УДК 641.56
DOI 10.29141/2500-1922-2020-5-2-9
Mutual Influence Study of Food Acids and Polysaccharides of Different Nature on the Sensory Perception of Low-Calorie Sweet Dishes
Ekaterina Yu. Minnikhanova1, Nataliya V. Zavorokhina1*, Anna A. Gilina1
1Ural State University of Economics, Ekaterinburg, Russian Federation, *e-mail: [email protected]
Abstract
The inclusion of polysaccharide thickeners in the recipes of sweet dishes increases the functional reserves of the body, contributes to the preservation of health and the prevention of diseases. The purpose of the research is to study the sensory characteristics of polysaccharides of various nature when combined with food acids, to develop a recipe for a basic mixture of low-calorie meals for public catering. The authors analyzed citric, lactic and succinic acids in combinations with polysaccharides of various nature. Organoleptic tests were evaluated by a touch panel. The organization of the tasting analysis corresponded to GOST ISO 6658-2016; the consistency was determined according to GOST 31986-2012, GOST ISO 11036-2017, GOST ISO 8588-2011. The optimal organoleptic combinations of the presented food acids and complex additives of sweeteners (CDP) were identified, which included aspartame, sodium saccharinate, Sucralose, sweetness coefficient - 340: the mixture with citric acid had a long pleasant aftertaste without foreign tastes and the best taste characteristics. Using the "A-not A" method, we found that the sample with the addition of CDP is identical to the sucrose solution. In the second part of the study, polysaccharides were added to model samples of acids with complex sweeteners; the best sensory characteristics were obtained by model samples consisting of a mixture of low-esterified Apple pectin with lactic acid and KDP. The technology of obtaining a stable elastic jelly using low-esteri-fied Apple pectin has been developed, since the complex mixture of sweeteners and food acids does not have a dehydrating effect. Developed a dry mix recipe that can serve as a basic development, low-calorie sweet products for catering and has a variance of use of lactic and succinic acids, depending on the flavor characteristics of the raw materials used and its corrective ability.
For citation: Ekaterina Yu. Minnikhanova, Nataliya V. Zavorokhina, Anna A. Gilina. Mutual Influence Study of Food Acids and Polysaccharides of Different Nature on the Sensory Perception of Low-Calorie Sweet Dishes. Индустрия питания|Food Industry. 2020. Vol. 5, No. 2. Pp. 71-78. DOI: 10.29141/2500-1922-2020-5-2-9
Paper submitted: April 10, 2020
Исследование взаимного влияния пищевых кислот и полисахаридов различной природы на сенсорное восприятие низкокалорийных сладких блюд
Е.Ю. Минниханова1, Н.В. Заворохина1*, А.А. Гилина1
1Уральский государственный экономический университет, г. Екатеринбург, Российская Федерация, *e-mail: [email protected]
Keywords:
low-calorie sweet dishes; polysaccharides; gelling agents; food acids; sensory perception; organoleptic
Ключевые слова:
низкокалорийные сладкие блюда; полисахариды; гелеобразователь; пищевые кислоты; сенсорное восприятие; органолептический
Реферат
Включение загустителей полисахаридной природы в рецептуры сладких блюд повышает функциональные резервы организма, способствует сохранению здоровья и профилактике заболеваний. Цель исследования - изучение сенсорных характеристик полисахаридов различной природы при совместном их применении с пищевыми кислотами, разработка рецептуры базовой смеси низкокалорийных блюд для сферы общественного питания. Авторами были проанализированы лимонная, молочная и янтарная кислоты в комбинациях с полисахаридами различной природы. Органо-лептические испытания оценивала сенсорная панель. Организация дегустационного анализа соответствовала ГОСТ ISO 6658-2016; консистенцию определяли по ГОСТ 31986-2012, ГОСТ ISO 11036-2017, ГОСТ ISO 8588-2011. Выявлены оптимальные орга-нолептические комбинации представленных пищевых кислот и комплексной добавки подсластителей (КДП), в составе которой аспартам, сахаринат натрия, сукралоза; коэффициент сладости - 340; смесь с лимонной кислотой имела долгое приятное послевкусие без посторонних привкусов и наилучшие вкусовые характеристики. Используя метод «А-не А» выявили, что образец с добавкой КДП идентичен раствору сахарозы. Во второй части исследования к модельным образцам кислот с комплексной добавкой подсластителей добавляли полисахариды; наилучшими сенсорными характеристиками обладали модельные образцы, состоящие из смеси пектина яблочного низко-этерифицированного с молочной кислотой и КДП. Отработана технология получения устойчивого эластичного студня с использованием низкоэтерифицированного яблочного пектина, поскольку комплексная смесь подсластителей и пищевые кислоты не обладают дегидратирующим действием. Разработана рецептура сухой смеси, которая может служить базовой для разработки низкокалорийных сладких блюд на предприятиях общественного питания и имеет вариативность использования молочной и янтарной кислот в зависимости от вкусоароматических характеристик используемого сырья и его корригирующей способности.
Для цитирования: Минниханова Е.Ю., Заворохина Н.В., Гилина А.А. Исследование взаимного влияния пищевых кислот и полисахаридов различной природы на сенсорное восприятие низкокалорийных сладких блюд//Индустрия питания|Food Industry. 2020. Т. 5, № 2. С. 71-78. DOI: 10.29141/2500-1922-2020-5-2-9
Дата поступления статьи: 10 апреля 2020 г.
Timeliness
In Russia, sweet dishes are traditional and very popular. Recipes for sweet dishes usually consist of ingredients such as sugar, thickeners, fruit and berry extracts, food acids, juices, purees and other flavoring additives.
The polysaccharide thickeners inclusion in the sweet dishes recipes increases the functional reserves of the body and contributes to the health preservation and diseases prevention of healthy and conditionally healthy people; increases the nutritional and therapeutic diets value in patients with non-infectious alimentary dependent diseases such as atherosclerosis, diabetes type 2, obesity, digestive system diseases; and also prevents oxidative stress [1; 2].
The main disadvantage of sweet dishes is its low physiological value, while excessive consumption disrupts the diet balance, both in terms of nutritional substances and energy value. This, in turn, is due to the high content of some components (carbohydrates) and quite low, and in some cases, the com-
plete absence of others, such as whey proteins, milk sugar (lactose), dietary fiber, vitamins and minerals, low biological value [1]. Dietary fibers enter the body with a variety of plant foods and are represented by substances of different chemical nature: pectin, polysaccharides, cellulose, lignin, gums, and others [2].
The polysaccharides (prebiotics) use in culinary and confectionery products, dishes can pursue different goals:
• food or dishes fortification with dietary fiber;
• physical and chemical properties use of water-soluble polysaccharides belonging to the hydrocolloids group in order to form the required rheological characteristics, as well as technological additives with the thickener functions [2].
Considering the current food market trends, manufacturers are to expand the useful food products range by including functional food ingredients in traditional recipes. Currently, polysaccharides with the properties of dietary fibers and hydrocolloids are widely used in the production of many food
groups, as well as in public catering when preparing sweet dishes, particularly [3; 4].
In addition to polysaccharide thickeners, many sweet food recipes include food acids to improve its taste characteristics. Food acids play a special role among food additives, performing technological functions of acidity regulators, synergists of antioxidants, stabilizers, complexing agents, emulsifiers, moisture retaining agents, fillers, and serving as unique sources of macro- and microelements [5; 6].
World experience example demonstrates that the citrates and lactates introduction into food products is one of the most effective ways to improve the population provision with vital elements. In Russia, lactates and citrates are not used as widely as abroad, which is due to a certain extent to a lack of information on its use directions [6].
Lactic acid is actively used in the food industry because of the natural origin [6].
Aleksey A. Yevglevsky and other scientists studying the biological role of succinic acid, which is also a mandatory component of the intracellular metabolic cycle of carboxylic acids, proved its biological activity, invigorating and preventive effects [7]. Like all food acids, succinic acid is a food preservative.
Thus, the influence study of food acids used in the food industry and public catering on the technological characteristics of polysaccharides of various nature, changes in their rheological properties, as well as the development of recipes for low-calorie sweet dishes is relevant.
To analyze the food acids effect on the technological properties of polysaccharides of various natures, we analyzed common acids in the food industry - citric, lactic and succinic acids in combination with polysaccharides of various natures. According to the authors, these food acids have optimal or-ganoleptic comparability with other prescription components of sweet dishes; obtain good sensory characteristics; are available on the Russian market of food additives and can be used for further recipes development for low-calorie sweet dishes.
The research aim is to study the sensory characteristics of polysaccharides of various nature when combined with food acids, to develop a recipe for a basic mixture of low-calorie meals for public catering.
Research Methods and Objects
The research objects are the following.
1. Solutions of the following food acids with the same acidity corresponding to 1.0 % of the citric acid solution considering the conversion coefficient of citric acid - 0.064; lactic acid - 0.09 and succinic acid - 0.12:
• citric acid according to the GOST 908-2004 "Citric Acid as a Food Monohydrate. Specifications";
• lactic acid according to the GOST 490-2006 "Lactic Edible Acid. Specifications";
• succinic acid according to TR CU 029/2012 "Safety Requirements for Food Additives, Flavorings and Process Aids".
Auxiliary substances: when developing the basic recipe for a low-calorie dish, researchers used sodium citrate according to the GOST 31227-2013 "Sodium Citric Edible Acid Trisubstituted 5.5 % Water (Sodium Citrate). Specifications", and calcium citrate according to the GOST R 54538-2011 "Food Additives. Tricalcium Citrate E333(iii). Specifications".
2. Low-esterified apple pectin according to the GOST 29186-91 "Pectin. Specifications"; agar-agar according to the GOST 16280-2002 "Edible Agar-Agar. Specifications";magnesium alginate and sodium alginate according to the GOST 33310-2015 "Food Additives. Food Products Thickeners. Terms and Definitions" as thickeners of polysaccharide nature with colloidal properties.
3. Complex additive of sweeteners developed by the authors (consisted of sucralose, sodium sac-charinate, aspartame «Novasweet») weighing 0.14 grams per 1 dm3 of the liquid part of the dish, with a sweetness corresponding to 5.0 % sucrose solution and a sweetness coefficient of 340 units [3].
The selected sweetener mix has optimal taste characteristics and a high percentage of synergy. Aspartame is the base for the presented mixture, sucralose minimizes all unpleasant side tastes and the sodium saccharinate presence increases the aftertaste saturation and length. The mixture taste is pleasant, close to the sucrose profile. Table 1 shows the sweetening additive composition [3].
Table 1. Composition of Complex Sweetener Additives Таблица 1. Состав комплексной добавки подсластителей
Ingredient %, mass
Aspartame 54,3
Sodium Saccharinate 27,4
Sucralose 18,3
Total 100
4. 5.0 % sucrose solution as a control sample. Polysaccharides preparation for the experiment included the following technological operations. Researchers pre-soaked apple pectin in a small amount of water for 30 minutes, after swelling, homogenized it with a blender to a homogeneous mass. They soaked agar-agar in cold water for 1 hour, warmed to a temperature of 950 °C, then cooled to a temperature of 350 °C. Scientists soaked sodium alginate and magnesium alginate in a small amount
of water. They selected the dosage in accordance with the manufacturer recommendations: pectin -1.0 %, agar - 2.4 %, alginates - 2.0 % by weight of the solution.
A touch panel consisting of 9 tasters with proven sensory sensitivity evaluated organoleptic tests. The tasting analysis process corresponded to the GOST ISO 6658-2016 "Organoleptic Analysis. Methodology. General Management". Researchers evaluated consistency according to the GOST 31986-2012 "Catering Services. Organoleptic Assessment Method of the Public Catering Products Quality; GOST ISO 11036-2017 "Organoleptic Analysis. Methodology. Structure Characteristics" and the GOST ISO 8588-2011 "Organoleptic Analysis. Methodology. Tests "A-not A".
Study Results and Its Discussion
The research studied the organoleptic comparability, sensory characteristics and rheological properties of polysaccharide thickeners and food acids combinations, revealed mutual synergy or its absence. The authors used response surface methodology to determine the optimal ratio of ingredients.
The sensory food quality evaluation determined its consistency, texture, smell, taste and aftertaste. Sensory evaluation of the consistency, which can be characterized as an empirical characteristic of the material deformation behavior, affects the aftertaste length. When the product viscosity increases, the aftertaste duration rises. The aftertaste length is an important factor in the comprehensive flavor consumer evaluation of a culinary dish, and often an incentive to re-purchase.
The authors prepared model samples to study the food acids effect on the solidification rate of poly-saccharides of various nature, the aftertaste length and the optimal base choice for cooking low-calorie sweet dishes from them. Each sample consisted of a gel-forming polysaccharide structure, a food acid, and a complex sweetener additives (CSA).
There were 3 stages of the conducted research:
1) combination selection of complex sweeteners and food acids additives of;
2) optimal combination selection of food acids, CSA and polysaccharides;
3) basic mix recipe development for low-calorie dishes.
Stage 1. In the first part of the study, researchers identified the optimal organoleptic combinations of the presented food acids and complex sweeteners additives. They introduced the complex addition of sweeteners in a dosage corresponding to the sweetness of 5% sucrose solution (0.14 g per dm3 of water). Table 2 shows the tasting results. It is worth mentioning that the acids used had different solubility: citric acid obtained the greatest solubility (118 g/100 cm3 of water), the second was lactic (100, 1 g per 100 cm3 of water) and the least - succinic (only 6.8 g per 100 cm3 of water).
As a research result a man perceives subjectively the mixture with lactic acid as sweeter one, still with a slight extraneous fermentation tone, brief sweet aftertaste. The mixture with succinic acid has a more acidic taste and a long sweet aftertaste, but it does not correct the bitterness and metallic taste of sodium saccharinate contained in the CSA. The mixture with citric acid has a long pleasant aftertaste without foreign tastes and the best taste characteristics. Figure shows a sensory portrait of mixtures with various food acids according to the taste indicator.
Then, using the "A-not A" method, researchers determined the degree of difference / identity of the mixture of CSA and citric acid (irritant "A"), as a sample that scored the highest score in organolep-tic evaluation, with a control sucrose and citric acid solution (irritant "not A"). Both mixtures were in the aqueous solution form in the CSA concentration corresponding to the degree of sweetness equivalent to 5.0 % sucrose solution. The taster's task was to determine the "A" sample in a line of 10 samples (five "A" and five "not A"). The table 3 shows tasting results.
Table 2. Organoleptic Evaluation of 1% Edible Acids Solutions with Complex Sweetener Additives, Scores Таблица 2. Органолептическая оценка 1 %-х растворов пищевых кислот с комплексной добавкой подсластителей, балл
Indicator Edible Acids with Complex Sweetener Additive
Citric Lactic Succinic
Taste Harmony 4.5 ± 0.1 4.0 ± 0.1 3.8 ± 0.1
Foreign Taste 5.0 ± 0.2 Absent 4.0 ± 0.2 Slight Foreign Taste 3.8 ± 0.2 Slight Foreign Bitter Taste
Average Score 4.0 ± 0.5 3.7 ± 0.5 3.4 ±0.5
Aftertaste Longitude, caudal 12 14 22
Acidic
-о- Lactic Acid -о- Citric Acid -о- Succinic Acid
Sensory Mixtures Profile with Various Food Acids According to the Taste Indicator Сенсорный профиль смесей с различными пищевыми кислотами по показателю «вкус»
Table 3. Results of the "A-not A" Test for the Sample "A"
Recognition (Complex Sweetener + Citric Acid) Compared to the "not A" Sample (Sucrose + Citric Acid) Таблица 3. Результаты теста «А-не А» по распознаванию образца «А» (комплексная добавка подсластителя + лимонная кислота) в сравнении с образцом «не А» (сахароза + лимонная кислота)
Title Sample Total
"A" "Not A"
Number of Identified Responses "A" 24 20 44
"Not A" 21 25 46
Total 45 45 90
Note. Number of experts is 9.
Authors used the following formula to calculate the criterion value of the X2:
where £-t = 44^45 =19.8;
X2 _ (24-19.8)2 (20-19.8)2 (21 -19.8)2 (25-19.8)2 = 2 35 19.8 19.8 19.8 19.8
Researchers compared the observed value of the X2 criterion with the critical value given in the GOST for the number of freedom degrees equal to 1.
If the value of the criterion X2 is less than the theoretical value, in this study the theoretical value is 3.84, and the practical value is 2.35, therefore, there is no significant difference, the sample with the CSA is identical in taste characteristics to the sucrose solution.
Stage 2. In the second part of the study, a man added polysaccharides to model samples of acids with complex sweeteners in order to evaluate its effect on the mixture taste and rheological properties.
The goal was to study and model the main composition variables influence on the rheological and mechanical properties, sensory characteristics of sweet dishes, and to optimize the composition parameters. The composition variables were the proportion of CSA, food acid, and the added pectin concentration. The results of Anova showed that pectin had a decisive influence on all rheological and mechanical properties.
Among the food ingredients that are most often used in the recipes of sweet dishes are thickeners, structure forming agents, foaming agents, etc. These substances allow to develop recipes for dishes with specified structural, mechanical and organoleptic characteristics. The main technological function of thickeners and gels in food systems is to increase the viscosity or form a gel structure of different densities (table 4). According to the chemical structure, these substances are linear or branched polymer chains with hydrophilic groups that interact physically with water or solutions presented in raw materials or introduced in the recipe while developing. Polysaccharide additives containing a large number of hydroxyl groups are hydrophilic and are generally well soluble in water [8; 9].
Table 4. Gelling Agents Used in the Development of Sweet Dishes Таблица 4. Желирующие агенты, используемые при разработке сладких блюд
Polysaccharide Conditions for Gelation
Alginates pH < 4, Presence of Ca2+
Agar-agar Gelled When Cooled; Thermally Reversible Mechanism that Includes the Formation of Double Helices
Highly Esterified Pectin pH 2-2.5; Dry Matter =55.0-80.0 %
Low-Esterified Pectin Presence of Ca2+
Table 5 shows the organoleptic characteristics of the study model samples depending on the food acids used in comparison with the control samples (CSA was replaced with a 5.0 % sucrose solution).
Thus, the model samples consisting of a low-es-terified apple pectin mixture with lactic acid and CSA obtained the best sensory characteristics. Lactic acid increases the sweet aftertaste longitude. It is well combined with pectin. Succinic acid also increases the sweet aftertaste longitude. This mixture has a fairly harmonious taste, but a small
Table 5. Organoleptic Indicators of Polysaccharide Gels Combined with Food Acids Таблица 5. Органолептические показатели гелеобразователей полисахаридной природы в комбинации с пищевыми кислотами
Sample Taste, Score Foreign Flavor Flavor Longitude Aftertaste of Coital, sec
Low-Esterfiied Apple Pectin
Control 4.5 ± 0.2 - 30
Citric 4.3 ± 0.2 4.0 ± 0,2 Light 40
Lactic 4.5 ± 0.2 Light 60
Succinic 4.0 ± 0.2 Light Bitterness 70
Agar-agar
Control 4.5 ± 0.2 - 40
Citric 4.0 ± 0.2 Absent 50
Lactic 4.5 ± 0.2 60
Succinic 4.0 ± 0.2 Light Bitterness 50
Sodium Alginate
Control 3.5 ± 0.2 - 40
Citric 2.5 ± 0.2 Unpleasant Taste 40
Lactic 2.7 ± 0.2 45
Succinic 2.2 ± 0.2 50
Magnesium Alginate
Control 3.5 ± 0.2 - 40
Citric 3.4 ± 0.2 Unpleasant Taste 40
Lactic 3.5 ± 0.2 45
Succinic 3.0 ± 0.2 50
extraneous bitter taste. It can be an object of the further research when using bright aromas or fatty milk components serving as corrigents while sweet dishes development. Agar-agar combined with lactic acid has a bright sweet taste, smoothly turning into sour. But agar-agar forms an excessively dense and fragile jelly, which limits its use in the development of sweet dishes recipes. Model samples with sodium and magnesium alginate had inharmonious taste. Food acids in combination with alginates emphasized the taste of algae and the jelly had an extraneous unpleasant taste.
Stage 3. A man worked out the technology for obtaining a stable elastic jelly using apple pectin. Syner-esis absence and high thixotropy (texture restoration speed after destruction) were a prerequisite.
Pectins are natural polysaccharides, consisting mainly of links a-1-4-galacturonic acid. PH, temperature, calcium ions concentration, and the esterifica-
tion degree affected the pectins gelation. The pectins structure is very difficult to determine, since its composition varies depending on the raw material to be obtained, esterification conditions, and other factors. The mechanism of pectin gelling is mainly determined by the degree of its esterification, so the mechanism of gel formation for high- and low-esterified pectins is different. To a large extent, the degree of esterification influenced the pectin behavior.
Highly esterified pectins have a esterification degree usually in the range of 50.0-80.0 % and require special conditions for gelation, such as low pH (2.53.5) and the sucrose presence (55.0-75.0 %) or, for example, sorbitol, ethylene glycol [10; 11]. The sugar function in the gels formation is its dehydrating effect and jelly stabilization. The physical and chemical processes of gelation in the pectin-sugar acid system are fairly well studied [10]. In practice, the optimal condition is an approximate ratio of pectin, sugar and acid as 1:60:1, respectively [12]. In this case, the introduced food acids inhibit the pectin molecules dissociation and, thus, contribute to its convergence and gelation. Using the chelating ability of citric acid helps it functioning as an antioxidant.
In low-esterified pectins, less than 50% of all car-boxyl groups are esterified. These pectins gelate independently of the sugar content and are chemically more resistant to moisture and heat than highly esterified pectins [9]. They are also more resistant to the pH of the medium. Gels can be produced in a wider pH range. Low-esterified pectins can form a gel in the presence of divalent cations, usually calcium (Ca2+). A man can easily reverse this gelation process by adding monovalent ions such as sodium (Na+) and potassium (K+) [9]. In these systems, the formation of zones of intermolecular interaction between pairs of carboxyl groups in homogalactu-ron links caused gelation [13].
That is why the authors chose low-esterified apple pectin to develop the base mixture of low-calorie sweet dishes, since the complex mixture of sweeteners and food acids does not have a dehydrating effect.
A high pectin content with a relatively small amount of calcium gives an elastic gel while using more calcium with a minimum of pectin gives a much more brittle product with some syneresis.
The researchers used calcium citrate as an agent responsible for the formation of jelly from low-es-terified Apple pectin to form the gel structure; sodium citrate as a component capable of reducing the freezing temperature and as a buffer to slow down the hydrolysis of pectin when adding citric acid. Sodium citrate makes the taste of the product less aggressively acidic, more rounded. The minimum citrates amount does not affect the change in the jelly flavor.
The researchers developed the dry mixture formulation (table 6), which can be the base for the low-calorie sweet dishes development for public catering and has a variety of uses - the replacement of citric with lactic and succinic acids, depending on the taste and aroma characteristics of the raw materials used and its corrective ability.
Table 6. Base Mixture Recipe for Cooking Low-Calorie Sweet Dishes Таблица 6. Рецептура базовой смеси для приготовления низкокалорийных сладких блюд
Component %, mass
Low-Esterified Apple Pectin 62.86
Complex Sweetener Additive 1.43
Citric Acid Monohydrate According to the GOST* 26.79
Calcium Citrate 5.36
Sodium Citrate 3.56
Total 100
Note. *Possible to replace with an equivalent amount of lactic and succinic acids considering the conversion factor.
Bibliography
1. Gluhova, E.A. Problemy Izlishnego Potrebleniya Sahara i Ih Resh-enie [Problems of Excessive Sugar Consumption and Their Solution]. Problemy, Perspektivy Biotekhnologii i Biologicheskih Issledovanii: Materialy VII Regional'noj Konf. (Bijsk, 18 Noyabrya 2017 g.). Bijsk: BTI AltGTU, 2017. Pp. 112-116.
2. Zavorokhina, N.V.; Minnihanova, E.YU. Vliyanie Zagustitelej i Gele-obrazovatelej Polisaharidnoj Struktury na Sensornoe Vospriyatie Sladkih Blyud [Influence of Polysaccharide Structure Thickeners and Gels on Sensory Perception of Sweet Dishes]. Sovremennaya Nauka i Innovacii. 2019. No. 3 (27). Pp.107-114. DOI: 10.33236/ 2307-910H2019-3-27- 101-107.
3. Zavorokhina, N.V.;Chugunova, O.V.;Minnihanova, E.Yu. Issledo-vanie Sinergizma Trojnyh Smesej Podslastitelej, Primenyaemyh dlya Nizkokalorijnyh Sladkih Blyud [Triple Mixtures Synergism Research of Sweeteners Used for Low-Calorie Sweet Dishes]. Pishchevaya Promyshlennost'. 2019. No. 9. Pp. 66-69. DOI: 10.24411/0235-24862019-10134.
4. Nikiforova, T.A. Pishchevye Kisloty - Neobhodimye Ingredienty pri Proizvodstve Pishchevoj Produkcii [Food Acids - Necessary Ingredients in the Production of Food Products]. Pishchevaya Promyshlennost'. 2004. No. 7. Pp. 78-79.
5. Kovalenko, A.L.; Belyakova, N.A.; Romancov, M.G. i dr. Farmakolog-icheskaya Aktivnost' Yantarnoj Kisloty i Ee Lekarstvennye Formy [Pharmacological Activity of Succinic Acid and Its Medicinal Forms]. Vrach. 2000. No. 4. Pp. 26-27.
The additive amount in ready-made sweet dishes is 3g per 100g and contains only 4.1-5.7 kcal, which is on average 10 times less than in sucrose.
The food acids use (including citric acid) in combination with buffer salts of sodium citrate and calcium citrate gives a stable thixotropic elastic gel, without signs of syneresis, without extraneous tastes characteristic of sodium saccharinate. Due to the gelatinous consistency, there is a long aftertaste. A man can apply the basic mixture to aromatic essences, juices, fruit purees.
Scientists will continue research on expanding the range and developing recipes for sweet low-calorie dishes.
Conclusion
As a research result, the authors investigated the sensory perception of polysaccharide thickeners when used together with food acids. They gave the organoleptic evaluation of polysaccharide thickeners mixtures with food acids and complex additives of sweeteners.
The researchers developed a recipe for a dry base mixture, which can be used in the recipe development for sweet dishes in order to reduce its caloric value and increase nutritional value.
Библиографический список
1. Глухова Е.А. Проблемы излишнего потребления сахара и их решение // Проблемы, перспективы биотехнологии и биологических исследований: материалы VII Региональной конф. (Бийск, 18 ноября 2017 г.). Бийск: БТИ АлтГТУ, 2017. С. 112-116.
2. Заворохина Н.В., Минниханова Е.Ю. Влияние загустителей и ге-леобразователей полисахаридной структуры на сенсорное восприятие сладких блюд // Современная наука и инновации. 2019. № 3 (27). С.107-114. DOI: 10.33236/ 2307-910Х2019-3-27- 101-107.
3. Заворохина Н.В., Чугунова О.В., Минниханова Е.Ю. Исследование синергизма тройных смесей подсластителей, применяемых для низкокалорийных сладких блюд // Пищевая промышленность. 2019. № 9. С. 66-69. DOI: 10.24411/0235-2486-2019-10134.
4. Никифорова Т.А. Пищевые кислоты - необходимые ингредиенты при производстве пищевой продукции // Пищевая промышленность. 2004. № 7. С. 78-79.
5. Коваленко А.Л., Белякова Н.А., Романцов М.Г. и др. Фармакологическая активность янтарной кислоты и ее лекарственные формы // Врач. 2000. № 4. С. 26-27.
6. Неповинных Н.В. Некоторые аспекты создания низкокалорийных сладких блюд с улучшенной пищевой ценностью // Молоч-нохозяйственный вестник. 2016. № 1 (21). С. 86-97.
7. Евглевский А.А., Рыжкова Г.Ф., Евглевская Е.П., Ванина Н.В., Михайлова И.И., Денисова А.В., Ерыженская Н.Ф. Биологическая роль и метаболическая активность янтарной кислоты // Вестник Курской государственной сельскохозяйственной академии. 2013. № 9. С. 67-69.
6. Nepovinnyh, N.V. Nekotorye Aspekty Sozdaniya Nizkokalorijnyh Sladkih Blyud s Uluchshennoj Pishchevoj Cennost'yu [Some Development Aspects of Low-Calorie Sweet Dishes with Improved Nutritional Value]. Molochnohozyajstvennyj Vestnik. 2016. No. 1 (21). Pp. 86-97.
7. Evglevskij, A.A.; Ryzhkova, G.F.; Evglevskaya, E.P.; Vanina, N.V.; Mi-hajlova, I.I.; Denisova, A.V.; Eryzhenskaya, N.F. Biologicheskaya Rol' i Metabolicheskaya Aktivnost' Yantarnoj Kisloty [Biological Role and Metabolic Activity of Succinic Acid]. Vestnik Kurskoj Gosudarst-vennoj Sel'skohozyajstvennoj Akademii. 2013. No. 9. Pp. 67-69.
8. Khouryieh, H.A.; Aramouni, F.M.; Herald, T.J. Physical, Chemical and Sensory Properties of Sugar-Free Jelly. Journal of Food Quality. 2005. Vol. 28. Pp. 179-190. DOI: 10.1111/j.1745-4557.2005.00014.x.
9. Lupi, F.R.; Gabriele, D.; de Cindio, B.; Sánchez, M.C.; Gallegos, C. A Rheological Analysis of Structured Water-In-Olive Oil Emulsions. Journal of Food Engineering. 2011. Vol. 107. Pp. 296-303. DOI: 10.1016/j.jfoodeng.2011.07.013.
10. Sundar, A.; Rubila, S.; Dzhayabalan, R.; Ranganatan, T.V. Obzor Pek-tina: Himiya v Svyazi s Obshchimi Svojstvami Pektina i Ego Farmace-vticheskim Primeneniem [Review of Pectin: Chemistry in Connection with the General Properties of Pectin and Its Pharmaceutical Application]. Scientific Reports. 2012. № 1. Pp. 1-4.
11. Sriamornsak, P. Chemistry of Pectin and Its Pharmaceutical Uses: A Review. Silpakorn University International Journal. 2003. Vol. 3 (1-2). Pp. 206-228.
12. Hongbin, Z.;Zhang, F.;Yuan, R. Applications of Natural Polymer-Based Hydrogels in the Food Industry. Hydrogels Based on Natural Polymers. 2020. Chapter 13. Pp. 357-410. DOI: 10.1016/ B978-0-12- 816421-1.00015-x.
13. Axelos, M.A.V.; Thibault, J.-F.; Walter, R.H. The Chemistry and Technology of Pectin. Academic Press, New York. 1991. Pp. 109-118.
8. Khouryieh, H.A.; Aramouni, F.M.; Herald, T.J. Physical, Chemical and Sensory Properties of Sugar-Free Jelly. Journal of Food Quality. 2005. Vol. 28. Pp. 179-190. DOI: 10.1111/j.1745-4557.2005.00014.x.
9. Lupi, F.R.; Gabriele, D.; de Cindio, B.; Sánchez, M.C.; Gallegos, C. A Rheological Analysis of Structured Water-In-Olive Oil Emulsions. Journal of Food Engineering. 2011. Vol. 107. Pp. 296-303. DOI: 10.1016/j.jfoodeng.2011.07.013.
10. Сундар А., Рубила С., Джаябалан Р., Ранганатан Т.В. Обзор пектина: химия в связи с общими свойствами пектина и его фармацевтическим применением // Scientific Reports. 2012. № 1. C. 1-4.
11. Sriamornsak, P. Chemistry of Pectin and Its Pharmaceutical Uses: A Review. Silpakorn University International Journal. 2003. Vol. 3 (1-2). Pp. 206-228.
12. Hongbin, Z.;Zhang, F.;Yuan, R. Applications of Natural Polymer-Based Hydrogels in the Food Industry. Hydrogels Based on Natural Polymers. 2020. Chapter 13. Pp. 357-410. DOI: 10.1016/ B978-0-12- 816421-1.00015-x.
13. Axelos, M.A.V.; Thibault, J.-F.; Walter, R.H. The Chemistry and Technology of Pectin. Academic Press, New York. 1991. Pp. 109-118.
Information about Authors / Информация об авторах
Minnikhanova, Ekaterina Yurievna
Минниханова
Senior Lecturer of the Food Technology Department Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 March St./Narodnoy Voli St., 62/45
Екатерина Юрьевна
Тел./Phone: +7 (343) 221-17-70 E-mail: [email protected]
Старший преподаватель кафедры технологии питания Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0002-7666-4853
Zavorohina, Natalia Valerievna
Заворохина Наталия Валерьевна
Тел./Phone: +7 (343) 221-17-70 E-mail: [email protected]
Doctor of Technical Science, Associate Professor, Professor of the Food Technology Department Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 March St./Narodnoy Voli St., 62/45
Доктор технических наук, доцент, профессор кафедры технологии питания Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0001-5458-8565
Gilina,
Anna Alexandrovna
Гилина
Анна Александровна
Тел./Phone: +7 (343) 221-17-70 E-mail: [email protected]
Master's Student of the Food Technology Department Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 March St./Narodnoy Voli St., 62/45
Магистрант кафедры технологии питания Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0001-5341-9372