Научная статья на тему 'Некоторые теоремы о распределении значений для дзета-функций Эстерманна'

Некоторые теоремы о распределении значений для дзета-функций Эстерманна Текст научной статьи по специальности «Математика»

CC BY
66
28
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по математике, автор научной работы — Лауринцикас А.

В работе представлен обзор следующих результатов: оценки главных значений, распределение нулей, универсальные и предельные теоремы в смысле слабой сходимости вероятностных мер дзета-функции Эстерманна.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

VALUE DISTRIBUTION THEOREMS FOR THE ESTERMANN ZETA-FUNCTION

In the paper, a survey of mean-value estimates, zero distribution, universality and limit theorems in the sense of weak convergence of probability measures for the Estermann zeta-function is presented.

Текст научной работы на тему «Некоторые теоремы о распределении значений для дзета-функций Эстерманна»

VALUE DISTRIBUTION THEOREMS FOR THE ESTERMANN ZETA-FUNCTION

© 2007 A. Laurincikas1

In the paper, a survey of mean-value estimates, zero distribution, universality and limit theorems in the sense of weak convergence of probability measures for the Estermann zeta-function is presented.

Introduction

This paper is a text of author's talk given at the International Conference "Algebra and Number Theory" dedicated to the 80th anniversary of Professor V.E.Voskresenskii. (Samara, Russia, May 21-28, 2007). The author thanks the organizers of this conference for hospitality and for financial support.

Denote by N, Z, R and C the sets of all positive integers, integers, real and complex numbers, respectively. For arbitrary a e C and m e N, the generalized divisor function oa(m) is defined by

Oa(m) = da.

d/m

We have that

Oo(m) < me. Since, aa(m) = maa-a(m), the estimate

oa(m) << me+max(Rea'0) (1)

is valid.

Let, as usual, s = a+it denote a complex variable, and (k, l) = 1. The Estermann zeta-function for o > max(l + Rea, 1), is defined by

E(s> 7' a)= Z ^r exp(2jT im~j\-

m=1

For analytic continuation of the function E^s; j, a) to the whole complex plane, we recall the definition of the Lerch zeta-function. Let X e R and P e R, 0 < P ^ 1. The Lerch zeta-function L(X, P, s), for a > 1, is defined by

L(l,B,s) = ) --—.

v 1 ' ZJ (m + RV

m=0

1 Laurincikas Antanas (antanas.laurincikas@maf.vu.lt), Dept. of Number Theory and Probability Theory, Vilnius University, 24, 03225 Vilnius, Lithuania.

If X £ Z, then L(X, s) is analytically continuable to an entire function, while for X e Z, the function L(X, |3, s) becomes the Hurwitz zeta-function

TO 1

(m + |)s

m=0 v 1 '

The function Z(s, |) is meromophically continuable to the whole complex plane where it has a simple pole at s = 1 with residue 1. It is not difficult to see that, for o > max(Rea + 1,1),

E(s- -v a)= r~> J expf^'y }Z(1, s - o)l(j , 1,(2)

V=1

The latter equation shows that the function E^s;j,aj is analytic in the whole complex plane, except for two simple poles at s = 1 and s = 1 + a if a + 0, and a double pole 5=1 if a = 0.

Let k be defined by kk = 1(mod l). Then (2) and the functional equation for the Lerch zeta-function, see [11], imply the following functional equation for

k \ 1 / 2n \2s—1—a

/ k \ i /2n\zs-i-a \

E(s;-,a)=-(—) r(l - s)r(l + a - s))x

/ na / k \ / na \ / k \\

(cos + a ~ 7' °v cos^^5 —2~j i + a ~ 7'ajj-

def

Therefore, without loss of generality we may assume that a = Rea ^ 0. Note that the function E^s;j,aj, for a = 0, was introduced by T. Estermann in [3]. The case of a e [—1,0] was considered in [9].

In the lecture, we discuss the following value distribution problems for the Estermann zeta-function:

• Mean square estimates

• Zero distribution

• Universality

• Probabilistic limit theorems

1. Mean square of E(s; f, a)

s: y, a]

Asymptotics and estimates for mean values of zeta-functions play an important role in analytic number theory. For example, the famous Lindelof hypothesis for the Riemann zeta-function Z(s) which says that, for every e > 0,

ib")

«E tE, t ^ t0 > 0,

is equivalent to the mean value estimates

7ÎNH

2k

«k,e Te, k e N

There exists a conjecture that, for all k ^ 0 and T

^"'fi KH

2k

dt - c(k)(log T)

k2

(3)

with some constant c(k) > 0. G.H. Hardy and J.E. Littlewood proved [5] that c(l) = 1, and A.E.Ingham found [7] the value c(2) = Let u ^ 0 be bounded

1. Of course,

by a constant. Then in [10] it was obtained that c(- _

■\/2 log log 7 the conjecture (3) is very complicated.

Also, the estimates for Ik(T) are known. The first results in this direction were obtained by K. Ramachandra. For example, he proved in [17] that

h2(T) « T(log T)1!.

The further progress in the field belongs to D.R. Heath-Brown. In [6], he proved the estimate

Ik(T) »kT(log T)k2 (4)

for all rational k ^ 0, and the estimate

Ik(T) <k T(log T)k2 (5)

for k = m e N. Moreover, he obtained under the Riemann hypothesis (all non-trivial zeros of Z(s) lie on the critical line) that (4) holds for all k ^ 0 and (5) is true for 0 ^ k ^ 2. To prove this, D.R. Heath-Brown applied the Gabriel convexity theorems, see, for example, [10].

For the Estermann zeta-function, the mean square was studied in [18], see also

[19].

Theorem 1.

For o > 5,

I f EC T J,

Moreover, if a < 0, then

lim

T —

■ k x it; -j, a)

I o + it: -, a.

r t

IK

k \ [a + it,-, a)

dt

2 U2a-2a)l2(2o-a)U2o) 3(4 o - 2a)

if o>\,

if o=\,

if a + \ < a <

if a = a + j,

if a < a +

T,

T log2 T,

T 2(1-a)

T1-2a log2 T,

T 3-4a+2a

For the proof, a representation of by Dirichlet L-functions is used.

Denote by ^(m) the Euler function,

qp(m) = m ]~~[(l--),

p/m

by ^(m) the Möbius function,

1, if m = 1, ^(m) = ^ (-1)r, if m = p1 ...pr, pj is prime, j = 1,..,r, 0, otherwise.

Moreover, let

m i

t(x)= J] x(«)exp{2jT7-}

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

m mod q ^

be the Gauss sum associated to the Dirichlet character x mod q. Then, for all s,

d\l u V\d) b\l2 x(modfe)

(h ±_\= i primitive

V ' db}

xX(s, d, x, a)L(s, x)L(s - a, x), where L(s, x) denote a Dirichlet L-function, and X(a + it, m, x, a) ^ |oa(m)|. From this it follows that

XT k 2 1 i nT r-T ^

E(o + it, - a) dt « ^ 2(1 + ~ a + ^4dtY'

b\l x(mod b) 1 primitive

and to prove Theorem 1 it remains to apply the results for the fourth moment of Dirichlet L-functions.

Y. Kamiya in [8] obtained an average mean square estimate for E^s;j,aj. He proved that, for A > 49 and T ^ra,

l 1 k 2 V £(- + 7Y;-,0) dt «; IT log4 IT.

f=1 ^[-T,T ]\[-A,A] 2 l

(k, l) = 1

The latter estimate was improved in [20]. Theorem 2. Uniformly for l ^ T as T ^m,

so i fl4+4»)l***twt.

(k, l) = 1

If l is prime, then

Y1 CT| /1 k l5 - l4 + 7l3 - Ill2 + 5l + 1 , 4 _ , 3 N

g J, K 2 + "■ 7 2jt2(/ - 1)P(/ + 1) T l0g 7 + °(r l0g ^

2. Zero distribution of e(s; y, a)

The zero distribution of zeta-functions is one of the most interesting problems and has numerous applications. B. Riemann was the first who observed a close relation of the Riemann zeta-function to the distribution of prime numbers. In 1896 de la Vallee Poussin and Hadamard proved independently that Z(1 + it) + 0, and this allowed them to obtain the asymptotic law of prime numbers:

XX

■¡—, X —> oo,

pX

du log u

As it was noted in Section 2, the famous Riemann hypothesis (RH) asserts that all non-trivial zeros of t,(s) lie on the critical line o = j- If this hypothesis is true, then

du „ ,1

jt(x) = | """ + 0(xi logx).

J2 log u

From the latter estimate RH also follows.

The zero distribution of the function E^s;j,aj depends on the parameters | and a. It is not difficult to see that

0

for o > 3. The functional equation for E^s;j,aj shows that, for o <-2 + Rea,

E^s;j,aj= 0 near the real axis. Zeros p = P + zy of E^s;j,aj in this region are called trivial. It is easily seen that

T < tf{p is trivial : |p| ^ T} < T. The non-trivial zeros of E^s; j , a) lie in the region {seC: -2 + Rea ^ a ^ 3}. Denote by N^T; f,a) the number of non-trivial zeros of E^s; f,a) with |y| ^ T. Then in [21] the following asymptotic formula has been obtained. Theorem 3. Let T ^m. Then

1 rp irri

N(T-,a)=—log— + 0(logT). i j l 2ne

We see that the main term in the formula for N(T;j,aj does not depend on the parameters k and a.

Theorem 3 is a corollary of a general result obtained in [21]. Recall that a = = Rea. Let B > 3 - a be a constant, and T ^m. Then

T Tl

^ (B + p) = (25 + a + 1)- log — + 0(log T).

P > -B

ivK t

This and Theorem 3 imply the asymptotics for the mean value of the real parts of non-trivial zeros. Theorem 4. [21]. Let T ^m. Then

*-\T-k-va) ^ p = £11+ 0(7-1).

p non - trivial

| Y | < T

Theorem 4 suggests an idea that the non-trivial zeros of E[s; f,a) lie on the line o = However, if RH holds, this is not true in general. Really, by the definition of E^s; j,aj

E(s; 1, a) = Z(s)Z(s - a). (6)

Thus, if RH holds, then E(s; l,a) = 0 on the lines o = j and o = j + a, and E(s; l,a) * 0 on the line a =

Denote by N(a,T;j,aj the number of non-trivial zeros p = |3 + iy of the function E^s; j,aj with |3 > o and |y| ^ T. Then in [21] the following bounds for N(a,T; j, aj were obtained.

Theorem 5. Let T ^ra. Then uniformly in 6 > 0

and, for fixed o > j,

For the proof the Littlewood theorem, the Jensen formula and the Jensen inequality on convex functions are applied.

Theorem 5 shows that the set of zeros on the right of the curve

1 log log t

2 log t

where y(t) > 0 and y(t) ^ ra as t ^ ra, has zero density in the set of all non-trivial zeros. Example (6) leads to the following conjecture. Conjecture. At least a positive proportion of the non-trivial zeros of E^s;j,aj is clustered around the lines a = ^ and a = j + a.

3. Universality

In [22] S.M.Voronin obtained the universality of the Riemann zeta-function. Let 0 < r < j, and let f(s) be a continuous non-vanishing function on the disc |s| ^ r which is analytic in the interior of this disc. Then he proved that, for every e > 0, there exists a real number t = x(e) such that

max

|s|<r

Z,(s + \ + n)-f(s)

< e.

4

Later, S.M. Gonek, A.Reich, B.Bagchi, K. Matsumoto, J. Stending, R. Stending, W. Schwarz, R. Garunkstis, H. Mishou, J. Genys, V. Garbaliauskiene, H. Nagoshi, R. Macaitiene, the author and others improved and generalized the Voronin theorem. Define

vt(-) = -meas{x e [0,7] : ...},

where meas{A} denotes the Lebesgue measure of a measurable set A c R, and in place of dots a condition satisfied by t is to be written. The final version of the Voronin theorem is the following [10].

Theorem 6. Let K be a compact subset of the strip Dq = {s e C : ^ < o < 1} with connected complement, and let f (s) be a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every e > 0,

liminf vT(sup |Z(s + iT) - f (s)| < e) > 0.

T seK

The case of the function E(s; j,aj is more complicated, since the factor exp|2jt7>WjJ is not multiplicative. Let % be the Dirichlet character mod/, and, for o > 1 (we recall that a ^ 0),

Oa(m)

E(s; x, a) = V -2—x(m).

¿—I ms

ms

m=1

Thus, in the definition of E^s;j,aj the arithmetic function exp|2ra/Wj| is replaced by a multiplicative function %(m). It turns out that E^s;j,aj is a linear combination of the functions E(s; x, a). For simplicity, suppose that l is a prime number.

Theorem 7. [4]. Let l be prime. Then k

T"> <p (/)

E(s; y, a)= -J- Yj x(%)x(k)E(s; a) + A(s, a)E(s; %o, a),

X( mod l) X * X0

where, for o > 0,

2l -l1-s - ls

A(s, a) =

ls(l - 1)(1 - l-s)2'

l — l1+a-s _ l1+2a + i1+2a-s _ is + l®-+s

if a = 0, otherwise.

ls(l - 1)(1 - la)(1 - l-s)(1 - la-s) '

The statement of Theorem 7 is also valid in the opposite direction. Theorem 8. [4]. Let l be prime, and x be a character modl. Then

m

E(s^>a) =zL Yj X(m)E(s; j,a)

r(y) ¿—L ^ ' v ' /

yh> m(modl)

if X * X0, and otherwise

(1 - l-s)2E(s; 1,0), if a = 0,

ls _ ls+a _ 1 + la-s + ^ _ l2a-s

E( s; X0, a) =

ls(1 - la)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

-E(s;1, a), otherwise.

In any case,

the Euler product representation is valid for o > max(1 + a, 1) while the later formula holds for all s. If x + X0, then E(s; x, a) is an entire function. E(s; X0, a) has simple poles at s = 1 and s = 1 + a.

The proofs of Theorems 7 and 8 are based on the following assertions. Let (k, l) = 1. Then

exp{2ra-}=— ^ T(x)xW

X(modl)

and

<%)%(k)= 2 X(m) exp|2jt7—J.

m(mod l)

Moreover,

expi2jT4)=^o ^ Ky) Z

m |l '/(mod m)

^mj — )= 1 primitive

Since the function £(s; x, a) has the Euler product, a joint universality for it can be proved. Note that the first joint universality theorem for Dirich-let L-functions with pairwise non-equivalent characters was obtained by S.M Voronin in [23].

Theorem 9. [4]. Suppose that a < -1, l ^ 5 is prime, and that, for p = 2,3,

(7)

Z—i pmfi v 7

m=l "

with some |3 e l). For 1 ^ j ^ qp(/)7 let %j be a Dirichlet character mod I, Kj be a compact subset of the strip Dp = {s e C : |3 < o < 1} with connected complement, and let gj(s) be a continuous non-vanishing function on Kj which is analytic in the interior of Kj. Then, for every e > 0,

lim inf vT( sup sup |£(s + iT; Xj, a) - gj(s)| < e) > 0.

TKj^tp(l) seKj

Now Theorems 7 and 9 imply the universality of the Estermann zeta-func-tion.

Theorem 10. [10]. Suppose that k + 1, l + 1, a < -1, l ^ 5 is prime, and that, for p = 2,3, (7) holds. Let K be a compact subset of the strip Dp with connected complement, and let f(s) be a continuous function on K which is analytic in the interior of K. Then, for every e > 0,

lim inf vjYsup e(s + ix; -, a)-/(s) < e)> 0.

T seK l

Note that in Theorem 10, differently from Theorem 6, the function f (s) is not necessarily non-vanishing on K. This difference is explained by the existence of the Euler product for t,(s) while, for k + 1, I + \, the function E^s; j, a) has not this product.

Theorem 10 gives some information on the zero distribution of the function E(s; f,a).

Corollary. Under the assumptions of Theorem 10, for fixed o e 1) and T ^ra,

T «7V(o, r;y,a)«r.

Moreover, the real parts of zeros of the function E^s;j,aj lie dense in the interval 1).

In Theorem 10, the number l is prime. However, we conjecture that the function E^s;j,aj is universal in the Voronin sense for all I.

4. Limit theorems

The first probabilistic result for zeta-functions was obtained by H. Bohr and B. Jessen. Let R be any closed rectangle on the complex plane with the edges parallel to the axes, and let L0(T,R) denote the Jordan measure of the set

{t e [0, T] : log Z(o + it) e R}.

Suppose that o > 1. Then in [1] they proved that there exists the limit

Lo(T, R) ,m

lim ---= WJR)

T —*to T

which depends only on o and R. In [2] an analogous result was obtained for o > Let

G = {s e C : o > [J {s = a + itj : ^ < a < a,-},

sj=oj+itj

where Sj runs through all zeros of t,(s) in the region ^ < o < 1. Denote by L1,o(T, R) the Jordan measure of the set

{t e [0, T] : o + it e G, log Z(o + it) e R}.

Then in [2] H. Bohr and B. Jessen proved that there exists the limit

L1,o(T,R) T„ /m

lim ---= W\JR)

T—TO T

which depends only on o and R. For the proof of the above results the theory of sums of convex curves was used.

K. Matsumoto estimated [15], [16] the rate of convergence in Bohr-Jessen's theorems.

Bohr-Jessen's ideas were developed by A. Wintner, V. Borchsenius, A. Sel-berg, P.D.T.A. Elliott, A.Ghosh, B.Bagchi, K. Matsumoto, J. Steuding, W. Schwarz, R. Kacinskaite, R. SleZevicien^-Steuding, J. Genys, R. Macaitiene, V. Garbaliauskiene, the author and others.

The modern version of Bohr-Jessen's results can be stated in the following form. Let BB(S) stand for the class of Borel sets of the space S, and let Pn and P, n e N, be probability measures on (S, B(S)). We recall that Pn converges weakly to P as n — to if, for every real continuous bounded function f on S,

lim

im f fdPn = f fdP. Js

Theorem 11. [10]. Suppose that o> j. Then on (C,S(C)) there exists a probability measure Po such that the probability measure

vt(Z(o + it) e A), A e B(C),

converges weakly to Po as T — to.

Note that the explicit form of the limit measure PO can be given. Now let y = {s e C : |s| = 1} denote the unit circle on the complex plane, and

O =

where *p = Y for each prime p. By the Tikhonov theorem, with the product topology and pointwise multiplication, the infinite-dimensional torus O is a compact topological Abelian group. Therefore, on (O, B(O)) the probability Haar measure mh can be defined, and this gives the probability space (O, B(O), mh). Denote by №(p) the projection of № e O to the coordinate space *p, and put, for m e N,

№(p) = Y №r(p),

p ||m

where pr\\m means that pr|m but pr+1 {m. On the probability space (O,B(Q.),mH), define, for o > the complex-valued random element i?(a; |,a, (o)

by

/ k v ^ oa(m)m(m) , . k 1 E(a; j, a, co)= ^-—-exp{2ramy},

m=1

and denote by PCo its distribution, i.e.,

P^ a(A) = mH{a) e O : £(o; y, a, co)e A), A e £(C).

Theorem 12. [12]. Suppose that a > a ^ 0 and k + 1, I + 1. T/ien i/ie probability measure

k ~V

vr(£(o + 7x; y, a)e 4), 4 e 8(C),

converges weakly to PCo as T

Theorem 12 admits a joint generalization. Let, for o > max(1,1 + Reay), (kj,lj) = 1,

l kj \ -m Oaj (m) , kj 1

%-'«;)= Zj ^^exP|2jT™-}' J =

j m = 1 j

Denote

Cr = C x ... x C.

r

Suppose that ay ^ 0, j = 1 , ...,r, and for mini^y^roy > ^ and co e il, define

/1 lr

where

1 kj v ^ Oaj(mMm) f. . kj, , £(oy;-,ay,(o)= ^-^-exp|2jT7ff2 — j, j = 1 ,..,r.

j m = 1 j

Theorem 13. [14]. Suppose that mini^y^roy > cij ^ 0 and kj ± 1, lj ± 1, j =

= 1,...,r. Then the probability measure

vt((e(o i + h; ...,E[ar + h; y, <xr))e A), A e

l1 lr

converges weakly to the distribution of the random element E(o1,...,or;m) as T — to.

Another generalization of Theorem 12 is a limit theorem in the space of meromorphic functions. Let D\ = {s e C : o > and let M(D\) denote the space of meromorphic on D1 functions equipped with the topology of uniform convergence on compacta. Moreover, H(D{) is the space of analytic on D1 functions with the same topology. H(D{) is a subspace of M(D{). On the probability space (O, b(O), mh) define the H(D1)-valued random element

E{s; -,a, co)= ^-—-exp^ramyj,

m=1

and let

PEiH(A) = mH{CO e Q.: e(s; -,a, co)e A), A e B(H(D)),

be its distribution. Then we have the following result [13]. Theorem 14. Suppose that a ^ 0 and k + 1, l + 1. Then the probability measure

k T

converges weakly to Pe,h as T — to.

A joint version of Theorem 14 also can be obtained.

vr(£(s + /t; -, <x)e A), A e S(M(Di)),

References

[1] Bohr, H. Uber die Wertverteilung der Riemannschen Zetafunktion / H. Bohr, B. Jessen // Erste Mitteilung, Acta Math. - 1930. - 54. -P. 1-35.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[2] Bohr, H. Uber die Wertverteilung der Riemannschen Zetafunktion / H. Bohr, B. Jessen // Zweite Mitteilung, Acta Math. - 1932. - 58. -P. 1-55.

[3] Estermann, T. On the representation of a number as the sum of two products / T. Estermann // Proc. London Math. Soc. - 1930. - 31. -P. 123-133.

[4] On the universality of Estermann zeta-functions / R. Garunkstis [et al] // Analysis. - 2002. - 22. - P. 285-296.

[5] Hardy, G.H. Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes / G.H. Hardy, E. Littlewoo // Acta Math. - 1918. - 41. - P. 119-196.

[6] Heath-Brown, D.R. Fractional moments of the Riemann zeta-function III / D.R. Heath-Brown //J. London Math. Soc. - 1981. - (2)24. - P. 65-78.

[7] Ingham, A.E. Mean-value theorems in the theory of the Riemann zeta-function / A.E. Ingham // Proc. London Math. Soc. - 1926. - (2)27. -P. 273-300.

[8] Kamiya, Y. On the mean square of the Estermann zeta-function, Number Theory and Its Applications / Y. Kamiya // Surkaisekikenkyusho Kokyuroku 1060. - 1998. - P. 166-171.

[9] Kiuchi, I. On an exponential sum involving the arithmetic function oa(n) / I. Kiuchi // Math. J. Okayama Univ. - 1987. - 29. - P. 193-205.

[10] Laurincikas,A. Limit theorems for the Riemann Zeta-function / A. Laurincikas // Kluwer, Dordrecht, 1996.

[11] Laurincikas, A. The Lerch Zeta-function / A. Laurincikas, R. Garun-kstis // Kluwer, Dordrecht, 2002.

[12] Laurincikas, A. Limit theorems for the Estermann zeta-function / A. Laurincikas // Stat. Prob. Letters. - 2005. - 72. - P. ,227-235.

[13] Laurincikas, A. Limit theorems for the Estermann zeta-function. II / A. Laurincikas // Centr. European J. Math. - 2005. - 3. - 4. - P. 580-590.

[14] Laurincikas, A. Limit theorems for the Estermann zeta-function. III / A. Laurincikas. (Submitted).

[15] Matsumoto, K. Discrepancy estimates for the value-distribution of the Riemann zeta-function I / K. Matsumoto // Acta Arith. - 1987. - 48. -P. 167-190.

[16] Matsumoto, K. Discrepancy estimates for the value-distribution of the Riemann zeta-function III / K. Matsumoto // Acta Arith. - 1988. - 50. -P. 315-337.

[17] Ramachandra, K. Some remarks on the mean value of the Riemann zeta-function III / K. Ramachandra // Ann. Acad. Sci. Fenn. - 1980. - Ser. A.I. - 5. - P. 145-158.

[18] Slezeviciene, R. On some aspects in the theory of the Estermann zeta-func-tion / R. Slezeviciene // Fiz.-matem. fak. moksl. semin. darbai, Siauliai Univ. - 2002. - 5. - P. 115-130.

[19] Slezeviciene, R. Joint limit theorems and universality for the Riemann and other zeta-functions: Doctoral thesis / R Slezeviciene. - Vilnius: Vilnius University, 2002.

[20] Slezeviciene, R. The mean-square of the Estermann zeta-function / R Slezeviciene, J. Steuding. - Vilnius: Vilnius University, Faculty of Mathematics and Informatics. - Vilnius: Preprint 2002-32, 2002.

[21] Slezeviciene, R. On the zeros of the Estermann zeta-function / R Slezeviciene, J. Steuding // Integral Transforms and Special Functions. - 2002. - 13. - P. 363-371.

[22] Voronin, S.M. Theorem on the "universality" of the Riemann zeta-func-tion / S.M. Voronin // Izv. Akad. Nauk SSSR, Ser. matem. - 1975. -39. - 3. - P. 475-486.

[23] Voronin, S.M. On the functional independence of L-functions / S.M. Vo-ronin // Acta Arith. - 1975. - 20 - P. 493-503.

Paper received 17/1X/2007. Paper accepted 17/1X/2007.

НЕКОТОРЫЕ ТЕОРЕМЫ О РАСПРЕДЕЛЕНИИ ЗНАЧЕНИЙ ДЛЯ ДЗЕТА-ФУНКЦИЙ ЭСТЕРМАНА

© 2007 А. Лауринцикас2

В работе представлен обзор следующих результатов: оценки главных значений, распределение нулей, универсальные и предельные теоремы в смысле слабой сходимости вероятностных мер дзета-функции Эстерманна.

Поступила в редакцию 17/IX/2007; в окончательном варианте — 17/IX/2007.

2Лауринцикас Антанас (antanas.laurincikas@maf.vu.lt), кафедра теории чисел и теории вероятности Вильнюсского университета, 24, 03225 Вильнюс, Литва.

i Надоели баннеры? Вы всегда можете отключить рекламу.