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In this paper we introduce the notion of an R, -generalized solution to the Stokes
problem with singularity in a two-dimensional non-convex polygonal domain with one
reentrant corner on its boundary in special weight sets. We construct a new approximate
solution of the problem produced by weighted finite element method. An iterative process
for solving the resulting system of linear algebraic equations with a block preconditioning
of its matrix is proposed on the basis of the incomplete Uzawa algorithm and the
generalized minimal residual method. Results of numerical experiments have shown that the
convergence rate of the approximate R, -generalized solution to an exact one is independent
of the size of the reentrant corner on the boundary of the domain and equals to the first
degree of the grid size h in the norm of the weight space Wy, (Q) for the velocity field
components in contrast to the approximate solution produced by classical finite element
or finite difference schemes convergence to a generalized one no faster than at an O(h%)
rate in the norm of the space Wi (£2) for the velocity field components, where o < 1 and «
depends on the size of the reentrant corner.
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Introduction

The weak solution of Maxwell equations considered in a 2D polygonal domain with
reentrant corner on the boundary does not belong to the Sobolev space W} (). Such a
problem is called a boundary value problem with strong singularity. For the Lamé system,
for a example, in a domain with a reentrant corner it is possible to define a weak solution
in the space W3 (£2), but it does not belong to the space W(Q2). Such problem is called a
problem with weak singularity.

According to the principle of coordinated estimates, the approximate solution to these
problems by the classical finite difference and finite element methods converge to the exact
one with a rate substantially smaller than one. In [1,2] it was proposed to define the solution
of elliptic boundary value problems and Maxwell equations with strong singularity as an
R,-generalized one. Such a new conception of solution allows to construct weighted finite
element methods with first-order convergence rate estimate of the approximate solution
to the R,-generalized one in the norms of the weighted Sobolev spaces.

In this paper we present our method for solving the Stokes problem. It is well
known that the efficient numerical solution of problems in fluid mechanics is of significant
engineering interest. There are basically three reasons why the finite element discretization
of such problem turns out to be difficult.

Firstly, in the presence of reentrant corner w, w € (m, 27), on the boundary of the
domain the solution of the problem is singular even though the input data are sufficiently
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smooth. The two-dimensional flow of a viscous fluid near the corner was first examined
in [3]. It is well known that the generalized solution of the Stokes problem: the velocity
components and pressure in a two-dimensional domain 2 with a boundary containing a
reentrant angle does not belong to W3(Q2) and W, (Q) respectively (see e.g. [4]). Therefore,
the approximate solution produced by standard finite element or finite difference schemes
converges to a generalized solution no faster that at an O(h®) rate in the norm of the
space W3 (), where o < 1 depends on the size of the reentrant corner w for the velocity
components (see [5]). In this case the so-called pollution effect can be observed in standard
Sobolev and even in weighted Sobolev norms [6]. More recent results on the regularity
theory and finite element approximations on domains with reentrant corners can be found
in [7] and the references therein. By using special methods for extracting the singular part
of the solution near corner points and applying grids refined towards the singularity point,
it is possible to construct first-order accurate finite element schemes (see e.g. [8]).

Secondly, the design of LBB-stable method for a velocity and pressure spaces pairs [9].

Thirdly, the spaces enforce mass conservation strongly. Satisfying this criterion leads
to more physically relevant solutions, decouples the pressure error from the velocity error,
and removes possible instabilities that can arise from poor discrete mass conservation [10].
The specific element pair to achieve pointwise mass conservation of the discrete solution
is the Scott—Vogelius element pair [11].

In the present paper we construct the weighted finite element method (see [1,2,12-15])
based on the conception of an R,-generalized solution [16-19] of the Stokes problem with
a singularity due to a reentrant corner of w on the boundary of the domain and Scott-
Vogelius element pair. Numerical experiments of the model problems have shown that
the approximate R, -generalized solution produced by weighted finite element method
converges to the exact one (velocity) with the rate O(h) in W3, (€, 6) norm for all
considered sizes of the reentrant corner w in contrast to the approximate solution produced
by classical finite element or finite difference schemes convergence to a generalized one no
faster than at an O(h®) (o« = a(w) < 1) rate. The simplicity of the solution determination
is an additional benefit of the method for the numerical experiments.

The structure of the paper is as follows. In Section 1 define the R,-generalized
solution of the Stokes problem with corner singularity. In Section 2 describe the proposed
weighted finite element method. In Section 3 construct an iterative process with a block
preconditioning matrix. In Section 4 present the results of numerical experiments. Finally,
some concluding remarks are given in Section 5.

1. R,-Generalized Solution

Let R? denote the two-dimensional Euclidean space, x = (x1,75) be its arbitrary
element, [|x|| = (2} + x%)l/z and dx = dx; dzs. Let Q C R? be a bounded non-convex
polygonal domain with a boundary I' containing a reentrant angle with its vertex placed
at the origin, and let Q be a closure of Q, i.e. @ = QUT. Denote by Q5 = {x € Q: ||x|| <
§ < 1,6 > 0} the part of a d-neighbourhood of the point (0,0) that lies in 2. Define a

!
. : x|, x € Q
weight function p(x), such that p(x) = ’ I
§ ,xe\ Q.
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Let Lo 5(£2) denote the weighted space of functions with bounded norm

H/UHLQ’/B(Q) = (/ pQﬂ(X)U2(X)dX> 1/2

Q
and Wy 5(€2) denote the weighted space of functions with bounded norm

1/2
lollwy o = (D 167G () - (1)

Im|<1

where D™v(x) = %, |m| = my +mg,m; > 0,7 =1,2 — integer. For vector functions
1 2
v = (v1,v3) we define weighted spaces Ly 3(Q) and W} 4(Q) with norms [|[v||L, 4« =
1/2 1/2 .
(onli2, s+ el o) and vl o = (lenlidy oy + Nealliyy o)) respectively.

Let W5 4(,0), for § > 0, denote a set of functions v(x) from the space W 45(9)
satisfying the following conditions:

5 \stm ,
/ PP (x)(x)dx > Oy > 0, |D™u(x)] < CQ(,)(X)) x € 2)
O\

where m = 0,1 and Cy > 0 be a constant independent of m, with a norm (1). Let Ly 5(£2, )
be a set of functions from the space Ly 5(€2), which satisfy the conditions (2) (for m = 0)
with a norm of the space Ly g(Q). Also, L 5(Q,0) = {q € Ly (2, 0) fp gdx = 0}.

The set W35 5 (€2,0)(W; 5 (2,0) C W3 45(9Q,9)) is defined as a closure in norm (1) of the
set of infinitely differentiable compactly supported functions in €2, that satisfy conditions
(2). We say that p(x) € Wl/2(F §), if there exists a function ®(x) from Wy 4(2,d) such

that B0 = 00 and (@l = it 19l 0,

For vector functions v = (vi,v2) define sets Lys(Q2,0) and W3 4(Q,6) such that
v; € Lyp(2,0) and v; € Wy 4(Q,6) with a bounded norm of spaces Ly 5(Q) and W 4(Q)

respectively. Similarly for vector functions we define sets W%ﬁ (Q,0) and W[lg/ 2(F, J).
The Stokes problem is to find the velocity field u = (uy,u2) and pressure p which
satisfy the system of differential equations and the boundary conditions

—vAu+ Vp =", div u =0, in (3)
u=g, on I (4)

Here f = (f1, f2) and g = (g1, g2) are defined in € and on I respectively, 7 is the kinematic
viscosity which is related to the Reynolds number Re of the flow by v = é.
Define the bilinear and linear forms

a(u,v) = /17 Vu - V(p*v)dx, b(v,p) = — /p div (p*v)dx,

Q Q
/ 2 f . vdx.
Q
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Definition 1. The pair of functions (u,(x),p,(x)) € W3, (Q,0) x L3 ,(2,0) is called
an R,-generalized solution of the Stokes problem (3), (4), if w,(x) salisfies the boundary
condition (4) almost everywhere on I' and integral identities

a(u,,v) +b(v,p,) =1(v),
c(u,,q) =0

hold for any pair (v(x), q(x)) €Wy, (Q,0)x LY ,(Q,0), where the right-hand side functions
feLyp(0.0), g€ Wy2(I,0), v> 6.

2. The Weighted Finite Element Scheme

The weighted finite element scheme for the Stokes problem (3), (4) is constructed
relying on the definition of an R, -generalized solution. For this purpose, we construct the
triangulation Y, which is a barycenter refinement of a quasi-uniform triangulation 7}, of
Q [20]. The domain Q is divided into a finite number of triangles L;, L; € T} (macro-
element). Each L; is refined as stated above into three triangles K; (finite element),
K;; € Ty (barycenter refinement) with vertices 1; and midpoints S. Then,

R = R U R = {R; U S.}, where RY! and RY are sets of triangulation nodes for
the velocity components in €2 and on I' respectively;

2)RPres = {(Q;} is the set of triangulation nodes for the pressure, where a node @Q); coincides
with a node R}, on the corresponding K. .

Denote by Q, = |J K, the union of all finite elements with sides of order h. Now
KseTh

we introduce Scott—Vogelius (SV) element pair [11] (case k = 2). In short, polynomials of
degree two and one are used to approximate the velocity components and pressure, spaces
X" and Z" respectively:
Xt ={vh e C(Q) :vM|g € P(K),VK € T} (X" = X" x Xh);
Zh={2" € Ly(Q) : 2"k € PI(K),VK € Ty, [ 2"dx = 0}.

Q

The SV element is very interesting from the mass conservation point of view since
its discrete velocity space X" and its discrete pressure space Z" satisfy an important
property, namely div X" C Z". Thus, using SV elements, weak mass conservation via

[ div w"z"dx = 0 V2" € Z" implies strong (pointwise) mass conservation. We can choose
Q
the special test function 2" = div w” to get || div w"||1,(0) = 0. In [21] it was shown that

the SV space pair (k = 2) is LBB-stable.

Now we introduce a special set of basis functions and construct a weighted finite
element scheme for the Stokes problem (3), (4). Each node M, € RY(N; € RFres) is
associated with a function

*

u(x) = 0" (%) - ulx), (i) = () - u(30)) k= 0,1, (1= 0,1,..0),

where pr € X", pp(M;) = b for k,j = 0,1,... (wl e Zh y(N;) = by, 1,7 =0,1,.. .);
Oms 18 Kronecker delta, v* and p* are real constants.

The sets V" and Q" for the velocity components and pressure are defined as the linear
span of the system of basis functions {0}, and {x;}; respectively. In V" we consider
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the subset V' = {v" € VI . Uh(Mk)|MkeRgel = 0}. Associated with the constructed
triangulation, the finite element approximation of the displacement velocity components
and pressure have the form

upy (%) = do (%), wlo(x) =Y dops1 O4(x), pl(x) = erxi(x), (5)
k k

l

where d; = IO_V*<MU/2})d~j,€Z' = p~"(N;) &. The coefficients d; and e; in (5) are defined
from the system of equations (see (8)) below.
The corresponding velocity field sets are denoted by V* = Vi x V" and VI = Vi x V.

Obviously, V* € W3, (Q4,,9), Vi CW3, (Q,0) and Q" C LY (U, 0).

Definition 2. The approzimate R,-generalized solution of the Stokes problem (3), (4)
produced by the weighted finite element method is the pair (u?(x), p"(x)) € V* x Q" such
that each component of ul'(x) at nodes of the set R¥ satisfies the boundary condition (4)

and, for an arbitrary pair (vi(x),p"(x)) € VI x Q" and v > B, we have the equalities
Al V") + bV pl) = 1), 6)
c(uy,q") =0, (7)
where w), = (ully,ul'y) and £ € Lyp(Q,0), g € W;{;(F,d).

v —

The finite element problem (6), (7) generates a system of linear equations with a saddle

point matrix
IR <8>

In our case, A is a positive definite square matrix, B and C” are non-square matrices,
h h h
C=u,n=p,y=F,z=0.

3. Iterative Method

The system of linear algebraic equations (8) is large and sparse, making direct solutions

infeasible. We construct a convergent iterative process [22] of the following form:

1) select an initial guess 7%, ¢° to the solution of (8);

2) for k=0,1,2,..., until converge do;

3) compute ¢F+1 = (¥ + A~y — AC* — Bib);

4) compute ¥t = pF + SH(CT¢H! — 2);

5) end do,

where A and S are preconditioning matrices to A and the Schur complement S = CTA~'B
respectively.

To construct matrix A, we use an incomplete LU factorization of A — ILU(0) [23],
ie., A=L- fJ, where L and U are lower and upper triangular matrices respectively. At
each iteration in 3, we solve the problem Aq = x with the left preconditioner A. We use
the generalized minimal residual method (GMRES(n)) [23]. The method approximates the
solution by the vector in a n-th Krylov subspace with minimal residual. Let ry = Afl(x —
Aq), then the Arnoldi loop constructs an orthogonal basis of the left preconditioned n-th
Krylov subspace: Span{rq, A~*Ary,..., (A"TA)" ry},n = 10.
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Further, we construct an auxiliary matrix S to S, as a weighted mass matrix MI”;“* of
the pressure space, on each L € Ty, :

* 1 * .
Oy =5 [ ) w00, LG = 0L

L
Then, we define the diagonal matrix S = Mg’“*, where (1\_/15“)” = > (Mg“)lk It is
k

well known (see [24]), that such diagonal lumping is a good preconditioner to the initial
weighted mass matrix.

Tt derives from the above that at each iteration in 4 one finds a vector ¥° := S716 as
a solution of internal procedure: .
1) ¢o=0;2) ¢ = Gu1 + S0 = Sop_1) (m =1,..., M); 3) ¢° = ¢pr.
We use restart GMRES(k): (Span{r,S7!Sr,...,(S7!S)¥ 17}, r = S (0—S¢,,_1),k = 5).

4. Numerical Experiments

In this section we present the results of numerical experiments to illustrate the
behaviour of our method applied to the Stokes problem (3), (4) with viscosity 7 = 1.

Let Q; = (=1,1) x (—1,1) \ D; are non-convex polygonal domains with one reentrant
corner w; : w; = 37“,012 = %,wg = 9% on its boundary with the vertex located in the
origin (0,0). We divide ; into a set of closed triangles {L,,}, where each L,, is a half of
a closed square of the size h for corners w;, i = 1, 2; a half of a closed square of the size h
in Q4 = [~1;1] x [0;1] and a half of a closed rectangle with sizes h and % in Q3 \ 0 for
a corner ws. Then, each L,, (macro-element) is refined (barycenter refinement) into three
triangles K, , their set {K,} (see Fig. 1).

Fig. 1. The triangulation Y, of the €; : (left) wy = 37; (center) wy = 2%; (right) wy = %

We use the exact solution (u, p) of the Stokes problem (3), (4), which exhibits corner
singularity phenomena at the reentrant corner w; on its boundary with the vertex located
in the origin (0,0). In polar coordinates (r, @) at the origin the exact solution for each
wi, @ =1,2,3, is given by (see e.g. [25]):

ui(r, ©) = - (14 X) U(p) - sin(p) + V() - cos(y)),

us(r, @) =1 - (W'() - sin(p) — (1+ X)) U(p) - cos(y)),
1 (LX) (p) + 9" (p)

— N1
P(ﬁ 90>_ r 1_)\1 ’
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~sin((1 + Ai)p)cos(Aw;)
B L+ A
The exponent \; is the smallest positive solution of

B sin((1 — A\;))cos(Aiw;)

U(p) T\

—cos((1+A:)p)

+cos((1—=XN)p).

sin(Aw;) + Asin(w;) = 0,

which is Ay & 0,544483 for wy; = 2T, Ay & 0,673583 for wy = 2, A3 &~ 0,800766 for
w3 = 9. These solutions satisfy the Stokes problem (3), (4), where f = 0.

We emphasize that the pair (u, p) is analytical in €;\ (0, 0), but Vu and p are singular
at the origin. Especially, u € W3(Q) and p & W3 (Q). This solution reflects perfectly the

typical behaviour of the solution of the Stokes problem near a reentrant corner.

Table 1

The error norm |Ju” — ullwy(q) of the generalized solution, v =0, 6 = 1,v" = p* =0

w; | N=80 | N=160| N =320
%ﬂ 2,768e-1 | 1,898e-1 | 1,302e-1
%ﬂ 1,538e-1 | 9,649¢e-2 | 6,050e-2
%’T 6,321e-2 | 3,627e-2 | 2,082e-2

Table 2

The influence of parameters  and v on the behaviour of the error [[u — ullwy (o)

of the R,-generalized solution, v* = pu* = \; — 1

w; | v 5 | N=80]N=160] N =320
o= 15| 0,0125 | 2,619e-4 | 1,303¢-4 | 6,475e-5
0,015 | 3,946e-4 | 1,958¢-4 | 9,744e-5

1.8 | 0,0125 | 7,153¢-5 | 3,551e-5 | 1,769¢-5
0,015 | 1,144e-4 | 5,709¢-5 | 2,824e-5

5z |15 | 00125 | 1,362e-4 | 6,813¢-5 | 3,404e-5
0,015 | 2,140e-4 | 1,071e-4 | 5,332e-5

18| 0,0125 | 3,790¢-5 | 1,886e-5 | 9,399¢-6
0,015 | 6,242¢-5 | 3,107e-5 | 1,546¢-5

o |15 | 00125 | 7,581e-5 | 3,780e-5 | 1,880e-5
0,015 | 9,826¢-5 | 4,891e-5 | 2,428¢-5

1.8 | 0,0125 | 2,039¢-5 | 1,017e-5 | 5,061¢-6
0,015 | 2,827e-5 | 1,409¢-5 | 7,010e-6

Numerical experiments were carried out on meshes with different step sizes h (numbers
N,h = 2). The errors of the numerical approximations to the R,-generalized and

N

generalized (v =0, 6 = 1,v* = u* = 0) solutions were computed as the module between
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approximate and exact solutions in the points M}, and in the norm of spaces W3 ,(Q) and
W3 () respectively. The results of the numerical experiments are presented in Tables 1,
2. The optimal values of parameters v and § were derived numerically.

For the determined approximate RR,-generalized and generalized solutions in Table 3
we present the numbers of points (in percentage of their total number), where the errors
0ji = |uj(M;) — ul ;(M;)|,j = 1,2, M; € R&' (for the R,-generalized solution) and &7, =
| (M;) —ul(M;)], 7 = 1,2, M; € R (for the generalized solution) are less than the given
limit values Aj. In our experiments, the number of points (in percentage of their total
number) for each component of the velocity field u is approximately the same.

Table 3

The number of points (in percentage of their total number), where
the errors dy; and ¢}, are less than the given limit values A\

R,-generalized, v = 1,5 generalized, v = 0
0=0,0125,v*=\; — 1 0=1v"=0

w; | Ay | N=80| N=160 | N =320 N=80| N =160 | N =320
T1107% | 36,1% 46,5% 64,2% 31,4% 41,1% 52,3%
1077 | 15,7% 18,9% 29,1% 14,9% 15,4% 23,1%
5t 1074 | 46,2% 59,2% 78,2% 41,3% 55,0% 70,9%
107° | 24, 7% 29,8% 40,1% 20,8% 26,3% 35,2%
I 110~* | 72,3% 78,5% 89,4% 68,4% 73,7% 84,7%
107° | 38,7% 49,0% 66,2% 33,8% 46,4% 63,2%

l s, >910

Y i}
[]3107%<8;<910
[8;,<310™

4

Fig. 2. Distribution of the points M, with errors ¢/, for the component u? of the
3

approximate generalized solution w; = <F,v = 0,0 = 1, v* = p* = 0, (left) with N = 160,
(right) with N = 320

On Figs. 2, 3 we depict the distribution of the points M; with errors d;; and 6}, for
the components uﬁl and u? of the approximate R,-generalized and generalized solutions,
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9
o" o

s> 9107
[]3107%<8,<9107
[(18<310"

Fig. 3. Distribution of the points M, with errors ¢;; for the component ufil of the
approximate R, -generalized solution w; = 37’7,1/ =1,5,0 = 0,0125, v* = p* = A\ — 1,
(left) with N = 160, (right) with N = 320

1.2=107
E—N v=1.806=0.015N=320 v=1.5,6=0.0125N=320 oy |
.
4= =9 v=1805=0015N=160 &=----4& v=1.506=0.0125N=160 P
r"'
r"’
"
0'.‘
L
1"’
"
"‘
"‘s -.‘:'
“‘L -‘A‘r »
Sk s & £x10
‘0"
P
¢ap"-'-"
- -"‘-*1‘ ,,-".- -
T i = =W
.———_.___.‘_. = - = ./.
hzl-l —ID.3 —DI.2?5 —IIJ.25 —DI.225 —ID.Z —DI.1?5 —6.15 a

Fig. 4. The dependence of |[u? — u||W%,V(Q) on the degree of v*, for wy = 2%

respectively, for different mesh sizes h. On Figs. 4, 5 we introduce the dependence of errors
in W3 ,(Q) norm on the degree v*(u* = v*) of the weight function p(x). Each minimum on
Figs. 4, 5 corresponds to the optimal value v* for the respective v, ¢ and w. This research
was supported in through computational resources provided by the Shared Facility Center
"Data Center of FEB RAS".

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 103
u nporpammupoBaHues (Bectuuk FHOYpI'Y MMII). 2018. T. 11, Ne 1. C. 95-108



V.A. Rukavishnikov, A.V. Rukavishnikov

w10

E—N v=1.8.6=0.015N=320 v=1.5,0=0.0125N=320

== 9vy=185=0.015N=160 h=-=-4 v=1.505=0.0125N=160 A

-t
.-
5 -

. ?'.3—1 = 0173 -0.15 - 0125 =01 - 0073 L] - 0023 0

Fig. 5. The dependence of |[ul — uHW%’V(Q) on the degree of v*, for wy = &

Conclusions

The results of numerical experiments leads to the following conclusions:

e The approximate R,-generalized solution (velocity field) of the Stokes problem (3),
(4) converges to the exact one with the rate O(h) in the W3 ,(€2) norm for all corners
wi,i = 1,2,3 (see Table 2), while the approximate generalized solution by classical
FEM has an O(h®®) rate of convergence for a corner w; = 2, O(h%") — for a
corner wy = 2 O(h*¥) — for a corner wy = 5 in the W5(€2) norm (see Table 1)
(the so-called pollution effect [6]);

The number of points in percentage of their total number, where the modulus of
the difference between the approximate and exact solutions are less than the given
limit values, more for the proposed weighted method in comparison with the classical
FEM (see Table 3 and Figs. 2, 3);

For all degrees v*(u* = v*) of the weight function p(x), that lie between A; — 1 and
0, and parameters v, 0 close to optimal, the approximate R,-generalized solution
converges to the exact one with the rate O(h) in the W; ,(Q) norm (see Figs. 4, 5).
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HOBBIN ITPUBJINKEHHBIVI METO/I, PEIIIEHUA 3AJIAYN
CTOKCA B OBJIACTH C YIJIOBOM CUHI'VJ/JISAPHOCTBIO

B.A. Pykasuwnuros', A.B. PykasuwHurxos’

I Brruncanrensueii nentp JampreBocTounoro oTaenenns Poceniickoil akageMun HayK,
r. Xabaposck, Poccuiickass Pemeparims

2Xabaposckoe orenenne MHCTUTYTa TPUKIAIHON MaTeMaTHKH, I. XabapoBCK,
Poccmiickast @emeparnst

B craree onpeneneno noustue R, -0006mennoro perenns 3agagu CTOKCa ¢ CHHTYIISIP-
HOCTBIO B JIByMEPHO# HEBBIMTYKJIOH MHOTOYTOJIBHON 00JaCTH C OTHUM BXOAAIIMM YTJIOM HA
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[MTPOTPAMMUWPOBAHUE

rpanruie 0OJaCTH B CIIENMATIBHBIX BECOBBIX MHOXKecTBaX. [locTpoeno HOBOe mpubanmkeHHOE
peleHne 3a/1a49u C IOMOIIBI0 BECOBOIO METO/[A KOHEYHbIX djiemenTos. lIpemsioxken urepa-
IIMOHHBIN TPOITECC PEIIeHUsT MOJYIEHHON CUCTEMBI JIMHEHHBIX aaredpanvdecKux ypaBHEHUH
¢ OJIOYHBIM TTEPEOOYCIABIMBAHIEM €€ MATPHUILI HA OCHOBE HEMOJHOIO AJTOPUTMA YI3aBbI
7 0DODIIEHHOTO METO/Ia MUHMMAJIbHBIX HEBSI30K. Pe3yIbTaThl YUCIEHHBIX IKCIIEPUMEHTOB
MOKA3aJIM, 9TO CKOPOCTb CXOAMMOCTH HPUOJIUKEHHOTO R,-0000IEeHHOro perieHns K TO4-
HOMY DPEIIeHUI0 33Ja9N HE 3aBHCHUT OT BEJIMYMHBI BXOMAAINIETO YIVIa HA IPAaHUIlE 0071acTH U
paBHa, MIEPBOIl CTEMEHN O Ary CeTKU h B HOpMe BECOBOTO MPOCTPAHCTEA W%V(Q) JIJIST KOM-
TTOHEHT BEKTOPA CKOPOCTEH, B OTJIMYWE OT CTAHIAPTHBIX KOHEUHO-3JIEMEHTHBIX U KOHETHO-
Pa3HOCTHBIX CXeM, MPUOIMAKEHHOE PEIIeHNe KOTOPBIX CXOIUTCH K TOYHOMY PEIIEHUTO 33,1391
He GbicTpee gem co ckopoctbio O(h®) B HOopMe TpocTpancTsa Wi (§)) A1 KOMIOHEHT BeK-
TOpa CKOpOCTedi, rie o < 1 u cTerneHb o 3aBUCUT OT BEJIMYMHBI BXOISAIIETO YIJIA.
Karoueenie ca06a: 42A0608 CUHZYAAPHOCTD, GECOBOT MEMO0 KOHEUHBLL INEMEHMOS;

npedobycAaBAUBAMEND.
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