CHEMICAL SCIENCES | ХИМИЧЕСКИЕ НАУКИ
NEW TYPES OF SYNTHETIC LUBRICATING OILS ON THE BASE OF ESTERS
OF ALKENYLSUCCINIC ACIDS
Mammadyarov M.A. Alieva F.Kh.
Yu.G. Mamedaliev Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, Baku
ABSTRACT
The paper has been devoted to the comparative analysis of esters of alkenylsuccinic acids and investigation of their viscous-temperature and exploitation properties depending on their chemical structure.
Keywords: anhydride of vicinal dicarboxylic acids, alkenylsuccinic acids, monoesters, diesters, symmetrical esters, alkoxyiso-propyl esters.
For the first time the industrial production of ether synthetic oils (on the base of sebacic acid (DOS)) began at the end of the last century [1-3] and were dictated by need of developing aviation. Now, these oils found the use and in other branches of industry [4-7].
In the laboratory of synthetic oils of the Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences the technology of preparation of new types of synthetic oils on the base of esters of alkenylsuccinic acids (ASA) has been developed. These types of synthetic oils on its exploitation characteristics don't yield in, and on some properties exceed industrial ether of synthetic oils. The base of selection of ASA as bases of synthetic oils was the structural peculiarity of these acids, i.e. availability of double C=C bond in alkenyl radical which allows to introduce various functional groups into molecule of ether. In addition, the opening of anhydride ring in molecule of initial alkenylsuccinic anhydride allows to synthesize the multifunctional ethers and to investigate more deeply the structural correlation of the prepared compounds.
The purpose of this paper - investigation of synthesis of new esters of ASA and study of their viscous-temperature and exploitation properties depending on their chemical structure.
Anhydrides ASA were prepared by ene synthesis of maleic anhydride (MA) and a-olefins. The process is carried out in autoclave. The optimal conditions: temperature 200-2200C, reaction time 10-12 hours, ratio MA : a-olefins 1:3 - 4 were determined. For prevention of polymerization of a-olefins in reaction mixture was added 0.3-0.5% mass of hydoquinone. After atmosphere distillation of excess of a-olefins the condensate was distilled under vacuum. The yield of anhydrides of ASA was 6975% from theoretical [8].
Anhydrides of ASA (C6,C8,C10) is liquid of light-yellow color. The structure of anhydrides of ASA was proved by data of IR-and PMR-spectroscopy.
The physical-chemical properties of anhydrides of ASA are presented in Table 1.
Physical-chemical properties of alkenylsuccinic anhydrides
Table 1.
i ^o
Y
R Yield, % 20 n D B.p., 0C/2mm merc.c. Elementcompos. MB T A cong., 00С , 20 d 4
С, % Н, %
С3Н7 75 1.4703 152-154 65.46 65.93 7.81 7.69 82 -44 1.0060
С5Н11 73 1.4688 160-162 67.94 68.57 8.69 8.57 10 -46 1.0020
С7Н15 69 1.4682 196-198 70.11 70.59 9.36 9.24 38 - 1.0003
On the base of anhydrides of ASA and aliphatic alcohols Etherification reaction was carried out in flask equipped with C4-C12 of normal and iso-structure and also cyclic and aromatic mixer, thermometer and reverse cooler. Paratoluenesulfoacid alcohols a number of esters has been synthesized. (PTSA) and Ceokar-2 were used as catalyst of etherification. In
the case of use of low-molecular alcohols the active catalyst was PTSA, but for high-molecular alcohols - Ceokar-2.
^O .0
+ 2RjOH -► R CH C ORi
H2O CH2-^ORI % 2 \
In the case of low-molecular alcohols (C4-C6) the reaction was carried out in the presence of azeotrope solvents (benzene, toluene) and in etherification with high-molecular alcohols (C7-C12) the reaction was carried out in excess of alcohol.
The end of etherification reaction was determined on quantity of isolated reaction water. The purpose product was isolated by distillation under vacuum.
It has been established on the base of experimental data that an opening of anhydride ring and addition of one molecule of alcohol takes place easily, but addition of second molecule occurs difficulty. The data of physical-chemical properties of symmetric esters of ASA are presented in Table 2.
The viscous-temperature properties of esters of ASA and aliphatic alcohols C4-C12, and also cyclic and aromatic alcohols are presented in Table 3.
It is seen from data of Table 3 that esters of ASA and aliphatic alcohols C4-C12 of normal structure possessing viscosity level at 1000C (1.89-4.35 mm2/s), have good low-temperature fluidity (614.26-3446.9 mm2/s in -400C) and low congelation temperature (-44 - -680C). These esters possess also good viscosity index (106.5-152.2) and high flash temperature (178-2720C).
With increase of number of carbon atoms from 4 to 10 alcohol radical, viscosity, congelation and flash temperature are increased. This is visually seen from figures I-VI. The viscous-temperature parameters of esters with branches alcohol radicals are differed from corresponding esters with alcohol radicals of normal structure. This is seen from Table 3. Esters containing the same numbers of carbon atoms bur differing on structure of alcohol radicals (esters VI,VII, VIII) have viscosity indices at 1000C almost identical (3.04 mm2/s, 3.08 mm2/s, 2.99 mm2/s), but viscosity at (-400C) is increased (1470.63 mm2/s in normal, 2225.28 mm2/s in secondary, 3386.04 mm2/s in isooctyl). In comparison with normal alcohol radical ester with isostructure has higher parameters of flash temperature (2230C against 2400C, respectively).
In the case of introduction of cyclic or aromatic fragments instead of aliphatic alcohol one into structure of molecule of esters, not only low-temperature parameters but also viscosity index are noticeably deteriorated. So, cyclohexyl and methylcyclohexyl esters of ASA (Table 3) possess more high viscosity level at 1000C (5.52-5.68 mm2/s in esters XII-XIII, respectively), than corresponding aliphatic esters (2.28-2.54 mm2/s in esters IV-V, respectively) with worse low-temperature properties and viscosity index (33.5 and 36.5 against 97 and 107, respectively). This has been connected with structure of the synthesized esters, i.e. a nature of cyclic fragment shows an essential influence on congelation temperature and low-temperature fluidity. From
three known stereoisomers of cyclohexanole [9] "chair" isomer is less "frost-resistant" than other two. Therefore an initial decrease of temperature creates the possibility for formation of center of crystallization.
Apparently, stereoisomer composition of cyclohexane fragment in etherification is not distorted. An introduction of aromatic ring doesn't show an essential influence on increase of viscosity at 1000C (3.53 mm2/s in ester XIV, 2.54 mm2/s in ester IV), but sharply deteriorates low-temperature properties (-360C and -660C, respectively) and viscosity index (76 and 97, respectively).
The prepared experimental data show that the viscous-temperature properties of the synthesized esters of HSA are stipulated by nature and conformation of alcohol radical. An availability of branched structure and also cyclic fragments decreases a flexibility of molecule and this is especially noticeable at low temperatures.
The influence of length of alkenyl chain on properties of molecule has been also studied: with elongation of alkenyl chain from C6 to C10 the physical-chemical and viscous-temperature properties of esters are also changed (XV-XVIII). The data are presented in Table 2 and 3.
In increase of length of alkenyl radical from C6 to C10 with the same alcohol radical (ester I, XV, XVII), viscosity at positive temperatures is almost not changed, but is sharply changed -400C (for ex. 614.26 mm2/s in ester I. 955,4 mm2/s in ester XV and 1342.2 mm2/s in ester XVII), flash temperature is also increased.
Recently a great attention is paid to the preparation of asymmetric esters. It has been established they possess the better viscous-temperature properties than corresponding symmetric esters. In molecule of these alcohols there are two various alcohol groups: 1) normal and iso-structure of the same alcohol; 2) aliphatic alcohol radical with various number of atoms; 3) aliphatic and alicyclic type; 4) aliphatic and aromatic type.
Etherification reaction was carried out stagely, two-step way. The first stage was carried out at more low temperatures with low-molecular alcohols. The ratio of anhydride HSA : alcohol was 1:1. The first step of etherification was carried out without catalyst, as opening of anhydride ring proceeds easily. The end of etherification reaction was determined on acidic number.
The second stage of etherification reaction was carried out in more hard conditions and in the presence of catalyst. The ratio of monoether : alcohol was 1:2. The end of reaction was determined on quantity of isolated reaction water.
Asymmetric esters are liquid of straw-yellow color, with high boiling temperature [10].
Table 2.
Physical-chemical characteristics of esters of ASA
Z3
R-CH-C-OR, CH2-C^OR,
№ R R1 Yield, % B.p., 0C/mm merc.c. nD , 20 d 4 Found/Calculated Acidic number, mgKOH/g
M.B. C, % H, %
I C6H11 n-C4H9 92.75 172176/2 1.4472 0.9375 311 312 69.46 69.23 10.29 10.26 1.78
II MM i-C.4H9 88.57 168170/2 1.4453 0.9369 311 312 - - neytr.
III MM n-C5Hn 83.29 194196/2 1.4498 0.9368 338 340 70.76 70.59 10.69 10.59 1.9
IV MM n-C6H13 82.8 205207/2 1.4508 0.9278 368 368 71.60 71.74 11.00 10.87 4.9
V MM n-CvH15 91.0 224227/2 1.4512 0.9225 395 396 72.50 72.73 11.30 11.11 6.92
VI MM n-C8H17 85.6 246250/2 1.4524 0.9190 425 424 73.67 73.58 11.34 11.30 1.42
VII MM second- C8H17 41.8 234238/2 1.4526 0.9150 420 424 73.63 73.56 11.39 11.30 2.65
VIII - MM - i-C8H17 51.46 224226/2 1.4544 0.9147 424 424 73.65 73.58 11.47 11.29 0.77
IX MM n-C9H19 85.05 244246/1 1.4543 0.9119 450 452 74.36 74.34 11.47 11.50 2.49
X MM n-C10H21 85.83 280282/2 1.4552 0.9095 478 480 75.16 75.00 11.53 11.67 1.8
XI MM n-C12H25 79.48 286288/2 1.4564 0.9009 538 536 76.24 76.12 11.98 11.94 2.5
XII MM C-C6H11 57.0 203208/2 1.4772 0.9885 362 364 72.70 72.52 10.35 9.89 8.4
XIII MM CH3C6H10 51.33 230234/2 1.4732 0.9873 392 392 74.00 73.41 10.35 10.20 6.07
XIV MM C6H5CH2 73.68 256258/2 - 1.0537 380 380 76,01 75,79 6.79 7.36 1.4
XV C8H15 n-C4H9 82.57 193195/2 1.4500 0.9364 340 340 70,86 70,59 10.98 10.59 6.3
XVI MM n-C7H15 90.64 238240/2 1.4517 0.9148 423 424 73.61 73.58 11.45 11.32 1.9
XVII C10H19 n-C4H9 87.96 206210/2 1.4507 0.9352 366 368 71.87 71.74 11.03 10.87 4.31
XVIII MM n-C7H15 84.66 218220/1 1.4536 0.9337 450 452 74.64 74.34 11.89 11.50 2.95
Table 3.
Viscous-temperature properties of symmetric esters of ASA
r-ch-c-OR,
ch2-C^or2
^O
Viscosity, mm2/s at 0C Viscosity index Temp., 0C
№ R R1 100 50 0 -10 -20 -40 congel. flash
I C6H11 n-C4H9 1.89 4.55 30.24 63.38 142.5 614.26 106.5 -68 174
II MM Ï-C.4H9 2.01 4.80 37.23 68.98 153.3 1324.95 120.5 -68 178
III MM n-C5Hn 2.12 5.44 34.45 65.79 146.7 662.59 98.0 -66 202
IV MM n-C6H13 2.28 5.92 34.93 66.29 149.3 703.12 107.0 -66 206
V MM n-C7H15 2.54 7.07 53.39 70.3 179.8 1342.70 97.0 -66 212
VI MM n-C8Hn 3.04 8.09 63.33 121.8 283.79 1470.63 152.2 -64 223
VII MM second- C8H17 3.08 8.48 - - - 2225.28 142.0 -62 240
VIII MM iso-C8H17 2.99 8.73 81.14 172.75 447.86 3386.04 117.0 -56 234
IX MM n-C9H19 3.24 9.80 82.12 164.25 402.96 2643.58 114.0 -56 238
X MM n-C10H21 3.58 10.80 89.79 167.23 366.8 3446.90 136.5 -44 252
XI MM n-C12H25 4.35 13.59 119.3 237.61 - - 151.4 -16 272
XII MM C-C6H11 5.52 27.52 - - - - 33.5 -34 228
XIII MM CH3C6H10 5.68 28.61 1984.05 4585.86 28560.8 - 36.5 -36 230
XIV MM C6H5CH2 3.53 12.09 211.93 641.88 2697.9 - 76.0 -36 246
XV C8H15 n-C4H9 1.95 4.91 28.85 66.20 127.2 955.4 90.0 -66 206
XVI - MM - n-C7H15 2.89 8.03 60.21 131.13 287.4 2166.2 125.0 -66 218
XVII C10H19 n-C4H9 2.37 6.08 45.06 82.80 171.7 1342.2 114.0 -64 214
XIII - MM - n-C7H15 3.15 9.16 64.10 136.5 303.9 2441.3 124.0 -62 236
An introduction in molecule of symmetric ester (with normal alcohol radical) of radical with the same number of carbon atoms, but iso-structure, is sharply reflected in low-temperature fluidity (in symmetric ester with normal radical C4 the viscosity at -40^ was 614.26 mm2/s, in asymmetric ester with iso-O^ 1222.4 mm2/s) and IV is decreased for 10 points.
An introduction of more high-molecular alcohol radical in molecule of n-^^ ester leads to increase of viscosity at 1000Q IV and flash temperature.
Substitution of one of two alcohol radicals in molecule of dicyclic ether by aliphatic alcohol radical (Table 4) leads to
increase of viscosity index from 33.5 to 115.3, to decrease of congelation temperature (from -34^ to -64°Q and low-temperature fluidity. The same is observed in molecule of asymmetric ester of HSA containing aromatic and aliphatic fragment. An introduction of aliphatic radical into molecule of dibenzyl ether of HSA almost doesn't influence on viscosity at 100^ (3.53 mm2/s in dibenzyl ether 3.25 mm2/s in asymmetric)), but considerably improves the low-temperature fluidity, decreases the congelation temperature (from -36^ to -60°Q and increases the viscosity index (from 76 to 13°.
Table 4.
Viscous-temperature properties of asymmetric esters of hexenylsuccinic acid
ch3ch2ch2ch=chch2— ch— c —or
ch2— c — or2 % 2
№ Ri R2 Viscosity, mm2/s at 0c Viscosity index Temperature, 0c
100 50 -40 Cong. Flash
I. n-c4h9 i-c3h7 1.73 4.11 669.6 97.2 -68 172
II. n -c4c9 i-c4h9 1.86 4.56 1222.4 94.5 -68 184
III. n -c4c9 n-C12H25 3.62 10.93 - 135.1 -38 230
IV. n -c6h13 n-c9h19 2.95 8.18 1939.05 136.0 -64 230
V. * n -ch13 n-c9h19 3.01 8.51 2331.46 125.8 -62 224
VI. n -c6h13 n-C10H21 3.13 8.85 2803.1 134.4 -54 242
VII. n -c6h13 n-C12H25 3.83 10.99 - 169.6 -28 244
VIII. c-c<5hn n-c7h15 2.92 8.34 3174.1 115.3 -64 234
IX. ch3c6h10 n-c7h15 3.08 9.42 4034.0 103.0 -58 232
X. ch3c6h10 n-c8hn 4.12 14.98 4826.49 87.4 -52 228
XI. c6h5ch2 n-c7h15 2.86 7.92 3449.25 124.28 -62 236
XII. c6h5ch2 n-c9h19 3.25 9.47 4195.9 130.0 -60 242
* - mixture of alcohols
Ethers, prepared non step by step etherification, and simply with mixture of alcohols on its viscous-temperature properties are differed from asymmetric ester prepared with the same alcohols (ester IV and ester V) step by step. This is explained with that in reaction with mixture, in first turn, the most active molecule of alcohol will undergo the etherification reaction and as a result, the prepared product will be mixture from two symmetric esters.
It was of large interest the synthesis of esters which along with ester groups would contain ether group, as this would show perceptible influence on viscous-temperature as well as on exploitation properties. With the aim of study of dependence of these properties on structure esters of HSA with oxipropylated aliphatic alcohols were synthesized [11, 12]. Oxipropylation was carried out in the presence of catalyst ( BF3-etherate 1% of quantity of mixture), at temperature 30-350C, adding on dropwise propylene oxide to aliphatic alcohol taken in ratio 1:2.
After finishing of reaction the product was subjected to distillation and oxipropylated alcohols have been isolated.
R-OH + ch3-ch-ch2-
kt
r-o-ch-ch2oh
CH3
Etherification reaction was carried out at boiling temperature of oxipropylated alcohol in the presence of catalyst Ceokar-2. The molar ratio of alcohol and anhydride was 3:1, respectively. The duration of reaction was 5-9 hours. Oxipropylated alcohol was isolated by vacuum distillation. The yield of esters was 62-82% from theoretical one. The structure of esters has been proved by elemental analysis and methods of IR- and PMR-spectroscopy. Data of physical-chemical properties of alkoxyisopropyl esters of ASA are presented in Table 5.
Alkoxyisopropyl esters of ASA are differed from others with difference of functional groups: there are two ester and two ether groups which, undoubtedly, show the influence on properties of ester. The results of investigations of viscous-temperature properties of these esters are presented in Table 6.
Table 5.
Physical-chemical characteristics of alkoxyisopropyl esters of hexen-ylsuccinic acid of total formula:
_ O CH3
ch3ch2ch2ch=ch-ch2-ch- c^och2chor Ch2"c" och2chor ^ Ch3
№ R Yield, % Bp., 0C/mm merc.c. Refraction index 20 n D , 20 d 4 Found/Calculated Acidic number, mgKOH/g Brutto, formula
Mol. Wt. C, % H, %
1 C6H13 68,1 223-225/1 1.4495 0.9409 484 482 69.42 69.17 10.74 11.02 neytr. C6H13
2 C7H15 80,5 232-236/2 1.4510 0.9386 512 511 70.31 70.12 10.93 10.78 2.6 C7H15
3 C8H17 82,7 255-260/2 1.4529 0.9304 540 542 71.11 71.10 11.11 11.00 1.77 C8H17
4 C9H19 78,3 275-277/2 1.4532 0.9199 568 367 71.84 72.05 11.26 12.00 8.2 C9H19
5 C10H21 62,2 288-292/2 1.4542 0.9000 596 599 73.65 73.55 11.40 11.43 2.53 C10H21
Table 6.
Viscous-temperature properties of alkoxyisopropyl esters of hexenylsuccinic acid of total formula:
O CH3
CH3CH2CH2CH=CH-CH2-CH- c-OCH2CHOR
Ch2-c- och2chor 2 % 2I O CH3
№ R Viscosity, mm2/s at 0C Viscosity index Temperature, 0C
100 50 -40 cong. flash
I C6H13 3.24 8.91 2292.28 151.8 -60 224
II C7H15 3.39 9.61 2378.75 149.5 -58 244
III C8H17 4.05 12.69 3926.83 144.8 -56 258
IV C9H19 4.14 12.85 4058.38 154.0 -54 272
V C10H21 4.37 13.65 4288.57 153.5 -52 280
VI C8H17 - C10H21 3.50 9.86 1736.77 158.2 -61 264
The comparison of properties of these compounds with properties of corresponding esters of HSA and aliphatic alcohols show that dialkoxyisopropyl ethers of HSA are characterized by more high viscosity at 1000C (3.24 - 4.37 mm2/s against 2.28-3.58 mm2/s), by more high flash temperature and viscosity index is improved. This can be explained by availability of ether bonds in molecule of these ethers and branched structure of isopropyl fragment disposed between two ether bonds in molecule of these ethers.
on the base of carried out investigations the following conclusions can be made:
1. New esters on the base of anhydrides of ASA and aliphatic, cyclic and aromatic alcohols have been synthesized and asymmetric, alkoxypropyl and esters have been also prepared.
2. The physical-chemical, viscous-temperature properties of these com-pounds have been determined. on the base of study of correlation dependence between chemical structure and exploitation properties of these esters a number of regularities which give a possibility to carry out experiment purposefully and selectively has been established.
3. The synthesized esters can be proposed as bases and components of perspective lubricating oils.
This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan -Grant №EIF-2014- 9(24)-KETPL- 14/05/4.
References
1. Mamedyarov M.A. Chemistry of synthetic oils. L: "Khimiya", 1989, 233p.
2. Gunderson R.S., Khart A.V. / Synthetic lubricating materials and liquids. M.L.: Khimiya, 1965, P.287.
3. Pat. 52024 Ukraine. 2003.
4. Pat. 6649574 USA. 2004.
5. Pat. 6818145 USA. 2007.
6. Pat. 2283341 Russia. 2005.
7. Pat. 2280066 Russia. 2006.
8. Mamedyarov M.A., Alieva F.Kh., Seidov F.T. / Azerbaydzhanskoye neftyanoye khosyaystvo. 1997, №9-10. P.37.
9. Mekhtiev S.D. "Five- and six-membered alycyclic hydrocarbons" - Baku: Elm, 1982, P.11.
10. Mamedyarov M.A., Alieva F.Kh. /KHTTM. 1994, №4. P. 26.
11. Pat. 11814284 Russia. 1997.
12. Mamedyarov M.A., Alieva F.Kh. /Azerbaydzhanskoye neftyanoye khosyaystvo. 1995, №7-8. P.78
ФУМАРАТСОДЕРЖАЩИЕ ЭПОКСИПОЛИУРЕТАНОВЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НАПОЛНЕННЫЕ ФЕРРОЦЕНОМ И
ДИНАМИКА ЕГО ВЫСВОБОЖДЕНИЯ
Руденчик Т.В.
Институт химии высокомолекулярных соединений НАН Украины,
Киев, кандидат химических наук
Рожнова Р.А.
Институт химии высокомолекулярных соединений НАН Украины,
Киев, доктор химических наук
Галатенко Н.А.
Институт химии высокомолекулярных соединений НАН Украины,
Киев, доктор биологических наук
FUMARATE-CONTAINING EPOXY-POLYURETHANES COMPOSITE MATERIALS FILLED WITH FERROCENE AND DYNAMIC OF ITS RELEASE
Rudenchyk T. V., Institute ofMacromolecular Chemistry of the NAS of Ukraine, Kyiv, Сandidate of ^emical Sciences Rozhnova R.A., Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv, Doctor of ^emical Sciences Galatenko N.A., Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv, Doctor of Biological Sciences
АННОТАЦИЯ
С целью создания имплантатов костной ткани, а именно накостных пластин для остеосинтеза синтезированы биологически активные биосовместимые и способные к биодеструкции фумаратсодержащие ЭПУ композиционные материалы, наполненные ферроценом. Для исследования динамики высвобождения ферроцена in vitro из полимерной матрицы ЭПУ композиты, содержащие 1% масс. ферроцена в своем составе были инкубированы в модельной биологической среде 199 5, 10, 20 и 30 суток. Согласно результатам спектрофотометрических исследований установлено, что исследуемые композиты пролонгировано высвобождают ферроцен из полимерной матрицы, что на 30 суток составляет 53 %. Согласно гистологическим исследованиям, биологически активное действие пролонгированной формы ферроцена приводит к ускорению процессов регенерации и формирования вокруг имплантата зрелой соединительнотканной капсулы.
ABSTRACT
For the purpose of creating of bone tissue implants, namely bone plates for an osteosynthesis bioactive biocompatible and capable of biodegradation fumarate-containing EPU composite materials filled with ferrocene are synthesized. To study the dynamics of release of ferrocene in vitro from a polymer matrix EPU composites, which contain 1 wt % ferrocene in its structure were incubated in model biological medium 199 during 5, 10, 20 and 30 days. According to the spectrophotometry studies it was established that the investigated composites prolonged release ferrocene from a polymer matrix at the 30 days is 53 %. According to histological studies, the biologically active action of prolonged form of ferrocene leads to acceleration of the processes of regeneration and the formation around the implant mature connective tissue capsule.
Ключевые слова: ферроцен, фумаратсодержащие ЭПУ композиционные материалы, динамика выхода, биологическая активность.
Keywords: ferrocene, fumarate-containing epoxy-polyurethanes composite materials, dynamic of release, biological activity.
ВСТУПЛЕНИЕ Актуальной задачей в области создания полимерных
Ферроцен - (бис-п5-циклопентадиенилжелезо (II) материалов медицинского назначения является разработка
(^-^H^Fe) - из-вестное сэндвичевое металлокомплексное новых биологически активных композиционных матери-
соединение, которое проявляет биологическую активность алов, которые могут быть использованы для изготовления как биологически активное соединение за счет уникальных имплантатов костной ткани, а именно накостных пластин
свойств ферроценового ядра: устойчивости в биологиче- для остеосинтеза.
ских средах; липофильности, что способствует легкому про- В настоящее время для костной пластики используют
никновению через клеточные мембраны [1], а также не ток- материалы на основе эпоксиполиуретанов. Известны по-
сичности и окислительно-восстановительных свойств [2]. лиуретан-эпоксидные композиционные материалы как им-
Ферроцен и его производные проявляют антибактериаль- плантаты длительного срока действия для лечения туберку-
ную и противомикробную активность [3-5], находят приме- леза костей [13], травматических переломов, в том числе в
нение в медицинской практике для лечения многих заболе- челюстно-лицевой хирургии для изготовления накостных ваний, таких как железодефицитная анемия [6, 7], малярия пластин для остеосинтеза [14, 15]. Указанные композицион-
[2, 8, 9]. Известно использование ферроцена в качестве ные материалы имеют высокие физико-механические пока-
иммуностимулятора при лечении опухолевых новообра- затели и проявляют низкую способность к биодеструкции. зований [2, 10-12]. Учитывая вышеизложенное, ферроцен Использование олигооксипропиленфумаратов, как слож-
представляет интерес как наполнитель при создании биоло- ноэфирной составляющей диизоцианатного форполимера
гически активных полимерных материалов. при синтезе ЭПУ придает полимерному материалу способность к биодеструкции с образованием биосовместимых