Научная статья на тему 'Neural mechanisms of post-decisional spreading of alternatives'

Neural mechanisms of post-decisional spreading of alternatives Текст научной статьи по специальности «Клиническая медицина»

CC BY-NC-ND
186
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
COGNITIVE DISSONANCE / PREFERENCE CHANGE / DECISION MAKING / MEDIAL PREFRONTAL CORTEX / NUCLEUS ACCUMBENS / DORSOLATERAL PREFRONTAL CORTEX / КОГНИТИВНЫЙ ДИССОНАНС / ИЗМЕНЕНИЕ ПРЕДПОЧТЕНИЙ / ПРИНЯТИЕ РЕШЕНИЙ / МЕДИАЛЬНАЯ ПРЕФРОНТАЛЬНАЯ КОРА / ПРИЛЕЖАЩЕЕ ЯДРО / ДОРСОЛАТЕРАЛЬНАЯ ПРЕФРОНТАЛЬНАЯ КОРА

Аннотация научной статьи по клинической медицине, автор научной работы — Colosio Marco, Rybina Elena P., Shestakova Anna N., Klucharev Vasily A.

Human choices are not only driven by inner preferences, but also have an impact on behavior. Economists and psychologists have extensively demonstrated that choosing between two attractive options leads to a downgrade of the rejected option and to an upgrade of the chosen one. Preference modulation after the mere act of making a choice has been repeatedly demonstrated over the last 50 years by an experimental paradigm called the 'free-choice paradigm'. In the past decade the phenomenon of choice-induced preference change generated by cognitive dissonance has been explored by neuroscientists. An increasing amount of research has highlighted the central role of the posterior medial frontal cortex (pMFC) in social conformity and cognitive dissonance. This area represents the dissonance between one's currently inconsistent and ideally consistent states. However, other brain areas have been linked to cognitive dissonance and its resolution, but as yet the mechanisms underpinning cognitive dissonance and the functional connection among brain areas found involved in cognitive dissonance are still unknown. Here, we firstly review the neural mechanisms and brain areas involved in post-decisional preference change and cognitive dissonance. Secondly, we suggest an integration of the existing neurocognitive mechanism of cognitive dissonance. Finally, we suggest new research lines to further explore neural principles of cognitive dissonance and subsequent post-decisional preference change.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Нейромеханизмы изменения преференция после принятия решений

Процесс выбора не только основывается на личных предпочтениях, но также влияет на дальнейшее поведение человека. Экономисты и психологи приводят множество доказательств того, что после выбора между двумя одинаково привлекательными альтернативами происходит уменьшение ценности отвергнутой альтернативы по сравнению с той, которой было отдано предпочтение, т.е. наблюдается «расхождение альтернатив» как результат переживания когнитивного диссонанса. В экспериментальных исследованиях принятия решений подобные изменения предпочтений изучаются с помощью парадигмы «свободного выбора». В последнее время феномен изменения предпочтений вследствие выбора, вызванного когнитивным диссонансом, оказался в фокусе специалистов в области когнитивных нейронаук. В результате появились убедительные доказательства вовлечения задней медиальной области лобной коры (зМЛК) в процесс изменения мнения в результате переживания внутренних конфликтов. Как показали психофизиологические исследования, в частности методами функциональной магниторезонансной томографии, столкновение конфликтующих представлений отражается в изменение активности зМЛК. Вместе с тем экспериментальные данные указывают на связь зМЛК c другими областями мозга, включая дорзальные области лобной коры. По мнению авторов, мозговые механизмы, лежащие в основе когнитивного диссонанса, изучены недостаточно полно. В данной статье приведен обзор новейших представлений о нейрокогнитивных механизмах когнитивного диссонанса, а также результатов функционального нейрокартирования взаимодействия различных областей мозга, принимающих участие в процессах изменения предпочтений в результате выбора. В заключение представлены новые методы исследований функционального картирования (к примеру, транскраниальная магнитная/электрическая стимуляция), позволяющие существенно углубить представления о механизмах изменения предпочтений в результате выбора.

Текст научной работы на тему «Neural mechanisms of post-decisional spreading of alternatives»

Psychology. Journal of the Higher School of Economics.

2018. Vol. 15. N 3. P. 606-614. DOI: 10.17323/1813-8918-2018-3-606-614

Reviews

NEURAL MECHANISMS OF POST-DECISIONAL SPREADING OF ALTERNATIVES

M. COLOSIOa, E.P. RYBINAa, A.N. SHESTAKOVAa, V.A. KLUCHAREVa

"National Research University Higher School of Economics, 20 Myasnitskaya Sir., Moscow, 101000, Russian Federation

Abstract

Human choices are not only driven by inner preferences, but also have an impact on behavior. Economists and psychologists have extensively demonstrated that choosing between two attractive options leads to a downgrade of the rejected option and to an upgrade of the chosen one. Preference modulation after the mere act of making a choice has been repeatedly demonstrated over the last 50 years by an experimental paradigm called the 'free-choice paradigm'. In the past decade the phenomenon of choice-induced preference change generated by cognitive dissonance has been explored by neuroscientists. An increasing amount of research has highlighted the central role of the posterior medial frontal cortex (pMFC) in social conformity and cognitive dissonance. This area represents the dissonance between one's currently inconsistent and ideally consistent states. However, other brain areas have been linked to cognitive dissonance and its resolution, but as yet the mechanisms underpinning cognitive dissonance and the functional connection among brain areas found involved in cognitive dissonance are still unknown. Here, we firstly review the neural mechanisms and brain areas involved in post-decisional preference change and cognitive dissonance. Secondly, we suggest an integration of the existing neurocognitive mechanism of cognitive dissonance. Finally, we suggest new research lines to further explore neural principles of cognitive dissonance and subsequent post-decisional preference change.

Keywords: cognitive dissonance, preference change, decision making, medial prefrontal cortex, nucleus accumbens, dorsolateral prefrontal cortex.

Introduction

Every day, people make numerous decisions that include different degrees of complexity Classical economics decision theory assumed that when people select

This work was supported by the Russian Academic Excellence Project 5-100.

between equally attractive options, the decision-making process reflects individual inner preferences (i.e., hedonic utility). However, many psychological studies have challenged hedonic utilitarianism and demonstrated that human choices are more than a consequence of inner preferences (see Harmon-Jones & Harmon-Jones, 2008, for review); individual preferences are influenced by various endogenous and exogenous factors, including cognitive consistency. A set of theories in social and cognitive psychology (see Hinojosa, Gardner, Walker, Cogliser, & Gullifor, 2016, for a review) argues that people adjust their preferences and values to make them cognitively consistent with an already existing set of cognitions, values, and preferences. Among these theories, the most prominent is the cognitive dissonance theory (CDT) (Festinger, 1957), which states that individuals experience a feeling of discomfort when they hold two or more contradictory cognitions. This negative feeling motivates people to either avoid or at least reduce their discomfort by changing one of the contradictory cognitions, including preferences, to minimize any discrepancies between them. Importantly, per CDT, conflictual decisions trigger cognitive dissonance and subsequently preference changes. In this review, we focus on the neurobiological mechanisms of preference changes that are induced by cognitive dissonance.

Many studies have documented consequences of cognitive dissonance, or "post-decisional preference change," which refers to reevaluating options after either selecting or rejecting one option due to a conflict (Brehm, 1956). Psychologists and neuroscientists have extensively used either the original or the modified version of Brehm's (1956) "free-choice paradigm" to induce cognitive dissonance and measure the magnitude of a post-decisional preference change.

In the original version of the free-choice paradigm, participants 1) rate a set of items (rating I) and then 2) choose between two equally liked alternatives (choice task) before 3) rating the same set of items again (rating II). During the choice task (decisional stage), participants are forced to select only one item of the pair, which causes conflictual decisions. By subtracting the mean second rating (rating II) from the mean initial rating (rating I), it is possible to measure the choice-induced preference change. Because Brehm's (1956) free-choice paradigm studies have repeatedly demonstrated that the mere act of choosing between two equally attractive alternatives induces preference change, preferences for the chosen items increases, while preferences for the rejected items decreases (Brehm, 1956; Colosio, Shestakova, Nikulin, Blagovechtchenski, & Klucharev, 2017; Festinger, 1957; Gerard & White, 1983; Izuma et al., 2010). Thus, contrary to normative economic theory, individuals not only behave in accordance with their preferences but also change their preferences to match their previous choices and behavior.

The Neuronal Mechanism of Cognitive Dissonance

Posterior medial cortices. A growing body of evidence (see Izuma, 2013, for review) has suggested that frontal cortices play a critical role in both detecting dissonance and the réévaluation of options. The key brain region that is involved in cognitive dissonance is the posterior medial frontal cortex (pMFC). This is a medi-

al area that is formed by the supplementary motor area (SMA), the pre-SMA, the dorsal medial frontal cortex, and the dorsal anterior cingulate cortex (ibid.). The pMFC is known to be involved in conflict-induced tasks, such as the Stroop task (Botvinick et al., 2001) and the flanker task. It also reflects performance monitoring and error detection mechanisms (Carter et al., 1998; Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003). The signal generated by the pMFC is often measured using electroencephalography (EEG) as a negative deflection in the event-related potential, which is called error-related negativity (ERN). It is a frontocentral evoked response that appears between 60 and 120ms after an error response (Bellebaum & Colosio, 2014; Debener, 2005; Holroyd et al., 2003; Holroyd & Coles, 2002).

The action-based model of cognitive dissonance proposes that cognitive dissonance could interfere with effective actions; thus, post-decisional réévaluation of options facilitates the execution of effective actions (Harmon-Jones & Harmon-Jones, 2008). This theory suggests that the activity of the pMFC underlies cognitive conflict recognition and contributes to the reduction of cognitive dissonance (Amodio et al., 2004; Carter et al., 1998; Izuma et al., 2010). Pioneering functional magnetic resonance imaging (fMRI) studies have employed different paradigms (Izuma et al., 2010; Jarcho, Berkman, & Lieberman, 2011; Kitayama, Chua, Tompson, & Han, 2013; van Veen, Krug, Schooler, & Carter, 2009) and revealed a strong activation of the pMFC in tasks that are related to cognitive dissonance. Importantly, the magnitude of activity of the pMFC is correlated with the magnitude of the post-decisional preference change following any decisions that are associated with a high degree of cognitive dissonance (Izuma et al., 2010).

Brain stimulation studies have demonstrated the causal role of the pMFC in both the generation and subsequent reduction of cognitive dissonance. Izuma and colleagues (2015) found a significant reduction of choice-induced preference changes following the downregulation of the pMFC using transcranial magnetic stimulation (TMS). No significant behavioral modulation was observed after either sham stimulation over the pMFC region or the downregulation by TMS of the control brain regions (the parietal posterior cortex). Thus, the authors demonstrated the causal relation between the activity of the pMFC and the post-decisional preference change for the first time. Notably, Izuma and colleagues (2015) down-regulated the pMFC right after the choice task and just before the rating II task.

Many neuroimaging studies (Izuma et al., 2010; Qin et al., 2011; Sharot, De Martino, & Dolan, 2009) have employed the free-choice paradigm by focusing on neural activity during the rating II task. Such an approach implies that preference changes take place during the rating II task when participants reduce cognitive dissonance by réévaluation of the option. However, it is also possible that post-decisional spreading of alternatives already happens either during or right after the choice task to reduce negative emotions during choices.

In a recent EEG study, Colosio and colleagues (2017) disentangled the neural signatures of cognitive dissonance during the choice task. The authors observed stronger ERN at the pMFC during difficult (high degree of cognitive dissonance) decisions as compared to easy (low degree of cognitive dissonance) decisions. Furthermore, the magnitude of the ERN was significantly correlated with the subsequent behavioral

preference change. Stronger conflict-related pMFC activity (e.g., larger ERN) was followed by stronger preference changes for rejected items. The resting-state of the frontocentral cortices predicted the magnitude of the ERN and the subsequent preference change: long-range temporal correlations (LRTC) of alpha oscillations correlated with the magnitude of the ERN and the spread of alternatives. LRTC is a relatively new approach to electrophysiological data that helps determine the intrinsic functional state of a targeted cortical region. Thus, this EEG study demonstrated that individual differences in cognitive dissonance are reflected during both the resting state and choice-related activities of the pMFC throughout the early stages of the free-choice paradigm.

Dorsal lateral prefrontal cortex. In addition to the pMFC, the left dorsolateral prefrontal cortex (dlPFC) has also been regularly associated with cognitive control and conflict resolution (Botvinick et al., 2001; Botvinick, Cohen, & Carter, 2004; Miller & Cohen, 2001).

Both fMRI and EEG studies have linked the activity of the left dlPFC with post-decisional preference change, which indicates the important role of the left dlPFC in cognitive dissonance resolution (Harmon-Jones, Gerdjikov, & Harmon-Jones, 2008; Qin et al., 2011). A recent study by Managrelli et al. (2015) found that post-decisional preference changes were significantly reduced after cathodal transcranial direct current stimulation over the left (but not the right) dlPFC, which showed the causal role of the left dlPFC in cognitive dissonance. Other studies have suggested that dlPFC activity does not reduce cognitive inconsistency; rather, it contributes to more general cognitive control mechanisms (Izuma et al., 2015) and performance adjustment (Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004). Thus, the role of the left dlPFC is still under debate and requires further study. It would be particularly interesting to study the relationship of the pMFC and the left dlPFC during choice-induced adjustments of preferences.

Nucleus accumbens and the posterior cingulate cortex. Recent studies have also demonstrated activation of nucleus accumbens (NAcc) during the making of difficult choices (Izuma et al., 2010; Kitayama et al., 2013). NAcc play a key role in action selection by integrating cognitive and affective information that is processed by the frontal and temporal cortices (Floresco, 2015). NAcc are involved in reward expectation (Knutson, Delgado, & Phillips, 2009) and the monitoring of subjective values (Bartra, McGuire, & Kable, 2013). Izuma and colleagues (2010) also found that changes in activity of NAcc for rejected items were significantly lower than for selected ones. Similarly, Kitayama and colleagues (2013) found a significant, positive correlation between increased preference for chosen items and the NAcc. However, it remains unclear at which stage of the free-choice paradigm that NAcc become involved in post-decisional preference changes.

The posterior cingulate cortex (PCC) has been associated with an extensive number of cognitive functions, including conscious awareness and cognitive control (Leech, Kamourieh, Beckmann, & Sharp, 2011), emotional memory encoding (Maddock, Garrett, & Buonocore, 2001), memory retrieval and planning (Vann, Aggleton, & Maguire, 2009), maintaining changes in the external environment

(Pearson, Heilbronner, Barack, Hayden, & Piatt, 2011), and controlling the balance between external and internal attention (Leech & Sharp, 2014). Previous fMRI studies have observed stronger activity of the PCC either during difficult choices (Kitayama et al., 2013; Qin et al., 2011; Tompson, Chua, & Kit.ayama, 2016) or after difficult choices (Izuma et al., 2010) as compared to easy choices. Another study showed that PCC activity is positively correlated with the perceived desirability of objects (Kawabat.a & Zeki, 2008). All these results suggest that the PCC might play a central role in preference adjustments during the spreading of alternatives. Thus, further studies are needed to understand the roles of NAcc and the PCC in cognitive dissonance.

Overall, evidence from cognitive and social neuroscience has suggested that the activities of the pMFC, dlPFC, NAcc, and PCC underlie post-decisional preference changes that are induced by cognitive dissonance. However, previous studies have not suggested a univocal neurocognit.ive mechanism (model) of cognitive dissonance.

Many neuroimaging studies have suggested that NAcc create an anatomical hub that connects the PFC, dlPFC, and PCC (Di Martino et al., 2008). Figure 1 illustrates a hypothetical neurocognit.ive mechanism of post-decisional preference

Conclusions

Figure 1

A hypothetical neurocognitive mechanism of post-decisional preference changes

Conflict detection

Conflict reduction

Preference encoding

changes that were evoked by cognitive dissonance. Here, (a) the pMFC detects internal conflicts during difficult choices; (b) the dlPFC implements cognitive control to change preferences and reduce cognitive dissonance; (c) the NAcc code preferences and emit a learning signal, which are important for preferences changes and choice justification; (d) the PCC encodes long-lasting changes of preferences. Further studies should combine different neuroimaging methods to develop and clarify the proposed model of post-decisional preference changes.

References

Amodio, D. M„ Harmon-Jones, E„ Devine, P. G., Curtin,J. J., Hartley, S. L„ & Covert, A. E. (2004).

Neural signals for the detection of unintentional race bias. Psychological Science, 15(2), 88-93. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based metaanalysis of BOLD fMRI experiments examining neural correlates of subjective value. Neurolmage, 76, 412-427.

Bellebaum, C., & Colosio, M. (2014). From feedback- to response-based performance monitoring in

active and observational learning. Journal of Cognitive Neuroscience, 26(9), 2111-2127. Botvinick, M. M„ Braver, T. S., Barch, D. M„ Carter, C. S„ & Cohen, J. D. (2001). Conflict monitoring

and cognitive control. Psychological Review, 108(3), 624-652. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, <§(12), 539-546. Brehm, J. W. (1956). Postdecision changes in the desirability of alternatives. The Journal of Abnormal

and Social Psychology, 52(3), 384-389. Carter, C. S„ Braver, T. S„ Barch, D. M„ Botvinick, M. M„ Noll, D„ & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747-749.

Colosio, M., Shestakova, A., Nikulin, V. V., Blagovechtchenski, E., & Klucharev, V. (2017). Neural mechanisms of cognitive dissonance (revised): An EEG study. The Journal of Neuroscience, 37(20), 5074-5083.

Debener, S. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25(50), 11730-11737. Di Martino, A., Scheres, A., Margulies, D. S„ Kelly, A. M. C„ Uddin, L. Q„ Shehzad, Z„ Milham, M. P. (2008). Functional connectivity of human striatum: A resting state fMRI study. Cerebral Cortex, 18( 12), 2735-2747.

Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press. Floresco, S. B. (2015). The nucleus accumbens: An interface between cognition, emotion, and action.

Annual Review of Psychology, 66(1), 25-52. Gerard, H. B., & White, G. L. (1983). Post-decisional réévaluation of choice alternatives. Personality

and Social Psychology Bulletin, 9(3), 365-369. Harmon-Jones, E., Gerdjikov, T., & Harmon-Jones, C. (2008). The effect of induced compliance on relative left frontal cortical activity: A test of the action-based model of dissonance. European Journal of Social Psychology, 38( 1), 35-45.

Harmon-Jones, E., & Harmon-Jones, C. (2008). Action-based model of dissonance: A review of behavioral, anterior cingulate, and prefrontal cortical mechanisms. Social and Personality Psychology Compass, 2(3), 1518-1538.

Hinojosa, A. S., Gardner, W. L., Walker, H. J., Cogliser, C., & Gullifor, D. (2016). A review of cognitive dissonance theory in management research: Opportunities for further development. Journal of Management, 43( 1), 170-199.

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(A), 679-709.

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. Neuroreport, 14( 18), 2481-2484.

Izuma, K. (2013). The neural basis of social influence and attitude change. Current Opinion in Neurobiology, 23(3), 456-462.

Izuma, K„ Akula, S„ Murayama, K„ Wu, X. D„ Iacoboni, X. M„ & Adolphs, R. (2015). A causal role for posterior medial frontal cortex in choice-induced preference change. The Journal of Neuroscience, 35(8), 3598-3606.

Izuma, K., Matsumoto, M., Murayama, K., Samejima, K., Sadato, N., & Matsumoto, K. (2010). Neural correlates of cognitive dissonance and choice-induced preference change. Proceedings of the National Academy of Sciences, 107(51), 22014-22019.

Jarcho, J. M., Berkman, E. T., & Lieberman, M. D. (2011). The neural basis of rationalization: Cognitive dissonance reduction during decision-making. Social Cognitive and Affective Neuroscience, 6(4), 460-467.

Kawabata, H„ & Zeki, S. (2008). The neural correlates of desire. PLoS ONE, 3(8), e3027.

Kitayama, S., Chua, H. F., Tompson, S., & Han, S. (2013). Neural mechanisms of dissonance: An fMRI investigation of choice justification. Neurolmage, 69, 206-212.

Knutson, B., Delgado, M. R., & Phillips, P. E. M. (2009). Representation of subjective value in the striatum. In P. W. Glimcher, C. F. Camerer, E. Eehr, & R. A. Poldrack (Eds.), Neuroeconomics: Decision making and the brain (pp. 389-406). San Diego, CA: Elsevier Academic Press.

Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D.J. (2011). Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. The Journal of Neuroscience : The OfficialJournal of the Society for Neuroscience, 31(9), 32173224.

Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137( Pt 1), 12-32.

Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2001). Remembering familiar people: The posterior cingulate cortex and autobiographical memory retrieval. Neuroscience, 104(3), 667-676.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.

Pearson, J. M„ Heilbronner, S. R„ Barack, D. L„ Hayden, B. Y„ & Piatt, M. L. (2011). Posterior cingulate cortex: Adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143-151.

Qin, J., Kimel, S., Kitayama, S., Wang, X., Yang, X., & Han, S. (2011). How choice modifies preference: neural correlates of choice justification. Neurolmage, 55(1), 240-246.

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447.

Sharot, T., De Martino, B., & Dolan, R. J. (2009). How choice reveals and shapes expected hedonic outcome. Journal of Neuroscience, 29( 12), 3760-3765.

Tompson, S., Chua, H. F., & Kitayama, S. (2016). Connectivity between mPEC and PCC predicts post-choice attitude change: The self-referential processing hypothesis of choice justification. Human Brain Mapping, 37(11), 3810-3820. doi:10.1002/hbm.23277 Van Veen, V, Krag, M. K„ Schooler, J. W„ & Carter, C. S. (2009). Neural activity predicts attitude

change in cognitive dissonance. Nature Neuroscience, 12(11), 1469-1474. Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10(11), 792-802. doi: 10.1038/nrn2733

Marco Colosio — Ph.D. student, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics. Research area: cognitive neuroscience. E-mail: mcolosio@hse.ru

Elena P. Rybina — student, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics. Research area: cognitive neuroscience. E-mail: rybina.e.p@gmail.com

Anna N. Shestakova — director, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Ph.D. Research area: cognitive neurobiology. E-mail: a.shestakova@hse.ru

Vasily A. Klucharev — director, Institute for Cognitive Neuroscience; leading research fellow, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Ph.D. Research area: cognitive neurobiology. E-mail: vklucharev@hse.ru

Нейромеханизмы изменения преференции после принятия решений

М. Колозио", Е.П. Рыбина", А.Н. Шестакова", В.А. Ключарей

"Национальный исследовательский университет «Высшая школа экономики», 101000, Россия, Москва, ул. Мясницкая, д. 20

Резюме

Процесс выбора не только основывается на личных предпочтениях, но также влияет на дальнейшее поведение человека. Экономисты и психологи приводят множество доказательств того, что после выбора между двумя одинаково привлекательными альтернативами происходит уменьшение ценности отвергнутой альтернативы по сравнению с той, которой было отдано предпочтение, т.е. наблюдается «расхождение альтернатив» как результат переживания когнитивного диссонанса. В экспериментальных исследованиях принятия решений подобные изменения предпочтений изучаются с помощью парадигмы «свободного выбора». В последнее время феномен изменения

предпочтений вследствие выбора, вызванного когнитивным диссонансом, оказался в фокусе специалистов в области когнитивных нейронаук. В результате появились убедительные доказательства вовлечения задней медиальной области лобной коры (зМЛ К) в процесс изменения мнения в результате переживания внутренних конфликтов. Как показали психофизиологические исследования, в частности методами функциональной магниторезонансной томографии, столкновение конфликтующих представлений отражается в изменение активности зМЛК. Вместе с тем экспериментальные данные указывают на связь зМ Л К с другими областями мозга, включая дорзальные области лобной коры. По мнению авторов, мозговые механизмы, лежащие в основе когнитивного диссонанса, изучены недостаточно полно. В данной статье приведен обзор новейших представлений о нейрокогнитивных механизмах когнитивного диссонанса, а также результатов функционального нейрокартирования взаимодействия различных областей мозга, принимающих участие в процессах изменения предпочтений в результате выбора. В заключение представлены новые методы исследований функционального картирования (к примеру, транскраниальная магнитная/электрическая стимуляция), позволяющие существенно углубить представления о механизмах изменения предпочтений в результате выбора.

Ключевые слова: когнитивный диссонанс, изменение предпочтений, принятие решений, медиальная префронтальная кора, прилежащее ядро, дорсолатеральная префронтальная кора.

Колозио Марко — аспирант, Центр нейроэкономики и когнитивных исследований, Национальный исследовательский университет «Высшая школа экономики». Сфера научных интересов: когнитивная психология. E-mail: mcolosio@hse.ru

Рыбина Елена Петровна — студент, Центр нейроэкономики и когнитивных исследований, Национальный исследовательский университет «Высшая школа экономики». Сфера научных интересов: когнитивная психология. E-mail: rybina.e.p@gmail.com

Шестакова Анна Николаевна — директор, Центр нейроэкономики и когнитивных исследований, Национальный исследовательский университет «Высшая школа экономики», Ph.D. Сфера научных интересов: когнитивная нейробиология. E-mail: a.shestakova@hse.ru

Ключарев Василий Андреевич — директор, Институт когнитивных нейронаук; ведущий научный сотрудник, Центр нейроэкономики и когнитивных исследований, Национальный исследовательский университет «Высшая школа экономики», кандидат биологических наук.

Сфера научных интересов: когнитивная нейробиология. E-mail: vklucharev@hse.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.