. Gesellschaft fur Informatik, Potsdam. 2006. - P. 313-319.

12 Eulenstein F., Werner A., Willms M., Juszczak R., Schlindwein S.L., Chojnicki B.H., Olejnik J. Model based scenario studies to optimize the regional nitrogen balance and reduce leaching of nitrate and sulfate of an agriculturally used water catchment // Nutrient Cycling in Agroecosystems. - 2008. - V. 82-1. - P. 33-49.

13 Haude W. Zur Bestimmung der Verdunstung auf möglichst einfache Weise. Mitteilungen des Deutschen Wetterdienstes 11. - Bad Kissengen. - 1955. - 24 p.

14 Eulenstein F., Tauschke M., Lana M., Sheudshen A.K., Dannowski R., Schindler R., Drechsler H. Nutrient balances in agriculture: a basis for the efficiency survey of agricultural groundwater conservation measures. In: Muller, L., Saparov, A., Lischeid, G. (eds), Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia // Springer International Publishingю - Cham. - 2014 - P. 263-273.

TYËIH

13Франк Эуленштейн, ^Уве Шиндлер, ^3Лотар Мюллер, Шантиас Вилмс, Шарион Таучке, 2А. Сапаров, 2К. Пачикин, 2А. Отаров, 3Асхад Шеуджень КЛИМАТТЫН, 0ЗГЕРУ1 ЬЩПАЛ ЕТКЕН АУЫЛ ШАРУАШЫЛЬ^Ы ЛАНДШАФТАРЫНДАFЫ СYЗIЛГЕН СУЛАРFА АЗОТ ПЕН KYKIPTTIH, ТYСУI 1Лейбницк агроландшафтты зерттеу орталыгы (ZALF), D-15374 Мюнхберг цаласы, Германия, e-mail: feulenstein@zalf.de 2в.О. Оспанов атындагы К,азак, топырацтану жэне агрохимия гылыми-зерттеу институты, 050060 Алматы, эл-Фараби дацгылы, 75 В, Цазацстан, e-mail: ab.saparov@mail.ru 3Кубань Мемлекеттк аграрлыуниверситету Ресей F аламды; жэне климатты; езгерктердщ эсерi ауыл шаруашылыгын жYргiзу ymîm негiзгi жардаилар болып табылады. Сондык;тан климаттыц ;атац санталу ;ажеттыт рана емес, сондаи-а; езгерген жагдаиларга ауыл шарушылыгы бешмдеу де бар. Зерттеу Yшiн непзшен ауыл шарушылыгына паидаланатын Германияныц СолтYстiк-ШыFысындаFы морендiк ландшафтар шегiндегi 60х40 км аима; тацдап алынды. К^рп кездеп жэне болаша;тары мYмкiн жагдаилар Yшiн су балансы, азот пен ^юрттщ мелшерi, сондаи-а; енiмдiлiк есептелдi. 2050 жылгы сценарййдi жэне 2000 жылгы бастап;ы жагдаиды салыстыру су балансыныц елеулi езгергенiн (су тYсуiнiц азаюы, на;ты буланудыц артуы), сондаи-а; сYзiлген сулардагы азот пен ^юрттщ концентрациясыныц еезгергенiне керсеттi. Зерттелетiн аима; Yшiн енiмдiлiк, егер СО2 арту эсерi ескерiлетiн болса, шамалы азаяды. Турак;ты жэне экономикалы; ;амсыздандырылган ауыл шарушылыгын ;олдау Yшiн климатты; жагдаилардыц езгеруше бейiмдеу боиынша iс-шаралар усынылады.

TYÜiMdi свздер: климаттыц езгеруь эсердi багалау, азот мелшерi, кYкiрт мелшерi, су балансы, морендi ландшафт.

РЕЗЮМЕ

13Франк Эуленштейн, 1,3Уве Шиндлер, ^3Лотар Мюллер, 1Мантиас Вилмс, Шарион Таучке, 2А. Сапаров, 2К. Пачикин, 2А. Отаров, 2 Асхад Шеуджень ПОСТУПЛЕНИЕ АЗОТА И СЕРЫ В ФИЛЬТРАЦИОННЫЕ ВОДЫ В СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЛАНДШАФТАХ, ЗАТРОНУТЫХ ИЗМЕНЕНИЕМ КЛИМАТА 1Лейбницкий агроландшафтный исследовательский центр (ZALF), D-15374 г. Мюнхберг, Германия, e-mail: feulenstein@zalf.de 2Казахский научно-исследовательский институт почвоведения и агрохимии им. У.У.

Успанова, 050060 Алматы, проспект аль-Фараби 75 В, Казахстан, e-mail: ab.saparov@mail.ru 3Кубанский Государственный аграрный университет, Россия Влияние глобальных и климатических изменении является базовыми условиями для ведения сельского хозяиства. Таким образом, существует не только потребность в строгом сохранении климата, но также и адаптации сельского хозяиства к меняющимся условиям. Для изучения был выбран регион 60x40 км в пределах моренных ландшафтов

Северо-Восточной Германии, в основном используемый для сельского хозяйства. Для существующей и возможной в будущем ситуаций были рассчитаны водный баланс, количество азота и серы, а также урожайность. Сравнение между сценарием 2050 года и исходной ситуации в 2000 году, показало значительные изменения водного баланса (уменьшение поступления воды, увеличение фактического испарения), а также изменения концентрации азота и серы в фильтрационных водах. Для изучаемого региона урожайность уменьшается незначительно, если учитывается эффект увеличения CO2. Для поддержания экономически обеспеченного и устоичивого сельского хозяиства рекомендуются меры по адаптации в ответ на изменение климатических условий.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ключевые слова: изменение климата, оценка влияния, количество азота, количество серы, водныи баланс, моренныи ландшафт.

i Надоели баннеры? Вы всегда можете отключить рекламу.