Научная статья на тему 'Multivariate Iyengar type inequalities for radial functions'

Multivariate Iyengar type inequalities for radial functions Текст научной статьи по специальности «Математика»

CC BY
90
79
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Проблемы анализа
WOS
Scopus
ВАК
MathSciNet
Область наук
Ключевые слова
Iyengar inequality / Polar coordinates / radial function / Shell / Ball

Аннотация научной статьи по математике, автор научной работы — George A. Anastassiou

Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in RN, N > 2, and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and univariate author’s related results into multivariate Iyengar inequalities.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Multivariate Iyengar type inequalities for radial functions»

Probl. Anal. Issues Anal. Vol.8(26), No 2, 2019, pp. 3-27 DOI: 10.15393/j3.art.2019.5750

UDC 517.51

George A. Anastassiqu

MULTIVARIATE IYENGAR TYPE INEQUALITIES FOR RADIAL FUNCTIONS

Abstract. Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in RN, N ^ 2, and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and univariate author's related results into multivariate Iyengar inequalities.

Keywords: Iyengar inequality, Polar coordinates, radial function, Shell, Ball.

2010 Mathematical Subject Classification: 26D10, 26D15.

1. Background. In the year 1938, Iyengar [5] proved the following interesting inequality.

Theorem 1. Let f be a differentiable function on [a,b\ and | f/ (x)| ^ M1. Then

b

j f (x) dx

а

2 (b - a) (f (a) + f (b))

Mi (b — a)2 4

(f (b) — f (a))2 4M1 '

(1)

In 2001, X.-L. Cheng [4] proved that Theorem 2. Let f G C2 ([a,b\) and If" (x)| ^ M2. Then

b

/i i

f (x) dx — 2(b — a) (f (a) + f (b)) + ^(b — a)2 (f/ (b) — f/ (a))

а

z M2 ^ (b — a) д 2

^ 24-(b — a) — l6MrAi-

(g) Petrozavodsk State University, 2019

where

Д, = f' (a) - f - f(a)) + f' (6)

(6 — a)

In 1996, Agarwal and Dragomir [1] obtained a generalization of (1):

Theorem 3. Let f : [a, 6] ^ R be a differentiable function such that for all x E [a, b] with M > m we have m ^ f/ (x) ^ M. Then

f (x) dx — ^ (b — a) (f (a) + f (b))

(f (b) — f (a) — m (b — a)) (M (b — a) — f (b) + f (a))

3)

2 (M — m)

In [7], Qi proved

Theorem 4. Let f : [a, b] ^ R be a twice differentiable function such that for all x E [a, b] with M > 0 we have |f" (x)| ^ M. Then

f (x) dx — (f (a) + f (b)) (b — a)+ (1 +gQ ) (f/(b) — f/ (a)) (b — a)2

where

Q2

M(b — a)3 , 2

« (24 ' f1 — 3Q-

f/ (a) + f/ (b) — 2 (!Ц=Ж ))

5)

M2 (b — a)2 — (f/(b) — f/(a))2 ■

In 2005, Zheng Liu, [6], proved the following:

Theorem 5. Let f : [a,b] ^ R be a differentiable function such that f is integrable on [a, b] and for all x E [a, b] with M > m we have

f/ (x) — f/ (a) f/ (b) — f/ (x)

m ---L2^2 < M and m < € M. (6)

xa

bx

b

b

2

Then

b

j f (x) dx

а

(f (a) + f (b)) 2

(b — a) +

1 + P2 8

(f/ (b) — f/ (a))(b

a)

2

1 + 3P 2

(m + M) (b - a)3

48

^ (M - m)(b - a)3 ^ — зр2^

where

P2

f' (a) + f' (b) - 2 (ref))

[M-m)2 (b - a)2 - (f' (b) - f' (a) - (*+*) (b - a))

2

2

(7)

(8)

We need

Remark. We define the ball B (0, R) = {x E RN : |x| < R} C RN N ^ 2, R > 0, and the sphere

SN-1 := {x E RN : |x| = 1}

where |-| is the Euclidean norm. Let dx be the element of surface measure on SN-1 and

xN = dx

sn-i

2n ^

f(f

be the area of SN 1.

For x E RN - {0} we can write uniquely x = rx, where r = | x| > 0 and x = X E SN-1, |x| = 1. Note that f dy = is the Lebesgue

B(0,R)

measure on the ball, that is the volume of B (0,R), which exactly is

П Nr RN

Vol (B (0,R)) = r( „ .

Following [8, pp. 149-150, exercise 6], and [9, pp. 87-88, Theorem 5.2.2] we can write for F : B (0, R) ^ R a Lebesgue integrable function that

R

F (x) dx

B(0,R)

F (rx) rN 1 dr\dx

SN-i 0

(9)

and we use this formula a lot.

Typically here the function f : B (0, R) ^ R is radial; that is, there exists a function g such that f (x) = g (r), where r = |x|, r E [0,R], Vx E B (0, R).

Remark. Let the spherical shell A := B (0, R2) - B (0, R1), 0 < R1 < R2, A C Rn, N ^ 2, x E A. Consider that f : A ^ R is radial; that is, there

exists g such that f (x) = g (r), r = |x|, r E [R1,R2\, V x E A. Here x can be written uniquely as x = ru, where r = |x| > 0 and ш = X E SN-1, |u| = 1, see ( [8, p. 149-150], and [2, p.421]), furthermore for F : A ^ R a Lebesgue integrable function we have that

J F (x) dx = J

A SN-1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

#2

F (ru) rN 1dr)du

Ri

(10)

Here

Vol (A)

Un R - RN) N

n^ (r2n - RN)

г (N + 1)

(11)

In this article we derive multivariate Iyengar type inequalities on the shell and ball of RN, N ^ 2, for radial functions. Our results are based on Theorem 1 - Theorem 5 and several other results by the author.

2. Main Results. We present the following multivariate Iyengar type inequalities on the shell and the ball:

We start with

Theorem 6. Let the spherical shell A := B (0, R2) — B(0, R\), A C RN, N ^ 2, 0 < R1 < R2. Consider f : A ^ R that is radial, that is, there exists g such that f (x) = g (r), r = |x|, r E [R1 ,R2], Vx E A; x = ru, ш E SN-1. We assume that g E C1 ([Ru R2]).

Then

f (y) dy — (R2 — R1) [g (R1) RiN-1 + g (R2) RN-1]

,N-11 n 2

2 J г f N

A

N П 2

2Г (N

(g (s) sN-1)' 1„,[R.,R2|(R2 — R1)2— (g (R2) rN-1 — g (R1) R

N-1)2n

(g (s) sn-1)

I те, [Ri ,#2]

:i2)

N

Proof. Here g E C 1([R1, R2]) and clearly h(s) := g(s)sN 1 E C 1([R1, R2]),

N > 2. We set llh'l^,[R1 ,r2| = M. By (1) we get

#2

fh (x)

R1

2 (R2 — R1) (h (R1) + h (R2))

M (R - R1)2 (h (R2) - h (Ri))2

4

4M

(g (s)

N-i)

&>, [Ri,R2] 1

(R2 - Ri)2 (g (R2) RN-1 - g (Ri) RN-1)2

4|l (g (s) SN-1)' Щ [ЯьЯ2]

=: A. (13)

Equivalently, we have

R2

1

- A ^ g (s) sN-1ds - 2 (R2 - Ri) (g (Ri) RN-1 + g (R2) RN-1) < A,

Ri

R2

(14)

- A ^ If (su) sN 1ds -

Ri

Hence it holds

R2 - R1

1 (g (Ri) Rf-1 + g (R2) RN-1) < A.

(15)

R2 - R1

-Ajdu ^ J ^ J f (su)sN 1 d^jdu-

SN-1 SN-1 Ri

^ (g (Ri) RN-1 + g (R2) RN-1) J du ^ A J du, (16)

SN-1 SN-1

that is (by (10))

- aЛЬ) < ff (y) dy- (R - Ri) [g (Ri) Rf ■+

Г (f

A

n-n 2 , , 2n 2

+ g (R2) Rf-1] < A^. (17)

Therefore we get

A

f (y) dy - (R2 - Ri) [g (Ri) Rf-1 + g (R2) Rf-1] r^N

^ A

2n N

г (f

N 2 ,

(18)

N

The theorem is proved. □

We give

Corollary. (to Theorem 6) Let f : B(0, R) ^ R be radial, that is, there exists a function д such that f (x) = д (r), where r = |x|, r E [0,R], R > 0, V x E B (0, R); N ^ 2. We assume that д E C1 ([0, R]). Then

B(0,R)

f (y)dy - Rng(R)

N П 2

N П 2

2Г (N

s)s

N-П/

,R2 -

g2 (R) R2(n-1)

t°’R] || (g (s) sN-1)'

Proof. Similar to Theorem 6, use of (9). □

We also give

те, [0, R] _

(19)

Theorem 7. Let f : A ^ R be radial; that is, there exists g such that f (x) = g (r), r = |x|, r E [R1, R2], V x E A; x = ru, ш E SN-1, N ^ 2. We assume that g E C2 ([R1, R2]).

Then

f (y) dy -

A

(R2 - R1) (g (R1) RN-1 + g (R2) RN-1) +

+

(R2 - R1)2

4

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

s) sN 1)/(r2) - (g(s) sN 1) (R1))

n- 1)//

N П 2

s) s

I те, [Ri,R2]

12

(R2 - R1 )3 -

,8 ||(g(s) sN 1)// L, [r1,r2])

(R2 - R1)

A?

г (N

N П 2

N),

г (N

(20)

where

a (()N-1)/. 2 (g (R2) RN- - g (R) rn-1) ,(()N-1)/ .

A,:=(g (s) s ) (Ri)--sR R^------------------ + (g(s)s ) №).

(21)

Proof. Here g E C2([R1, R2]) and clearly h(s):= g(s)sN-1 E C2([R1, R2]),

N ^ 2. We set ||h//|Ц [R1,R2] = M. By (2) we get

R2

h (s) ds — ^ (R2 — Ri) (h (Ri) + h (R2)) + 8(R2-

Ri

where

- R1)2 (h'(R2) - h'(Ri))

/ M (R R )3 (R2 - R1) Д 2 (22)

< 24№ - Rl) - 16M Д1' (00)

Д1 = h (Ri) -2(h R h\Rl,) + h (R2)

(R2 — R1)

(03)

That is

R2

g (s) SN 1ds - (R2 - Rl) (g (R1) Rf 1 + g (R2) rN 1) +

Ri

(R2 - R1)2

s) sN 1)/ (R2) - (g (s) sN 1)/ (R1))

^ 24 (R2 R1) 16M

3 (R2 - R^2 =: ^

(04)

where

Д1 := (g (s) sN _^/ (R1) -

N _ n/,D, 2 (g (R2) RN -1 - g (R1) rN -4

(R2 - R1)

+ (g (s) sN ^ (R2) . (05)

Equivalently, we have R2

-ф < f f (sw) sN_ 1ds - <Rr-R1^^> »N_1 . -1'

(g (R1) RN_1 + g (R2) RN -1) +

Ri

+

(R2 - R1)2

s) sN 1)/ (R2) - (g (s) sN 1)/ (R^) ^ ф (26)

Hence it holds

- ф / dw ^ I I J f (sw) sN 1ds I dw-

SN-1 SN-1

(R2 - Ri)

2

, (R -

+ 8

[g (Ri) RN-i + g (R2) RN-i R^( (g(s)sN-i) (r2) -

+

- (g(s)s

N-i

J du ^ ф

du, (27)

SN-1 SN-1

that is (by (10))

2nN f

W'TTTNT < f (y) dy -

Г If

A

(R - Ri)

(g (Ri) RN-i + g (R2) RN-i) +

+

(R2 - Ri)2

s)sN i)/(r2) - (g(s) sN i)/(Ri))

2n ^ ^ ! 2n ^

r(N) ^ ф r(N) •

Therefore we get

(28)

f (y)d?y-

A

(R2 - R)( g(Ri)RN-i + g(R2)RN-i)+

+ №-Ry( (g(s)sN-i)/(r2)_

4

- (g(s)sN ^/ (Ri)

N П 2

Г (т

< Ф|n_L• (29)

Г( N )■

The theorem is proved. □

We give

Corollary. (to Theorem 7) Let f : B (0, R) ^ R be radial, that is, there exists a function g such that f (x) = g (r), where r = |x|, r G [0,R], R > 0, V x G B (0, R); N ^ 2. We assume that g G C2 ([0, R]). Then

f (У) dV -

B(0, R)

R2 ( ( )

Rn g (R) + T ((g (s) sN-i)/(R) -

n-n/,nл n 2

- (g (s) sN-i)/ (0))

JF( N)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

II (g(s)

n- n//

12

[°,R] r3_____

N

__________

8|| (g(s)sN-1)"

-A*1

*2

I <ж, [0, R]

N П 2

Г (ft

(30)

where

д; := (g (s) sN-1)' (0) - 2g (R) RN-2 + (g (s) sN-1)' (R). (31)

If N > 2, then (g (s) sN-1)' (0) = 0.

Proof. Similar to Theorem 7, use of (9). □

We present

Theorem 8. Consider f : A ^ R that is radial; that is, there exists g such that f (x) = g (r), r = |x|, r G [R;, R2], V x G A; ж = ru, ш G SN-1, N ^ 2. We assume that g G C1 ([R;, R2]).

Then

A

f (y) dy - (R2 - R;) [g (R;) RN-1 + g (R2) RN-1]

N П 2

<

< (g (R2) R2N-1 - g (R1) RN-1 - m (R2 - R1)) X

w (m (R2 - R1) - g (R2) rN-1 + g (R1) rN-1) / nN

X (M - m) VT(f)

where M > m with

(32)

m < (g (s) sN ^' < M, V s G [R1, R2]. (33)

Proof. Here g G C1 ([R1, R2]) and clearly h (s) := g (s) sN-1 G C1 ([R1, R2]), N ^ 2. We assume here m < h' (s) < M, V s G [R1, R2] with M > m. By (3) we get

/h (s) ds

2(R2 -

R1) (h (R1) + h (R2))

<

(34)

Ri

< (h (R2) - h (R1) - m (R2 - R1)) (M (R2 - R1) - h (R2) + h (R1))

< 2 (M - m)

That is

R2

g (s) sN-1ds

Ri

2 (R2 - R1) (g (R1) rN-1 + g (R2) rN-1)

<

< (g (R2) RN-1 - g (Ri) RN-1 - m (R2 - R1)) x

(M (R2 - R1) - g (R2) RN-1 + g (R1) RN-1) = X 2 (M - m) '

Equivalently, we have

(35)

R2

- P < / g (s) sN 1ds

Ri

R2

- P < f (sw) sN 1ds

Ri

Hence it holds

R2 - R1

2

(g (R1) RN-1 + g (R2) RN-1) < P,

(36)

RdrR1) (g (R1) RN-1 + g (R) RN-1) < p.

(37)

-P

dw <

R2

f(sw)sN 1ds

dw—

S»-1 S^-1 Ri

(R 2 RM (g (R1) RN-1 + g (R2) RN-1) / dw < p J dw, (38)

SN-1 sN-1

that is (by (10))

- p< /f (y) dy - (R2 2 RM (g(R1)RN 1+

+ g (R2) r

\ 2n N 2n N

,N-Л 2n 2 < p 2n 2 (39)

Г(N) < PГ(N). ( )

Therefore we get

N N

П 2 2n 2

f (y) d,y - (r2 - R1) (g (R1) rN-1 + g (r2) rN-1) ^-7^ < p.

The theorem is proved. □

We give

A

Corollary. (to Theorem 8) Let f : B (0, R) ^ R be radial, that is, there exists a function g such that f (x) = g (r), where r = |x|, r E [0,R], R > 0, V x E B (0, R); N ^ 2. We assume that g E C1 ([0, R]). Then

f (y) dy - RN g (R)

N П 2

A

?N-

Г (N

(g (R) RN-1 - mR) (MR - g (R) R

n-1 w

П 2

г (N

N

(41)

(42)

(M - m)

where M > m with

m ^ (g (s) sN-1 ) ^ M, V s E [0, R].

Proof. Similar to Theorem 8, use of (9). □

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

We continue with

Theorem 9. Let f : A ^ R be radial; that is, there exists g such that f (x) = g (r), r = |x|, r E [R1,R2], V x E A; x = ru, ш E SN-1, N ^2. We assume that g E C2 ([R1,R2]). We call

Ml := У (g (s) sN"

Then

I те, [R,, R2]'

f (y)dy - [ (g№)<-1 + g№)R2N-1) № - R1) + (1 +Q1) x

A

x ((g(s) sN ^' (r2) - (g(s) s

N- n'

1))(R2 - R1)2]

N

2 1 П 2

г (N

M1 (R2 - R1)3 12

(1 3Q1) , N), (43)

г (N

where

Q1

(g (s) sN-1)' (R1)+(g (s) sN-1)' (R2)- 2( J(K])KVR(,K1)<-1 'l2

Mf (R2 - R1)2- ((g (s) sN-1)' (R2) - (g (s) sN-1)' (R1))

Proof. Similar to the proof of Theorem 7 by the use of Theorem 4. □ We give

N

2

Corollary. (to Theorem 9) Let f : B (0, R) ^ R be radial, that is, there exists a function g such that f (x) = g (r), where r = |x|, r E [0,R], R > 0, V x E B(0, R); N ^ 2. We assume that g E C2 ([0, R]). We call

M := II (g (s) sN-1)" L, [0,r]■ Then

f (y)dy -

A

g(R)RN +

- (g(s) sN ^' (0)] R

(i + Q2) 4

[(g (s) sN-1)' (R) -

4

N П 2

Г If

< MR3 (1 - 3Q2)ANt. (45)

Г (N

where

Q2 :

(g (s) sN-1)' (0) + (g (s) sN-1)' (R) - 2g (R) RN-2 M2R2 - ((g (s) sN-1)' (R) - (g (s) sN-1)' (0))2

(46)

Proof. Similar to Corollary to Theorem 7. □

We present

Theorem 10. Here all as in Theorem 6 and M1 > m1. Assume that

m1 <

(g(s)

N1

(s) - (g(s) sN 1

s - R1

(R1)

< m1

and (

(g (s) sN-1

m1 i

for all s E [R1, R2]. Then

(r2) - (g (s) sN ^'(s) R2 - s

< M1,

(47)

(48)

f (y) dy - [(g (R,) RN-1 + g (R2) RN-1) (R2 - R1) +

A

442s

s) sN-1) (R2) - (g (s) sN-1) (R1)) (R2 - R1 )2 -

^—24 ^ (m1 + M1) (R2 - R1)"

N П 2

Г (f

i

< (M1 - m1) (R2 - R1)3 (1 - 3p2)

N П 2

Г (N

N

(49)

where

pi

(g (s) sN-g (Щ + (g (s) sN(Д2) - 2 (

N-1 \12

()2 (R2-R1)2- [(g(s)sN :1)'(R2)-(g(s)sN :1)'(R,)-( KR2-R1)] 2

(50)

Proof. Similar to Theorem 6 by the use of Theorem 5. □

We give

Corollary. (to Theorem 10) Here all as in Corollary to Theorem 6 and M2 > m2. Assume that

(g (s) sN-1)' (s) - (g (s) sN-1)' (0)

m 2 C

C M2

(51)

and

(g (s) sN 1)7 (R) - (g (s) sN 1)7 (s) Л/Г m2 C ---------------------------------------------- C M2,

Rs

for all s E [0, R]. Then

(52)

f (y) dy - [g (R) Rn+ ( (g (s) sN-1)7 (R) -

A

- (g(s) sN 1)7 (0))r2 -

, 1 1 3 p2,

2 1 +3 2 (m2 + M2)R3

C

24

(M2 - m2)R3

24

N_

П 2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Г (N

C

N_

о П 2

(1 - 3P22bvc^v, (53)

>2)______

2) Г (N),

where

P2

(g (s) sN:1)7 (0) + (g (s) sN:1)7 (R) - 2g (R) R

n- n7

N2

12

««)2 R2- [(g (s) sN:1)7 (R)-(g (s) sN:1)7 (0)- () R]

2

(54)

Proof. Similar to Corollary to Theorem 6, based on Theorem 5. □

We continue with some author’s results to be used later in this article:

Theorem 11. [3] Let n E N, f E ACn ([a, b]) (i. e. f(n 1) E AC ([a, b]), absolutely continuous functions). We assume that f(n) E L^ ([a, b]). Then

i) V t E [a, b]

n— 1

f (x) dx -Y^

1

k=0

(k + 1)! L

f(k) (a) (t-a)k+1 + (-1)kf(k) (b) (b-t)k+1

Ь<х,([а,Ь])

(n + 1)!

[(t - a)n+1 + (b - t)n+1] ,

(55)

ii) at t = Ap, the right hand side of (55) is minimized, and we get:

/n—1

f (x) dx - ^

k=0

1 (b - a)

(k + 1)! 2k+r

k+1

a) + (-1)kf(k) (6)]

LTO([a, b]) (b a)

n+1

iii

(n +1)! 2n

a) = f(k) (b) = 0, for all k = 0,1,..., n - 1, we obtain

b

(56)

f ( x) dx

Ьж([а, b]) (b a)

n+1

(n +1)! 2n

(57)

which is a sharp inequality,

iv) more generally, for j = 0,1, 2,..., N E N, it holds

/n—1

f (x) dx - ^

k=0

i /1 \ k+1

1 ( b — a\

(k + 1)! N

+ (-1)k (N - j)k+1 f(k) (b)]

[j k+1f(k) (a) +

/ 7 \ n+1

Ьж([а,Ь]) I b - a \

(V )'

X

v

(n + 1)!

x [jn+1 + (N - j)n+1] , (58) a) = f(k) (b) = 0, k = 1,..., n - 1, from (58) we get:

b

b - a N

b

LTO([a, b])

(n + 1)!

b — a N

n+1

[jn+1 + (N — j)"+1] ,

for j = 0,1,2,..., N e N,

vi) when N = 2 and j = 1, (59) turns to

b

J f (x) dx

a

b — a 2

(f (a) + f (b))

(59)

11^)^LTO([a,b]) (b — a)

(n + 1)! 2n

(60)

vii) when n =1 (without any boundary conditions), we get from (60) that

b

f ( x) dx

a

b — a 2

(f (a) + f (b))

(b — a)2

ro, [a, b] 4

(61)

a similar to Iyengar inequality (1).

Theorem 12. [3] Let f e ACn ([a, b]), n e N. Then i) V t e [a, b]

г n-1 1

J f (x)dx — (k +1); [f(k)(a) (1— a)‘+1 +

+ (—1)kf (k)(b) (b — t)k+1 ]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Li([a,b])

n!

[(t — a)n + (b — t)n] , (62)

ii) at t = a+b, the right hand side of (62) is minimized, and we get:

/n-1

f (x) dx — ^ k=0

1 (b — a)

(k + 1)! 2k+r

k+1

a) + (—1)kf(k) (b)]

Li([a,b]) (b — a)T

n!

n- 1

(63)

in

f(k) (b) = 0, for all k = 0,1,... ,n — 1, we obtain

f (x) dx

<

Li(M) (b — а)Г

П!

In— 1

(64)

which is a sharp inequality,

iv) more generally, for j = 0,1, 2,..., N E N, it holds

jf(x)dx — E (k^TT): (V) jk+1f'"'la

k=0

+ (—1)k (N—j )k+1 f (k)(b)

Li([a, b]) f b a

n:

N

[jn + (N—j)n] ,

(65)

v

a) = f(k) (b) = 0, k = 1, . . . ,n - 1, from (65) we get:

b

f(x)dx-

b — a N

[jf (a) + (N — j) f (b)]

Li([a,b])

n:

b — a N

[jn + (N — j )n]

for j = 0,1,2,..., N E N,

vi) when N = 2 and j = 1, (66) turns to

(66)

f (x)dx — (b 0 a) (f (a) + f (b))

Li([a,b]) (b — a)

n! 2n-- (67)

vii) when n =1 (without any boundary conditions), we get from (67) that

f (x)dx — ( b—- ) (f (a) + f (b))

7 llLi([a,b]) (b — a). (68)

b

b

n

n

b

n

b

Theorem 13. [3] Let f E ACn ([a, b]), n E N; p, q > 1 : p + 1 = 1, and f(n) E Lq ([a, b]). Then

i) V t E [a, b]

r n-1 1

J f (x) dx-g (j+jjy [f<k)(a)(t - a)k+1 + (-l)kf<k)(b)(6 - t)k+1 ]

Lq <[a,b])

(n - l)! (n + M (p (n - l) + l)

(t - a)n+p + (b - t)n+p

(69)

ii) at t = a++b, the right hand side of (69) is minimized, and we get:

/n-1

f (x) dx - g

k=0

l (b - a) (k + l)! 2k+r

k+1

a) + (-l)kf<k) (b)]

Lq <[a,b])

(b - a)n+p

,n-1 ’

p 2 q

iii

(n - l)! (n + (p (n - l) + l)p 2

= f <k) (b) = 0, for all k = 0, l,..., n - l, we obtain

(70)

f (x) dx

Lq <[a,b])

(b - a)n+ p

(n - l)! (n + M (p (n - l) + l)p 2

n- - ’

p 2 q

(71)

which is a sharp inequality,

iv) more generally, for j = 0, l, 2,..., N E N, it holds

/ n-1

f (x) dx - g

k=0

1 / 7 \ k+1

l b — a\

(k + l)! V N

+ (-l)k (N - j)k+1 f<k)(b)

Lq <[a b])

(n - l)! (n + p) (p(n - l) + l)

X

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

b - a\n+ p

X 1 - )

jn+p + (N - j)

n+1

v

a) = f <k) (b) = 0, k = l,..., n - l, from (72) we get:

b

b-a

N

ь

<

Lq ([a,b])

(n - 1)! (n + i) (p (n - 1) + 1)

7 \ П+1

b — a\ p

N

1 1 jn+ P + (N - j)n+ P

for j = 0,1,2,..., N e N,

vi) when N = 2 and j = 1, (73) turns to

(73)

f (x) dx - (b 0 a) (f (a) + f (b))

2

Lq([a,b])

(b — a)n+p

(n - 1)! (n + pj (p (n - 1) + 1)p 2

(74)

vii) when n =1 (without any boundary conditions), we get from (74)

that

f (x) dx -

ba

(f (a) + f (b))

'ILq(M]) (b - a)1+ p

1 + 1

p

i

2 P

(75)

1

P

b

q

b

Next, we extend Theorems 11-13 to the multivariate case over shells and balls for radial functions. The proving method is the same as in our earlier results of this article, as such we omit these next proofs.

We present (use of Theorem 11)

Theorem 14. Consider f : A ^ R which is radial; that is, there exists g such that f (x) = g (r), r = |x|, r e [R1,R2], V x e A; x = ru, ix e SN-1, N ^ 2. We assume that g (s) sN-1 e ACn ([R1,R2]) and (g (s) sN-1)(n) e L^ ([R1, R2]), n e N. Then

i) V t e [R1, R2]

(n-1 1

f (y) dy -i £

A

\ k=0 \k

(k + 1)!

N- 1)(k)

(g (s) sN-1)(k) (R1) (t - R1)k+1 +

2n N

+ (-1)k (g (s) sN-1)(k) (R2)(R2 - t)

N- 1)(n) M

k+1

2n N

г (f

<

s) s

lLTO([Ri,R2])

г (N

(n + 1)!

[(t - R1)n+1 + (R2 - t)n+1] , (76)

ii) at t = Rl+R2, the right hand side of (76) is minimized, and we get:

f (y) dy -\ ^

A

. k=0

1 (R2 - Ri))

(k + 1)! 2k

(g (s) $N ^ ^ (Ri) +

+ (-1)k (g (s) sN-i)(k) (R2)

N-i)(n)

N П 2

г (f

N П 2

s) s

L^([Ri,R2]) (R2 - Ri)

n+i

Г (N

(n + 1)!

~)n— 1

(77)

iii) if (g(s)sN i)(k)(Ri) = (g(s)sN l)(k)(R2) = 0, for all k = 0,1,... ,n- 1, we obtain

/ (У) dy

A

N II (g (S) SN-1)(П) Hlm([Ri,R2|) (R2 - Ri)

П

n+i

Г <N

(n + 1)!

ni

(78)

which is a sharp inequality,

iv) more generally, for j = 0,1,2,..., N E N, it holds

//(y)dy - {Eyip. (‘ [jk+1 (g(s)sN-l)(k) (Ri) +

A k=0

0 N

+ (-1)k (N - j)k+1 (g (s) sN-i)(k) (Д*)] } ^

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2n N

s> sN~1)(П) IL([RiWR'2 - Ri

Г (f

(n + 1)!

N

n+i

(jn+i + (N - j)n+i)

(79)

v) if (g (s) sN-i)(k) (Ri) = (g (s) SN-i)(k) (R2) = °, k = 1, . . . , n - 1,

from (79) we get:

A

f (y) dy - j (^R2 - R^ [jg (Ri) rN i +

2n N

Г (f

2n N

Г (f

x

" (g (S) ^1i^^') (“)”+1 (j“+1 + (N - j)”+I) ,

(80)

for j = 0,1,2,..., N E N,

vi) when N = 2 and j = 1, (80) turns to

f (y) dy - (R - Ri) (g (Ri) RN-1 + g Ш R-1)

?n-1) n 2

A

Г (N

nN "(g (s) 1 ^)"Ьто([Д1>Д2]) (Ri - Ri)n+1

Г (N) (n +1)! 9n-1

(81)

vii) when n =1 (without any boundary conditions), we get from (81)

that

N

f (y) dy - (R2 - R1) (g (R1) RN-1 + g (Ri) RN-1)

,N-1) П 2

A

N П 2

W

s) s

N- 1)'

(Ri - R1)

2 1 Г (f

i

LTO([R 1,Д2 ])

(82)

which is related to (12).

We present (use of Theorem 12)

Theorem 15. Consider f : A ^ R which is radial; that is, there exists g such that f (x) = g (r), r = |x|, r E [R1, R2], V x E A; x = ru, ш E SN-1, N ^ 2. We assume that g (s) sN-1 E ACn ([R1, R2]), n E N. Then i)

i) V t E [R1, R2]

( n-1

f (y)dy - \ Y

A

\ k=0

(k + 1)!

(g (s) sN-1)(k) (R1) (t - R1)fc+1 +

9 N

+ (-1)k (g (s) sN-1)(k) (Ri) (Ri - t)k+1] } ^

2nN "(g(s) sN-1)(n)

lLi([Ri,R2])

г in

n!

[(t - R1)n + (Ri - t)n] , (83)

N

1

ii) at t = R, the right hand side of (83) is minimized, and we get:

' П— 1

/ (y) dy -

A

. k=0

1 (R - Ri)k+1

(k + 1)! 2k

(g (s) $N ^ ^ (Ri) +

N

+ (-1)fc (g (s) sN ^ ) (R^ } r”^NJ

N П 2

rTf

s) s ) IIli([Ri,R2]) (R2 - R1)n

n

~>n-2

(84)

iii) if (g (s) sN 1)(k) (R1) = (g (s) sN 1)(k) (R2) = 0, for all k = 0,1,...

n 1, we obtain

/ (y) dy

A

N П 2

rTf

s) s ) 11 Li([Ri,R2]) (R2 - R1)n

n!

~)n— 2

(85)

which is a sharp inequality,

iv) more generally, for j = 0,1,2,..., N E N, it holds

J / (y) dy - {E (k:+^ (‘ [jk+1 (g (s) sN-1)(k) (R1) +

+ (-1)k (N - j)k'+1 (g (s) sN~1)<k> №)] }

2nN II (g W SN-1)(n) ||li([Ri,R21) ( R'2 - R1

N

Г (N

n!

N

(jn + (N - j)n)

(86)

v) if (g (s) sN-1)(k) (R1) = (g (s) sN-1)(k) (R2) = 0, k =1,...,n - 1, from (86) we get:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

A

f (y) dy - j (^Ra N R^j jg (R1) rN 1+

2n N

Г

2n N

Г

x

|| (g (s) s

N -i

(n) ||

IIli([Ri,R2])

n!

R2 — Ri

N

n

(jn + (N — j)n),

for j = 0,1,2,..., N e N,

vi) when N = 2 and j = 1, (87) turns to

(87)

A

f (y) dy — (R2 — Ri) (g (Ri) RN-i + g (R2) RN-i)

N П 2

ПN || (g W 8N 1)(П) |Li([r„r2]) (R2 - Ri)’

Г (f

n!

n2

(88)

vii) when n =1 (without any boundary conditions), we get from (88)

that

f (y) dy — (R2 — Ri) (g (Ri) RN-i + g (R2) RN-i)

,n-1) n 2

A

Г If

N

2n N

WT

1 (g w

N-i

We present (use of Theorem 13)

Li([Ri,R2]) (R'2 Ri)

(89)

Theorem 16. Consider f : A ^ R which is radial; that is, there exists g such that f (x) = g (r), r = |x|, r e [Ri,R2], V ж e A; x = гш, ш e SN-i, N ^ 2. We assume that g (s) sN-i e ACn ([Ri,R2]) and (g (s) sN-i)(n) e Lq ([Ri,R2]), where p, q > 1 : i + i = 1, and n e N. Then

i) V t e [Ri, R2]

ni

f (y) dy -

(g (s) sN-i)(k) (Ri)(t — Ri)k+i +

A

. k=0

(k + 1)! L

9 N

+ (— 1)k (g (s) SN-i)(k) (Л2) (R2 — t)k+i] } ^

2n N

1 (g (s)

,N-i)(n)

I Lq ([Ri,R2 ])

Г (N

2) (n — 1)! n +

n — 1) + 1)

(t — Ri)n+1 + (R2 — t)

n+1

1

i

p

ii) at t = Rl+R, the right hand side of (90) is minimized, and we get:

A

f (y) dy

N П 2

(n-1 1 (R2 — R1)k+1 (g (s) sN-1)(k)

(k+1)! 2k

+ (—1)k (g (s) sN-1)(k) №)]} N П 2

Г (N)

II (g (s) sN-1)(n) 11 Lq([Rl, R2]) (R2 — - R1)n+

n — 1)! (n + (p (n — 1) + 1)p 2n 1 q

1

P

(Ri) +

5

(91)

iii) if (g(s)sN 1)(fc) (R1) = (g(s)sN 1)(fc) (R2) = 0, for all k = 0,1,...,

n — 1, we obtain

f (y) dy

A

ПN II (g (s) sN 1^) IIl,([Ri,R2]) (R2 — Rl)n+

Г(2) (n — 1)! ^n + (p (n — 1) + 1)p 2

1 0n-1-1 ’

p 2 q

(92)

which is a sharp inequality,

iv) more generally, for j = 0,1,2,..., N E N, it holds

f (y) dy £ 1

A

к k=0

(k + 1)^ N

R2 — R1

k+1

jk+1 (g (s) sN- 1)(k) (R1) +

0 N

+ (—1)k (N — j)k+1 (g (s) sN- 1)(k) (R2)] } ^

2n N

s) s

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

n- 1)(n)

I Lq ([Ri,R2])

Г (Ю (n — 1)! (n + 1 j (p (n — 1) + 1)

R2 — R1

N

n+1

X

X (jn+p + (N — j)

n+1

(93)

v) if (g(s)sN 1)(k) (R1) = (g(s) sN 1)(k) (r2) = 0, k = 1,...,n — 1,

from (93) we get:

Jf (y) dy — j (Ra—R1) jg (R1) rN 1+

+ (N - j) g (R) Rf-1]}

2n N

Г (f

2n N

^ (f)X

Г ( NN

X ■

(g (s) sf-1)'”’

I Lq([Ri,R2])

(n - 1)! (n + M (p (n - 1) + 1)

R-2 - Ri

N

n+

P jn+ P + (N - j)n+p

(94)

for j = 0,1,2,..., N e N,

vi) when N = 2 and j = 1, (94) turns to

f (y) dy - (R - Ri) (g (Ri) Rf-1 + g (R2) R

n-i) n 2

A

Г (f

N П 2

(g (s) Sf-1)(n)

Lq ([Ri,R2 ]) (R2 - R1 )

n+1

Г(2) (n - 1)! (n + pj (p (n - 1) + 1) 1 2

~)П— 1— -

q

(95)

vii) when n =1 (without any boundary conditions), we get from (95)

that

-

N

f (y) dy - (R2 - R1) (g (R1) Rf—1 + g (R2) Rf—1

A

N П 2

o- N 2 q n 2

(g (s)

W-1

iLq ([Ri,R2])

г (f

(1 + P)

(R2 - ВД

1 +1

We continue with

(96)

Remark. Theorems 14-16 can easily be converted to results for the ball B (0,R), R > 0. Their corresponding same assumptions will be for f : B (0, R) ^ R which is radial. All we need to do then is set R1 = 0 and R2 = R, and we get a plethora of interesting similar results for the ball that are simpler. Due to lack of space we omit this tedious task.

References

[1] Agarwal R. P., Dragomir S.S. An application of Hayashi’s inequality for differentiable functions. Computers Math. Applic., 1996, no. 6, pp. 95-99.

[2] Anastassiou G. A. Fractional Differentiation Inequalities.Research Monograph. Springer, New York, 2009.

[3] Anastassiou G. A. General Iyengar type inequalities. J. of Computational Analysis and Applications, 2020, vol. 28, no. 5, pp. 786-797.

[4] Xiao-Liang Cheng. The Iyengar-type inequality. Applied Math. Letters, 2001, no. 14, pp. 975-978.

[5] Iyengar K. S. K. Note on an inequality. Math. Student, 1938, no. 6, pp. 75 -76.

[6] Zheng Liu. Note on Iyengar’s inequality. Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat., 2005, no. 16, pp. 29-35.

[7] Qi F. Further generalizations of inequalities for an integral. Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat. 1997, no. 8, pp. 79-83.

[8] Rudin W. Real and Complex Analysis. International Student edition, Mc Graw Hill, London, New York, 1970.

[9] Stroock D. A Concise Introduction to the Theory of Integration. Third Edition, Birkhauser, Boston, Basel, Berlin, 1999.

Received November 20, 2018.

In revised form, March 15, 2019.

Accepted March 18, 2019.

Published online March 27, 2019.

Department of Mathematical Sciences University of Memphis Memphis, TN 38152, U.S.A.

E-mail: ganastss@memphis.edu

i Надоели баннеры? Вы всегда можете отключить рекламу.