Научная статья на тему 'NEW DATA ON MYXOMYCETES IN THE REPUBLIC OF KALMYKIA (RUSSIA)'

NEW DATA ON MYXOMYCETES IN THE REPUBLIC OF KALMYKIA (RUSSIA) Текст научной статьи по специальности «Биологические науки»

CC BY
73
53
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MYXOMYCETES / ARID REGIONS / BIODIVERSITY / DESERT / ECOLOGY OF MYXOMYCETES / SLIME MOLDS / SPECIES INVENTORY / STEPPE

Аннотация научной статьи по биологическим наукам, автор научной работы — Zemlyanskaya I. V., Novozhilov Yu. K.

An annotated list of 32 species of myxomycetes is presented for the Republic of Kalmykia, of which 14 are recorded for the first time in this region. The checklist contains data on the localities, habitats, substrates, methods of collection, and voucher numbers of specimens deposited in the Mycological herbarium of the Komarov Botanical Institute of the Russian Academy of Sciences (LE). Among the identified species, representatives of the family Physaraceae (10 species), Trichiaceae (9 species), Didymiaceae (5 species), and Stemonitidaceae (4 species) are predominant, followed by the Liceaceae (2 species). The smallest number of species belong to the family Dianema-taceae (1 species) and Amaurochaetaceae (1 species). The species composition is typical for arid regions of Eurasia, which are generally characterized by low species richness. The most abundant species were Badhamia spinispora, Fuligo cinerea, and Physarum pseudonotabile, as well as several species of the genus Perichaena (P. depressa, P. liceoides, and P. corticalis). In the study area, 22 species of myxomycetes were recorded in the desert zone and 16 in the steppe zone. The values of Chao1 indices suggest that in the desert and steppe zonal vegetation communities the collecting carried out revealed about 75% of the expected number of species, whereas in the azonal arboreal vegetation in the steppe (48%) and desert zones (57%), the values were much lower. Species biodiversity of myxomycetes in the Republic of Kalmykia is still not completely known, but the data obtained in the present study provide a basis for conducting further studies of myxomycetes in this region.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «NEW DATA ON MYXOMYCETES IN THE REPUBLIC OF KALMYKIA (RUSSIA)»

New data on myxomycetes in the Republic of Kalmykia (Russia)

I. V. Zemlyanskaya1, Yu. K. Novozhilov2

'Volgograd State Medical University, Volgograd, Russia 2Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia Corresponding author. I. V. Zemlyanskaya, ignis@list.ru

Abstract. An annotated list of 32 species of myxomycetes is presented for the Republic of Kalmykia, of which 14 are recorded for the first time in this region. The checklist contains data on the localities, habitats, substrates, methods of collection, and voucher numbers of specimens deposited in the Mycological herbarium of the Komarov Botanical Institute of the Russian Academy of Sciences (LE). Among the identified species, representatives of the family Physaraceae (10 species), Trichiaceae (9 species), Didymiaceae (5 species), and Stemonitidaceae (4 species) are predominant, followed by the Liceaceae (2 species). The smallest number of species belong to the family Dianema-taceae (1 species) and Amaurochaetaceae (1 species). The species composition is typical for arid regions of Eurasia, which are generally characterized by low species richness. The most abundant species were Badhamia spinispora, Fuligo cinerea, and Physarum pseudonotabile, as well as several species of the genus Perichaena (P. depressa, P. liceoides, and P. corticalis). In the study area, 22 species of myxomycetes were recorded in the desert zone and 16 in the steppe zone. The values of Chao1 indices suggest that in the desert and steppe zonal vegetation communities the collecting carried out revealed about 75% of the expected number of species, whereas in the azonal arboreal vegetation in the steppe (48%) and desert zones (57%), the values were much lower. Species biodiversity of myxomycetes in the Republic of Kalmykia is still not completely known, but the data obtained in the present study provide a basis for conducting further studies of myxomycetes in this region.

Keywords: Amoebozoa, Myxomycetes, arid regions, biodiversity, desert, ecology of myxomycetes, slime molds, species inventory, steppe.

Новые данные о миксомицетах Республики Калмыкия (Россия) И. В. Землянская1, Ю. К. Новожилов2

1Волгоградский государственный медицинский университет, Волгоград, Россия 2Ботанический институт им. В. Л. Комарова РАН, Санкт-Петербург, Россия Автор для переписки. И. В. Землянская, ignis@list.ru

Резюме. Приводится аннотированный список 32 видов миксомицетов Республики Калмыкия, из которых 14 впервые отмечены в этом регионе. Для каждого вида приводятся данные о местонахождениях, местообитаниях, субстратах и датах сбора, с указанием номеров коллекционных образцов, хранящихся в гербарии Ботанического института им В. Л. Комарова РАН (LE). Среди выявленных видов преобладают представители семейства Physaraceae (10 видов), Trichiaceae (9 видов), Didymiaceae (5 видов), Stemonitidaceae (4 вида), и Liceaceae (2 вида). Только одним видом представлены семейства Dianemataceae и Amaurochaetaceae. Видовой состав является типичным для аридных районов Евразии и характеризуется низким видовым богатством. Наиболее распространенными видами являются Badhamia spinispora, Fuligo cinerea и Physarum pseudonotabile, а также некоторые виды рода Perichaena (P. depressa, P. liceoides

https://doi.org/10.31111/nsnr/2022.562309

309

и P. corticalis). В изученном районе в пустынной зоне было зарегистрировано 22 вида миксо-мицетов, в то время как в степной зоне — 16 видов. Значения индексов Chaol показывают, что в пустынных и степных зональных растительных сообществах было выявлено около 75% от ожидаемого количества видов, в то время как в азональной древесной растительности в степных и пустынных зонах — только 48% и 57%, соответственно. Видовой состав миксомицетов Республики Калмыкия выявлен недостаточно полно, однако полученные данные могут служить основой для дальнейших исследований миксомицетов в этом регионе.

Ключевые слова: Amoebozoa, аридные регионы, биоразнообразие, инвентаризация видов, миксомицеты, плазмодиальные слизевики, пустыни, степи, экология миксомицетов.

The Republic of Kalmykia is located in the extreme southeast of European Russia in the Lower Volga region. The region extends about 458 km from north to south and 423 km from west to east. In the south, the republic is bounded by the Kumo-Manych depression and the Manych and Kuma rivers, and in the southeast by the Caspian Sea (Manjiev, Klukin, 1979). Most of the territory is located within the Caspian lowlands (Lazareva, 2018). The absolute elevations of the Caspian lowland are + 50 m in the north and - 29 m in the south. Most of this region is occupied by a flat landscape (Manjiev, Klukin, 1979). In the northwest of the republic, the Ergeny upland (up to 120-218 m a. s. l) is located between the Don and Volga basins and is characterized by a dissected landscape formed by a combination of level spaces and wide, elongated ravines passing through the hills (Manjiev, Klukin, 1979; Baktasheva et al, 2016).

In the region there are many shallow salt lakes (e. g., Bolshoy Manych, Arshan-Zel-men, and Barmantsag), most of these are concentrated in the Caspian lowland and the Kumo-Manych depression (Manjiev, Klyukin, 1979; Safronova et al, 1999a, b).

The region is characterized by an extremely continental, arid climate with cold and dry winters alternating with hot summers where temperatures can reach up to 42 °C in July and fall in January to -36 °C (Tashninova, 2016; Lazareva, 2018). The study area receives only 170-200 mm (in the south) to 300-400 mm (in the north) annual precipitation, with a high inter-annual variability (Dzhapova, 2007). The snow cover is extremely unstable. In the south, winters are usually snowless. Low precipitation, recurrent severe droughts, and frequent dry winds are a characteristic feature of the climate (Lazareva, 2018).

The steppe and desert are two main vegetation types in Kalmykia (Safronova et al, 1999a, b; Safronova, 2010, 2017; Bananova et al, 2016). The steppe is represented by three subzones — the northern, middle, and southern steppes (Safronova, 2006). The northern and dry steppes are found only in the extreme west of Kalmykia, and a large part of this territory is occupied by the southern desert steppes (Safronova et al, 1999a, b) with Artemisia lercheana Weber ex Stechm., Festuca valesiaca Gaudin, and Stipa sareptana A. K. Becker the dominant species. On areas with saline soils, communities with Artemisia pauciflora Weber, Anabasis aphylla L., and Salsola laricina Pall. are widely distributed. Small areas are occupied by hypergalophytic variants of the steppes characterized by the presence of Halocnemum strobilaceum (Pall.) M. Bieb. and Halimione verrucifera (M. Bieb.) Aellen. In some localities there are hemipsammo-phytic and pelitophytic communities containing Artemisia lercheana. Sand-sagebrush

and shrubby deserts are characteristic of dune and sand hills. The communities of feather-grass steppes dominated by Stipa capillata L. are distributed on soils with a light mechanical composition, while the feather-grass steppes with S. pennata L. occupy sandy areas in all subzones of the steppes (Safronova et al., 1999a, b; Safronova, 2005, 2006, 2010, 2012; Bananova et al., 2016). Steppe and desert vegetation are significantly transformed due to anthropogenic factors, and their zonal status is often difficult to determine (Safronova, 2017).

The border of natural woody vegetation passes north of the territory of Kalmykia. Therefore, even in ravines there are few trees (Baktasheva et al., 2016). The forest cover of the territory of the republic is only 0.22% and is represented by forest strips. There are no natural forests (Dzhapova, 2007).

Despite the previous studies of the myxomycetes in the Lower Volga region, published data relating to the myxomycete diversity of the Republic of Kalmykia is fragmentary and only 17 species have been reported (Novozhilov et al., 2003, 2005c, 2006). These data, were taken into account in the review of myxomycetes of Russia published by Bortnikov et al. (2020), this checklist contains 26 species for the Republic of Kalmykia. However, after additional checking of georeferences we found that Arcyria minuta Buchet, Badhamia foliicola Lister, Didymium mexicanum G. Moreno, Lizarraga et Il-lana, Stemonitopsis hyperopta (Meyl.) Nann.-Bremek., and Physarum compressum Alb. et Schwein. were erroneously listed and have not yet been found in the Republic of Kalmykia. All erroneously listed species were found in the Astrakhan Region, near the border with the Republic of Kalmykia, which was the cause of the erroneous listing (Bortnikov et al., 2020). Three other previously published species, Physarum leuco-phaeum Fr. et Palmquist, Physarum notabile T. Macbr., and Licea chelonoides Nann.-Bremek., were excluded by us during the collection revision. As a result, 18 species of myxomycetes were previously identified in the study region.

The objective to the present paper is first to provide a comprehensive checklist of all species of myxomycetes reported from Kalmykia and then to discuss their distribution and ecology in the studied region.

Materials and Methods

Due to the very arid climate of the region, most specimens of fruiting bodies (spo-rocarps) were obtained in 125 moist chamber cultures prepared with samples of bark from living plants, litter, and the dung of herbivorous animals.

The substrate samples for moist chamber cultures were collected in the subzone of desert steppes and in desert communities during the period between 1997 and 2013. For all localities, geographical coordinates were obtained with a GPS device. The substrate samples for moist chamber cultures were collected by both authors in typical natural communities and also in the artificial plantations of Ulmuspumila L., Calligo-num aphyllum (Pall.) Guerke, and Krascheninnikovia ceratoides (L.) Gueldenst. All studied specimens are stored in the Mycological Herbarium of the Komarov Botanical Institute of the Russian Academy of Sciences (LE).

Study area. Desert: 1 — Yashkulsky District, Chernye zemli (Black Lands) Nature Reserve, Atsan-Khuduk cordon, feather-grass communities (Stipa capillata, S. sareptana A. K. Becker) due to haymaking, 45°04'09"N, 46°04'09"E; 2 — Justinsky District, near the village of Polynnyj, plant culture of Calligonum aphyllum on the sands, 46°49'44"N, 46°53'50"E; 3 — ibid., 46°50'25"N, 46°53'10"E; 4 — Chernozemelsky District, 9 km east-northeast of the village of Chernozemelsky, overgrown hilly sands, sagebursh white communities with Artemisia lercheana, 45°27'47"N, 45°25'30"E; 5 — Ikiburulsky District, the nearly of the village of Cholun-Hamur, a forest belt of Ulmus pumila on the top of the Cholun-Hamur plateau (the southern end of the Ergeni), grassy cover: Artemisia lercheana, Agropyron desertorum (Fisch. ex Link) Schult., Bassia prostrata (L.) Beck, 45°31'40"N, 44°51'59"E; 6 — ibid., the outcrops of shell rock 1.5 km east of the village, grassy cover: Artemisia lercheana, Agropyron desertorum, Bassia prostrata, etc., 45°30'11"N, 44°53'30"E;

7 — ibid., sandstone outcrops along micro-depressions to the northeast of the village, grassy cover: Artemisia lercheana, Agropyron desertorum, Bassia prostrata, etc., 45°41'26"N, 44°52'01"E;

8 — Yashkulsky District, 45 km southeast of the village of Yashkul, near the village of Tavn-Gashun, sagebursh white communities with Artemisia taurica Willd., 46°00'53"N, 45°53'16"E;

9 — Yashkulsky District, to the southeast 2 km the village of Yashkul on the road to the village of Komsomolsky, sagebursh white communities with Artemisia lercheana, 46°08'18"N, 45°21'24"E;

10 — ibid., a depression with saline soils, galophytic communities with Salsola laricina and Poa bulbosa L., 46°17'59"N, 45°21'08"E. Desert steppe: 11 — Ketchenerovsky District, forest belt of Ulmus pumila along the route from Volgograd to Elista on the sands, association with Artemisia arenaria DC. and Euphorbia seguieriana Neck., 47°23'10"N, 44°36'53"E; 12 — Yashkulsky District, the nearly of the village of Ulan-Erge, the border of the Caspian lowland, the sagebrush black association with Artemisia pauciflora in the saline depression, 46°18'50"N, 44°52'42"E; 13 — Tselinny District, 25.3 km north-west of Elista, eastern gentle macro slope of Ergeni, sagebrush white communities with Artemisia lercheana, Tanacetum achilleifolium (M. Bieb.) Sch. Bip., Festuca valesiaca, Stipa sareptana, Dacha village, 46°33'53"N, 44°19'03"E; 14 — Tselinny District, 30 km east of Elista along the highway, the dead forest belt of the Ulmus pumila, the eastern gentle macro slope of the Ergeni, sagebrush white communities with Artemisia lercheana, Tanacetum achilleifolium, Festuca valesiaca, Stipa sareptana, 46°16'00"N, 44°38'08"E.

The following substrates were selected for the portion of the study involving moist camber cultures: (1) lignified parts of semi-shrubs forming zonal communities (Artemisia lercheana, A. arenaria, A. pauciflora, and Salsola laricina), (2) their litter, bark, and the litter of Calligonum aphyllum shrubs, and (3) weathered dung of herbivorous animals. In addition, the bark of living trees of Ulmus pumila and Malus domestica Borkh. and samples of their ground litter were collected in forest plantations.

Moist chamber (mc) cultures were prepared with 125 samples of the various substrates, in the manner described by Harkonen (1981). Water was added every few days as required to maintain the humidity for the entire observation period of up to three months. All cultures consisted of moist filter paper in plastic Petri dishes (10 cm diam.) and were incubated under ambient light and at room temperature (ca 2024 °C) for up to 90 days and examined for the presence of myxomycetes on six occasions (days 2-4, 6-8, 11-14, 20-22, 40-44 and 85-90). A record is defined herein as one or more fruiting bodies of a species which originated from one culture.

Specimens were identified by both authors using a morphospecies concept to the lowest possible taxonomic level according to Martin and Alexopoulos (1969) and various original descriptions (e.g., Farr, 1976; Poulain et al., 2011a, b). For identification,

sporocarps were preserved as permanent slides in polyphenyl lactophenol and/or glycerol gelatine, to distinguish between limeless and lime-containing structures (Zem-lyanskaya, Novozhilov, 2018).

Myxomycete nomenclature follows Lado (2005-2022). The arrangment of systematic groups of myxomycetes in this paper follows the classification of myxomycetes proposed by Leontyev et al. (2019).

For an estimate of species abundance, the ACOR scale of Stephenson et al. (1993) was adapted. It is based on the proportion of a species to the total number of records so that R = rare (< 0.5%, 1 record for this survey), O = occasional (0.5-1.5%, 2-3 records), C = common (1.5-3%, 4-7 records), and A = abundant (> 3%, more than 8 records).

All microscope measurements and observations were made under a Zeiss Axio Imager A1 microscope with differential interface contrast (DIC). Air-dried sporocarps were studied with a Zeiss motorized stereo microscope Discovery V20 at the Center for collective use of scientific equipment of the V. L. Komarov Botanical Institute RAS, as well as a Zeiss Primo Star microscope and a Bresser Advance ICD stereomi-croscope at the Department of Pharmacognosy and Botany of Volgograd State Medical University.

We used the EstimateS 9.1.0 program (Gotelli, Colwell, 2011; Colwell, 2019) in order to assess the level of detection of the species composition of myxomycetes in the studied territory. The Chao1 species richness assessment index was calculated. The basis for calculating the corresponding indices was a matrix, where information about all samples of the identified species was recorded. The species diversity (alpha diversity) was estimated using the Shannon index H = - £Pi ln Pi, where Pi is the relative abundance of a particular species (a share of the total number of finds), as well as the Simpson dominance index: D = 1/£Pi2 (Magurran, 2004).

Results and Discussion

As a result of our research, we identified 32 species of myxomycetes, 14 of which were recorded in this region for the first time. The following is an annotated list of myxomycetes found in the Republic of Kalmykia at the time the present research project was completed. All species are arranged in alphabetical order. The names of myxomycetes are given according to the nomenclature database of Lado (2005-2022).

The species list given below was compiled from the records collected by authors. In the list, after each taxon name the following data are given in brackets: abundance according to the ACOR scale (Stephenson et al., 1993): A — the species has a high frequency of occurrence, C — common, O — rarely found, R — rare; and number specimens found in field/moist chamber cultures. Next, the occurrence of a species on six different substrate types is listed: b — the bark of living trees and shrubs; dung — weathered droppings of herbivorous animals; lg — grass litter, lt — twig litter, w — rotten wood, wb — rotten wood with not fallen bark. For each species, references to samples (LE) are also provided. Since all specimens were collected by authors, the following

abbreviations are used when citing them: I. V. Zemlyanskaya — IZ, Yu. K. Novozhilov — YuN. Before the sample numbers, a list of all localities where a particular species was found are marked and preceded by the abbreviation "LOC". For species with more than 10 specimens, references to three of them are provided.

An exclamation mark in upper case (!) indicates a species recorded as new for the Republic of Kalmykia. References are given in the form of numbers in upper case preceding the name of the taxon for taxa already reported for the territory of the Republic of Kalmykia: 1 — Novozhilov et al, 2003; 2 — Novozhilov et al., 2005c; 3 — Novozhilov et al., 2006; 4 — Bortnikov et al., 2020.

!Arcyria cinerea (Bull.) Pers. — R (1/0); w: 1 (Malus domestica); LOC: 13; 30 VII 2013, IZ, LE 278281.

!A. denudata (L.) Wettst. — O (3/0); b: 2 (Artemisia arenaria), w: 1 (Pinus sylvestris L.); LOC: 11, 13; 30 VII 2013, IZ, LE 278268; 1 VIII 2013, IZ, LE 278391; 1 VIII 2013, IZ, LE 278401. It was detected in the field on an old board and on lignified parts of semi-shrubs.

!A. incarnata (Pers. ex J. F. Gmel.) Pers. — R (1/0); w: 1 (Pinus sylvestris); LOC: 13; 30 VII 2013, IZ, LE 278267. It was detected in the field on an old board.

!Badhamia affinis Rostaf. — O (3/0); w: 3 (Pinus sylvestris, Malus domestica); LOC: 13; 30 VII 2013, IZ, LE 278269; 30 VII 2013, IZ, LE 278270; 30 VII 2013, IZ, LE 278280. It was detected in the field on an old board and on rotten wood in a garden.

!B. foliicola Lister — O (2/0); w: 2 (Pinus sylvestris); LOC: 13; 30 VII 2013, IZ, LE 278265; 30 VII 2013, IZ, LE 278266. It was detected in the field on an old board. Previously, this species was already reported for the territory of the study region (Bortnikov et al., 2020), but it was mentioned above, this reference was incorrect.

1 2, 3, 4B. spinispora (Eliasson et N. Lundq.) H. W. Keller et Schokn. — A (0/33); b: 20, dung: 1, lg: 2, wb: 10; LOC: 5, 7, 9, 10, 12; 18 X 1999, IZ, LE 227264; 20 X 1999, IZ, LE 219281; 30 IV 2002, IZ, LE 253373. This species was detected by the moist chamber method both in the steppe and desert zones on the bark of living trees Ulmus pumila and the semi-shrubs Artemisia lercheana, A. pauciflora, and Salsola laricina, on the excrements of herbivorous animals, and on plant litter.

!B. utricularis (Bull.) Berk. — R (1/0); w: 1 (Malus domestica); LOC: 13; 30 VII 2013, IZ, LE 278271.

1 2 3 4Comatricha laxa Rostaf. — O (1/1); b: 1 (Ulmuspumila), w: 1 (Malus domestica); LOC: 5, 13; 12 IV 1998, IZ, LE 219489, 30 VII 2013, IZ, LE 278273.

1 3, 4Dianema corticatum Lister — R (1/0); w: 1 (Ulmuspumila); LOC: 5; 19 VII 1997, IZ, LE 218117. This species was found on dead bark and in litter.

1 2 3 4Didymium anellus Morgan — O (0/2); lg: 1 (Artemisia lercheana), wb: 1 (Artemisia lercheana); LOC: 8, 9; 2 III 2002, IZ, LE 270139; 2 III 2002, IZ, LE 270171. It was obtained in a moist chamber on the litter of grasses and on the dead lignified parts of wormwood.

1 2, 3, 4D. difforme (Pers.) Gray — C (0/4), wb: 4 (Artemisia lercheana); LOC: 9; 24 III 2002, IZ, LE 270129; 24 III 2002, IZ, LE 270134; 30 IV 2022, IZ, LE 270138; 23 III 2002, IZ, LE 270144. It was obtained in a moist chamber on the dead lignified parts of wormwood.

!D. iridis (Ditmar) Fr. — R (0/1); b: 1 (Ulmuspumila); LOC: 5; 26 I 2006, IZ, LE 272667.

!D. quitense (Pat.) Torrend — O (0/2); lg: 1 (Artemisiapauciflora), wb: 1 (Artemisiapauciflora); LOC: 12, 14; 2 V 2002, IZ, LE 270113; 23 III 2002, IZ, LE 270115. It was obtained in a moist chamber on dead lignified parts of wormwood.

4D. trachysporum G. Lister — A (0/11); b: 6, wb: 5; LOC: 6, 7, 9, 12; 2 XI 1999, IZ, LE 219289; 2 XI 1999, IZ, LE 219288; 30 IV 2002, IZ, LE 270121. It was obtained in a moist

chamber both in the steppe and desert zones on dead and living lignified parts of wormwood of Artemisia lercheana and A. pauciflora.

1, 2, 3, 4Fuligo cinerea (Schwein.) Morgan — A (0/31); b: 10, dung: 3, lg: 1, lt: 8, wb: 9; LOC: 2, 3, 5, 6, 7, 8, 9, 10; 2 IX 2002, YuN, IZ, LE 270471; 27 VIII 2002, YuN, IZ, LE 270462; 10 VII 2022, YuN, IZ, LE 270456. It is detected by the moist chamber method on different types of substrates in the desert zone and it is one of the most typical species present.

1 2 3 4Licea nannengae Pando et Lado — C (0/6); b: 5 (Artemisia lercheana), lt: 1 (Calligonum aphyllum); LOC: 2, 6; 27 VIII 2002, YuN, IZ, LE 270700; 29 XI 1999, IZ, LE 219295; 7 X 1999, IZ, LE 219296; 2 XI 1999, IZ, LE 219298; 29 XI 1999, IZ, LE 226729; 2 I 2000, IZ, LE 249352.

!L. scyphoides T. E. Brooks et H. W. Keller — R (0/1); wb: 1 (Artemisia lercheana); LOC: 2; 23 III 2002, IZ, LE 270178. This specimen was originally identified as Licea chelonoides (Bortnikov et al., 2020).

!Macbrideola oblonga Pando et Lado — R (0/1); b: 1 (Ulmuspumila); LOC: 5; 6 I 2006, IZ, LE 272662.

1, 2, 3, 4Perichaena corticalis (Batsch) Rostaf. — A (3/23); b: 16, dung: 4, w: 3, wb: 3; LOC: 4, 5, 6, 7, 8, 9, 13, 14; 29 XI 2002, IZ, LE 226817; 30 VIII 2013, IZ, LE 278277; 23 IV 2002, IZ, LE 270452. It is detected by the moist chamber method both in the steppe and desert zones on different types of substrates and it is one of the most typical species.

1 2, 3, 4P. depressa Lib. — A (0/15); b: 5, dung: 4, lt: 4, wb: 2; LOC: 2, 3, 4, 5, 6, 7, 8, 9, 10; 8 XI 2002, YuN, IZ, LE 270463; 28 VIII 2002, YuN, IZ, LE 270455; 30 IV 2002, IZ, LE 270141. It is detected by the moist chamber method on different types of substrates in the desert zone and it is one of the most typical species.

1 2, 3, 4P. liceoides Rostaf. — A (0/29); b: 4, dung: 11, lg: 2, lt: 3, wb: 9; LOC: 2, 3, 4, 6, 7, 8, 9, 10, 12, 14; 28 VIII 2002, YuN, IZ, LE 273347; 28 VIII 2002, YuN, IZ, LE 270467; 5 IX 2002, YuN, IZ, LE 228199. It is detected by the moist chamber method both in the steppe and desert zones on different types of substrates and it is one of the most typical species.

1 3 4P. quadrata T. Macbr. — O (0/2); b: 1 (Ulmus pumila), wb: 1 (Artemisia pauciflora); LOC: 5, 9; 17 I 2000, IZ, LE 228258; 30 IV 2002, IZ, LE 270152.

1,2, 3, 4P. vermicularis (Schwein.) Rostaf. — R (0/1); b: 1 (Ulmuspumila); LOC: 5; 27 IX 1999, IZ, LE 219274.

1, 2, 3, 4Physarum cinereum (Batsch) Pers. — R (0/1); dung: 1; LOC: 10; 3 III 2002, IZ, LE 270158.

!P. compressum Alb. et Schwein. — R (0/1); lt: 1 (Calligonum aphyllum); LOC: 2; 27 VIII 2002, YuN, IZ, LE 270698. Previously, this species was already reported for the territory of the study region (Bortnikov et al, 2020), but it was mentioned above, this reference was incorrect.

1, 2, 3, 4P. didermoides (Pers.) Rostaf. — O (0/2); wb: 2 (Artemisia lercheana); LOC: 9; 30 IV 2002, IZ, LE 270145; 02 V 2002, IZ, LE 270147.

1, 2, 4 P. pseudonotabile Novozh., Schnittler et Okun — A (3/25); b: 7, lt: 20, w: 1, wb: 2; LOC: 2, 3, 4, 5, 6, 9, 12, 13; 19 VII 1997, IZ, LE 205786; 7 VII 2002, YuN, IZ, LE 253631; 17 VII 2002, YuN, IZ, LE 253578. Some samples of this species collected on the territory of Kalmykia were previously identified as P. leucophaeum Fr. et Palmquist, P. notabile T. Macbr., and P. nudum T. Macbr. These names were given in the earlier publications. However, when the samples were revised after the description of P. pseudonotabile (Novozhilov et al, 2013), all samples from Kalmykia that previously been assigned to those species were redefined as P. pseudonotabile. It is one of the most common species and it occurs on a wide difference of substrates with the exception of the excrements of herbivorous animals.

i, 2, 3, 4Physarum pusillum (Berk. et M. A. Curtis) G. Lister — O (0/2); dung: 1, lg: 1; LOC: 8, 10; 3 III 2002, IZ, LE 274055; 2 III 2002, IZ, LE 270172. It was obtained in a moist chamber on the litter of grasses and on the excrements of herbivorous animals.

!Stemonitis pallida Wingate — R (1/0); w: 1 (Malus domestica); LOC: 13: 30 VII 2013, IZ, LE 278275.

1 2, 3, 4S. smithii T. Macbr. — R (1/0); wb: 1 (Ulmus pumila); LOC: 5; 12 IV 1998, IZ, LE 219490. This species was found on dead bark in litter. In the work of C. Lado «An on line nomenclatural information system of Eumycetozoa» (2005-2022) this species is given as a synonym of S. axifera (Bull.) T. Macbr. We in our work follow Martin and Alexopoulos (1969). S. smithii differs from S. axifera in smaller spores and sporangia.

!S. splendens Rostaf. — R (1/0); w: 1 (Malus domestica); LOC: 13; 30 VII 2013, IZ, LE 278276.

!Trichia contorta (Ditmar) Rostaf. — R (1/0); w: 1 (Malus domestica); LOC: 13; 30 VII 2013, IZ, LE 278278.

Only 24 specimens of fruiting myxomycetes were observed in the field; most of the data in this study were obtained from moist chamber cultures. 193 specimens were obtained from 125 moist chamber cultures representing 32 species from 13 genera and seven families, of which 17 species were recorded for the first time for this region. Thirty-six moist chamber cultures (28.8%) did not yield positive results. Fourteen of the 32 taxa identified were classified as rare for the whole area, nine as occasional, seven as abundant and two as common.

Looking at the study as a whole, values of the Chao1 indices (43.2+8.1) suggest that our effort probably recorded 74% of the species present in the study area. In total, about 75% of the expected number of species were identified in the steppe and desert zones (16 species, Chao1 = 21.4 + 5.2; 22 species, Chao1 = 29.2 + 6.4). However, completeness varied for the zonal and azonal arboreal communities. 87% and 92% of the expected number of species were identified in the steppe and desert zonal communities (6 species, Chao1 = 6.9 + 1.7; 16 species, Chao1 = 17.5 + 2.2), whereas in azonal communities with woody plants of the steppe and desert zones these values are lower: 48% (12 species, Chao1 = 25.3 + 12.6) and 57% (12 species Chao1 = 21.0 + 8.6), correspondingly. This is due to a much smaller diversity of appropriate habitats for myxomycetes in treeless zonal steppe and desert communities compared to azonal communities with woody plants and to the lower intensity of our study in the latter.

Seven of the identified species are abundant (A, occurrence > 3%) and are found in almost all communities and on various substrates. Fourteen of the identified taxa are classified as rare (R, occurrence < 0.5%).

The most commonly recorded species were from the families Physaraceae (10 species from the genera Badhamia, Physarum, and Fuligo), Trichiaceae (nine species from the genera Arcyria, Perichaena, and Trichia), Didymiaceae (five species from the genera Didymium), and Stemonitidaceae (for species from the genera Macbrideola and Stemonitis). Species from the families Liceaceae (two species from the genus Licea),

Dianemataceae (one from the genus Dianema) and Amaurochaetaceae (one from the genus Comatricha) were recorded only rarely. It should be noted that species in the genus Echinostelium were not found in spite of the fact that this genus is widely distributed in arid regions (Schnittler, Novozhilov, 2000; Novozhilov et al, 2000, 2005a, b, c, 2006; Zemlyanskaya, 2003; Novozhilov, Schnittler, 2008; Ndiritu et al,, 2009; Schnittler et al, 2013, 2015; Zemlyanskaya, Novozhilov, 2010, 2018, 2020; Stephenson et al, 2020; Zemlyanskaya et al, 2020). However, since the data obtained on the myxomycetes of Kalmykia are still incomplete, it is possible that representatives of this family will be found in further studies.

The largest number of species in the study area belong to the genera Physarum, Didymium, and Perichaena, with the latter genus including the most abundant species in the study area (three species).

The largest number of species [23 (H — 2.75)] as noted on the remains of wood, 11 of them were found only on this type of substrate and are represented by single finds. The next largest is the epiphytic complex of species on the lignified parts of semi-shrubs and the bark of shrubs and trees in forest plantations [16 (H — 2.28)], of which six are found only on this type of substrate and are also represented by single finds. There are 10 species living on the ground litter (H — 1.59), of which only Physarum compressum was not observed on other types of substrates. On the dung of herbivorous animals of seven species (H — 1.7), Physarum cinereum was detected only on this substrate. The majority of those species that are abundant are found on all types of substrates. Physarum pseudonotabile has never been recorded on the dung of herbivorous animals.

The identified complex of species as a whole is characteristic of arid regions. Thus, 53 species were identified in the nearly of Lake Elton (Zemlyanskaya, Novozhilov, 2010), 55 species were identified in the deserts of the Northwestern Caspian Sea within the Russian Federation (Novozhilov et al., 2003, 2005a, b, c), 36 species were identified in the Inder salt dome region in Western Kazakhstan (Zemlyanskaya, Novozhi-lov, 2020), 45 species were identified in the Zaisan basin (Zemlyanskaya, Novozhilov, 2018), 27 species were identified on the Mangyshlak Peninsula (Schnittler, Novozhi-lov, 2000), in Western Kazakhstan in zonal communities of semi-shrubs steppe and desert zones — 61, in conditions of strong salinity — 35 species (Zemlyanskaya et al., 2020), in arid regions of the Great Lake Basin of western Mongolia — 36 species (No-vozhilov, Schnittler, 2008). All the listed biotas of myxomycetes are characterized by a small number of species, the predominance of representatives of the genera Phy-sarum, Didymium, and Perichaena, a significant abundance of individual species, and the most abundant species are almost always species of the genus Perichaena (P. de-pressa, P. liceoides, and P. corticales), Badamia spinispora, Physarum pseudonotabile, and Fuligo cinerea.

The data reported herein can become a starting point for further studies of myxomycetes of the Republic of Kalmykia.

Acknowledgments

We acknowledge the use of equipment of the Core Facility Center 'Cell and Molecular Technologies in Plant Science' at the Komarov Botanical Institute of the Russian Academy of Sciences (BIN RAS, St. Petersburg).

The laboratory work of the second author was supported by the state task "Biodiversity, ecology, structural and functional features of fungi and fungus-like protists" (BIN RAS, 122011900033-4) and the project of the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2021-1056).

References / Литература

Baktasheva N. M., Boskhamdzhieva S. G., Arsenov Ya. E. 2016. Analysis of the vegetation condition of the gullies of the northern part of the Ergeninsky Upland within the Republic of Kalmykia. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Himiya. Biologiya. Ekologiya 16(4): 463-468. [Бакташева Н. М., Босхамджиева С. Г., Арсенов Я. Э. 2016. Анализ состояния растительности балок северной части Ергенинской возвышенности в пределах Республики Калмыкия. Известия Саратовского университета. Новая серия. Серия Химия. Биология. Экология 16(4): 463-468]. https://doi.org/10.18500/1816-9775-2016-16-4-463-468

Bananova V. A., Safronova I. N., Lazareva,V. G., Nguen V. Z. V., Haritonov Ch. S. 2016. Vegetation cover of the Sarpinskaya lowland of the Republic of Kalmykia (Explanatory text to geobotanical maps). Elista: 134 p. [Бананова В. А., Сафронова И. Н., Лазарева В. Г., Нгуен В. З. В., Харитонов Ч. С. 2016. Растительный покров Сарпинской низменности Республики Калмыкия (Пояснительный текст к геоботаническим картам). Элиста: 134 с.].

Bortnikov F. M., Matveev A. V., Gmoshinskiy V. I., Novozhilov Yu. K., Zemlyanskaya I. V., Vlasen-ko A. V., Schnittler M., Shchepin O. N., Fedorova N. A. 2020. Myxomycetes of Russia: a history of research and a checklist of species. Karstenia 58(2): 316-373. https://doi.org/10.29203/ka.2020.502 Colwell R. K. 2019. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9.1.0, 2019. User's Guide and application. http://viceroy.eeb.uconn.edu/estimates/ (Date of access: 2 VIII 2022). Dzhapova R. R. 2007. Dinamika rastitelnogo pokrova Ergeniiskoi vozvyshennosti i Prikaspiiskoi nizmennosti v predelakh Respubliki Kalmykiya. Avtoref. Doct. Diss. [Dynamics of vegetation cover of the Ergeninsky upland and the Caspian lowland within the Republic of Kalmykia: Synopsis of Doct. Diss.]. Moscow: 47 p. [Джапова Р. Р. 2007. Динамика растительного покрова Ергенинской возвышенности и Прикаспийской низменности в пределах Республики Калмыкия. Автореф. дисс... докт. биол. наук. М.: 47 с.].

Farr M. L. 1976. Myxomycetes. Flora Neotropica 16: 1-304.

Gotelli N. J., Colwell R. K. 2011. Estimating species richness. Biological Diversity frontiers in measurement and assessment. New York: 39-54.

Harkonen M. 1981. Myxomycetes developed on litter of common Finnish trees in moist chamber cultures. Nordic Journal of Botany 1(6): 791-794. https://doi.org/10.1111/j.1756-1051.1981.tb01165.x

Lado C. 2005-2022. An on line nomenclatural information system of Eumycetozoa. RealJardín Botánico, CSIC. Madrid, Spain. https://eumycetozoa.com/data/index.php (Date of access: 2 VIII 2022).

Lazareva V. G. 2018. Features of the spatial distribution of vegetation cover in the North-Western Caspian region. Botanicheskii zhurnal 103(4): 455-465. [Лазарева В. Г. 2018. Особенности пространственного распределения растительного покрова в Северо-Западном Прикаспии. Ботанический журнал 103(4): 455-465]. https://doi.org/10.1134/S0006813618040038 Leontyev D. V., Schnittler M., Stephenson S., Novozhilov Y. K., Shchepin O. N. 2019. Towards a phylogenetic classification of the Myxomycetes. Phytotaxa 399(3): 209-238. https://doi.org/10.11646/phytotaxa.399.3.5

Magurran A. E. 2004. Measuring biological diversity. Maiden; Oxford: 256 p.

Manjiev S. V., Klyukin N. V. 1979. Kalmyk ASSR. Economic and geographical essay. Elista: 80 p. [Манджиев С. В., Клюкин Н. В. 1979. Калмыцкая АССР. Экономико-географический очерк. Элиста: 80 с.].

Martin G. W., Alexopoulos C. J. 1969. The Myxomycetes. Iowa City: 560 p.

Ndiritu G. N., Spiegel F. W., Stephenson S. L. 2009. Distribution and ecology of the assemblages of myxomycetes associated with major vegetation types in Big Bend National Park. Fungal Ecology 2: 168-183. https://doi.org/10.10167j.funeco.2009.03.002

Novozhilov Y. K., Schnittler M. 2008. Myxomycete diversity and ecology in arid regions of the Great Lake basin of Western Mongolia. Fungal Diversity 30: 97-119.

Novozilov Yu. K., Schnittler M., Zemlianskaia I. V., Fefelov K. A. 2000. Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation. Protistology 1(4): 161-178.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Novozhilov Yu. K., Zemlianskaia I. V., Schnittler M., Fefelov K. A. 2003. An annotated checklist of the myxomycetes of the northwestern Capian Lowland. Mikologiya i fitopatologiya 37(6): 53-65. [Новожилов Ю. К., Землянская И. В., Шнитлер М., Фефелов К. А. Аннотированный список миксомицетов cеверо-западного Прикаспия. Микология и фитопатология 37(6): 53-65].

Novozhilov Yu. K., Schnittler M., Zemlianskaia I. V. 2005a. Synecology of myxomycetes in desert of the northwestern Caspian Lowland. Mikologiya i fitopatologiya 39(4): 40-52. [Новожилов Ю. К., Шнитлер М., Землянская И. В. 2005a. Синэкология миксомицетов в пустыне северо-западного Прикаспия. Микология и фитопатология 39(4): 40-52].

Novozhilov Yu. K., Zemlianskaia I. V., Schnittler M. 2005b. Corticolous myxomycetes in deserts of the northwestern Caspian lowland. Mikologiya ifitopatologiya 39(5): 43-54. [Новожилов Ю. К., Землянская И. В., Шнитлер М. 2005b. Кортикулоидные миксомицеты пустынь северо-западного Прикаспия. Микология и фитопатология 39(5): 43-54].

Novozhilov Yu. K., Zemlianskaia I. V., Schnittler M. 2005c. Myxomycetes of the northwestern Caspian deserts. Novosti sistematiki nizhshikh rastenii 38: 164-170. [Новожилов Ю. К., Землянская И. В., Шнитлер М. 2005c. Миксомицеты (Myxomycetes) пустынь северо-западного Прикаспия. Новости систематики низших растений 38: 164-170].

Novozhilov Y. K., Zemlyanskaya I. V., Schnittler M., Stephenson S. L. 2006. Myxomycete diversity and ecology in the arid regions of the Lower Volga River Basin (Russia). Fungal diversity 23: 193-241.

Novozhilov Y. K., Okun M. V., Erastova D. A., Shchepin O. N., Zemlyanskaya I. V., García-Carvajal E., Schnittler M. 2013. Description, culture and phylogenetic position of a new xerotolerant species of Physarum. Mycologia 105: 1535-1546. https://doi.org/10.3852/12-284

Poulain M., Meyer M., Bozonnet J. 2011a. Les Myxomycètes. Guide de détermination T. 1. Sévrier: 568 p.

Poulain M., Meyer M., Bozonnet J. 2011b. Les Myxomycètes. T. 2. Sévrier: 544 p.

Safronova I. N. 2005. About the desert steppes of the Lower Volga. Povolzhskiy Journal of Ecology 3: 261-267. [Сафронова И. Н. 2005. Об опустыненных степях Нижнего Поволжья. Поволжский экологический журнал 3: 261-267].

Safronova I. N. 2006. About the desert steppes of Russia. Stepi Severnoj Evrazii: Materialy chetvertogo mezhdunarodnogo simpoziuma. Orenburg: 640-642. [Сафронова И. Н. 2006. Об опустыненных степях России. Степи Северной Евразии: Материалы четвертого международного симпозиума. Оренбург: 640-642].

Safronova I. N. 2010. On the subzonal structure of plant cover in the steppe zone of European Russia. Botanicheskii zhurnal 95(8): 1126-1134. [Сафронова И. Н. 2010. О подзональной структуре растительного покрова степной зоны в Европейской части России. Ботанический журнал 95(8): 1126-1134].

Safronova I. N. 2012. On the problems of zonal division of the arid territory of the European part of Russia. Botanicheskii zhurnal 97(6): 705-711. [Сафронова И. Н. 2012. О проблемах зонального деления аридной территории европейской части России. Ботанический журнал 97(6): 705-711]. https://doi.org/10.1134/S1234567812060018

Safronova I. N. 2017. Anthropogenic transformation of the vegetation of the Caspian Sea. Problemy izucheniya i sohraneniya rastitel'nogo mira Evrazii: Materially II Vserossiiskoi nauchnoi konferentsii. Irkutsk: 130-131. [Сафронова И. Н. 2017. Антропогенная трансформация растительности Прикаспия. Проблемы изучения и сохранения растительного мира Евразии: Материалы IIВсероссийской научной конференции. Иркутск: 130-131].

Safronova I. N., Ogureeva G. N., Yurkovskaya T. K., Miklyaeva I. M., Kotova T. V. 1999a. Zones and types of zones of vegetation in Russia and adjacent territories. M. 1:8000000. Card for higher education. Moscow. [Сафронова И. Н., Огуреева Г. Н., Юрковская Т. К., Микляева И. М., Котова Т. В. 1999а. Зоны и типы поясности растительности России и сопредельных территорий. М. 1:8000000. Карта для высших учебных заведений. M.].

Safronova I. N., Ogureeva G. N., Yurkovskaya T. K., Miklyaeva I. M., Kotova T. V. 1999b. Zones and types of zones of vegetation in Russia and adjacent territories. Explanatory note and legend to the map of the same name on a scale of 1: 8000000. Moscow. [Сафронова И. Н., Огуреева Г. Н., Юрковская Т. К., Микляева И. М., Котова Т. В. 19996. Зоны и типы поясности растительности России и сопредельных территорий. М. 1:8000000. Пояснительный текст и легенда к карте. М.].

Schnittler M., Novozhilov Y. K. 2000. Myxomycetes of the winter-cold desert in Western Kazakhstan. Mycotaxon 74(2): 267-285.

Schnittler M., Novozhilov Y. K., Carvajal E., Spiegel F. W., 2013. Myxomycete diversity in the Tarim basin and eastern Tian-Shan, Xinjiang Prov., China. Fungal Diversity 59: 91-108. https://doi.org/10.1007/s13225-012-0186-5

Schnittler M., Novozhilov Y. K., Shadwick J. D. L., Spiegel F. W., García-Carvajal E., König P., 2015. What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere 6: 356-384. https://doi.org/10.5943/mycosphere/6/3/11

Stephenson S. L., Kalyanasundaram I., Lakhanpal T. N. 1993. A comparative biogeographical study of myxomycetes in the mid-Appalachians of eastern North America and two regions of India. Journal of Biogeography 20: 645-657. https://doi.org/10.2307/2845520

Stephenson S. L., Kaur G., Payal N., Elliott T. F., Vernes K. 2020. Myxomycetes associated with arid habitats in northeastern South Australia. Transactions of the Royal Society of South Australia 144(2): 139-153. https://doi.org/10.1080/03721426.2020.1779429

Tashninova A. A. 2016. Brief analysis of climatic conditions for the central part of Kalmykia (for the period 2012-2014). Vestnik Instituta kompleksnykh issledovanii aridnykh territorii 2(33): 45-55. [Ташнинова А. А. 2016. Краткий анализ климатических условий для центральной части Калмыкии (за период 2012-2014 гг.). Вестник Института комплексных исследований аридных территорий 2(33): 45-55].

Zemlyanskaya I. V. 2003. Myxomycetes of Bogdinsko-Baskunchakskyi nature reserve. Mi-kologiya i fitopatologiya 37(4): 40-47. [Землянская И. В. 2003. Миксомицеты Богдинско-Баскунчакского заповедника. Микология и фитопатология 37(4): 40-47].

Zemlyanskaya I. V., Novozhilov Yu. K. 2010. Myxomycetes of salt-dome formations in the nearly of Lake Elton. Mikologiya i fitopatologiya 44(6): 37-46. [Землянская И. В., Новожилов Ю. К. 2010. Миксомицеты соляно-купольных формаций в окрестностях озера Эльтон. Микология и фитопатология 44(4): 37-46].

Zemlyanskaya I. V., Novozhilov Yu. K. 2018. Myxomycetes diversity of the Zaisan depression (Eastern Kazakhstan). Mikologiya i fitopatologiya 52(2): 91-103. [Землянская И. В., Новожилов Ю. К. 2018. Миксомицеты Зайсанской котловины (Восточный Казахстан). Микология и фитопатология 52(2): 91-103].

Zemlyanskaya I. V., Novozhilov Y. K. 2020. Slime Moulds (Myxomycetes = Myxogastrea) in the Inder Salt-Dome Region (western Kazakhstan). Mikologiya ifitopatologiya 54(4): 244-253. [Землянская И. В., Новожилов Ю. К. 2020. Миксомицеты индерского солянокупольного района (Западный Казахстан) Микология и фитопатология 54(4): 244-253]. https://doi.org/10.31857/S0026364820040121

Zemlyanskaya I., Novozhilov Yu., Schnittler M. 2020. An annotated checklist slime molds (Myxomycetes = Myxogastrea) of Western Kazakhstan. Karstenia 58(2): 168-189. https://doi.org/10.29203/ka.2020.493

i Надоели баннеры? Вы всегда можете отключить рекламу.