Научная статья на тему 'MOTOR COORDINATION, VISUAL FUNCTION AND FUNCTIONAL/ SENSORY VISION TRAINING SYSTEM FOR VOLLEYBALL SPORT'

MOTOR COORDINATION, VISUAL FUNCTION AND FUNCTIONAL/ SENSORY VISION TRAINING SYSTEM FOR VOLLEYBALL SPORT Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
85
20
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
VOLLEYBALL PRACTICES / VISUAL FUNCTION / MOTOR COORDINATION / TRAINING COMPLEX / HEALTH AGENDA

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Khaupshev M.Kh., Bazhev A.Z., Bazhev A.A., Musakaev V.M.

Objective of the study was to test and analyze benefits of a new visual function / motor coordination training system for volleyball players.Methods and structure of the study. We run a yearly test of the visual function / motor coordination training equipment at volleyball sports schools of Kabardino-Balkarian State University and Kabardino-Balkarian State Agrarian University. We sampled for the tests the 9-10 to 19-20 year-old volleyball players (n=208) split up into six Reference Groups (RG) and six Experimental Groups (EG). The sample progress was tested by the direct/ feedback visual function and technical and tactical action accuracy tests.Results and conclusion. Special trainings have proved to contribute up to 30-50% in the visual function / functional vision progress, although the traditional training systems never offer training equipment with a feedback capacity for the data flow accuracy control.The experimental visual function / motor coordination training system for volleyball players was tested highly beneficial for harmonized motor coordination / visual function progress in the Experimental group versus the traditional training system. The new training technology effectively facilitated the visual function / technical and tactical action progress as verified by the individual progress profiles and databases. We recommend the new visual function / motor coordination training system and test data for application in volleyball training service.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MOTOR COORDINATION, VISUAL FUNCTION AND FUNCTIONAL/ SENSORY VISION TRAINING SYSTEM FOR VOLLEYBALL SPORT»

Motor coordination, visual function and functional/ sensory vision training system for volleyball sport

PhD, Associate Professor M.Kh. Khaupshev1 PhD, Associate Professor A.Z. Bazhev1 A.A. Bazhev1

PhD, Associate Professor V.M. Musakaev2 1Berbekov Kabardino-Balkarian State University (KBSU), Nalchik 2Kabardino-Balkarian State Agrarian University named after V.M. Kokov (KBSAU), Nalchik

Corresponding author: haupshev-m@mail.ru

UDC 797.212.4

Abstract

Objective of the study was to test and analyze benefits of a new visual function / motor coordination training system for volleyball players.

Methods and structure of the study. We run a yearly test of the visual function / motor coordination training equipment at volleyball sports schools of Kabardino-Balkarian State University and Kabardino-Balkarian State Agrarian University. We sampled for the tests the 9-10 to 19-20 year-old volleyball players (n=208) split up into six Reference Groups (RG) and six Experimental Groups (EG). The sample progress was tested by the direct/ feedback visual function and technical and tactical action accuracy tests.

Results and conclusion. Special trainings have proved to contribute up to 30-50% in the visual function / functional vision progress, although the traditional training systems never offer training equipment with a feedback capacity for the data flow accuracy control.

The experimental visual function / motor coordination training system for volleyball players was tested highly beneficial for harmonized motor coordination / visual function progress in the Experimental group versus the traditional training system. The new training technology effectively facilitated the visual function / technical and tactical action progress as verified by the individual progress profiles and databases. We recommend the new visual function / motor coordination training system and test data for application in volleyball training service.

Keywords: volleyball practices, visual function, motor coordination, training complex, health agenda.

Background. The visual function and motor coordination training elements in modern volleyball are always relevant for the players' game control and responses that need to be accurate, timely and highly efficient. Volleyball trainings give a special priority to visual function and functional vision i.e. controlled responses in the 'eye-hand, eye-ball, eye-partner' systems. Every action will start from the target being visually fixed in the premotor phase when the response is planned. Special accuracy trainings will develop movement phasing skills starting from the premotor phase for the motor skill stability and success. The visual function is undoubtedly critical for the sport-specific accurate movement controls and, therefore, need to be in special priority in the motor coordination training service elements [1-6, 11].

Motor coordination in the context of the special technical and tactical skills has been studied by many researchers. Volleyball is known to improve the visual function and functional vision in trainings due to the heavy flows of the game data need to be processed by the visual analyzer in rapidly changing game situations. Volleyball players would develop special functional vision with the feel of the court, partner, ball, net, distance, opponent, etc. These sensations tend to excel with trainings and competitions and sag in the idle periods [2, 4, 7, 9, 10, 12].

The visual function - functional vision excelling elements are relatively challenging for the traditional training systems, with the best alternative provided by the training equipment compliant with the K.K. Platonov's training simulator theory [8] and

Theory and Practice of Physical Culture I teoriya.ru I December I № 12 2021

I.P. Ratov's training machine assisted sports motor skill theory [9], and the V.S. Farfel's instant data flow processing principles [10].

Objective of the study was to test and analyze benefits of a new visual function / motor coordination training system for volleyball players.

Methods and structure of the study. We run a yearly test of the visual function / motor coordination training equipment at volleyball sports schools of Kabardino-Balkarian State University and Kabardino-Balkarian State Agrarian University. We sampled for the tests the 9-10 to 19-20 year-old volleyball players (n=208) split up into six Reference Groups (RG) and six Experimental Groups (EG). The sample progress was tested by the direct/ feedback visual function and technical and tactical action accuracy tests.

Results and discussion. Modern volleyball training systems give a special priority to sensory systems dominated by the visual function / functional vision excellence elements, with the motor skill known to be 50-70% dependent on the visual function / functional vision. Special trainings have proved to contribute up to 30-50% in the visual function / functional vision progress, although the traditional training systems never offer training equipment with a feedback capacity for the data flow accuracy control. For visual function / motor coordination progress, the volleyball training systems need to offer combined special signals to train perceptions, motor skill biomechanics, speed and accuracy on a harmonic basis. Such trainings will be focused on the visual signal perception, processing and response i.e. choice of the right 'action program' to attain the goal by special coordinated motor skill. Figures 1 and 2 hereunder give the data flow processing channels for the traditional and experimental motor coordination training models.

Информационные каналы в %

Vision

Vestibular

Информационные каналы в %

Auditory

Musculoskeletal

Tactile

Figure 1. Data flow processing channels (%): traditional volleyball training system

Vision

Vestibular

Auditory

Musculoskeleta

Tactile

Figure 2. Data flow processing channels (%): experimental volleyball training system

We tested the group progress by the Response to Moving Object (RMO) test; electronic reflex-ometer; peripheral (external, upper, lower) visual function by ophthalmic perimeter; binocular (in depth) visual function by the horizontal and linear perimeter visual function tests; and the technical and tactical action accuracy by UMV-2 system using the wall and floor targets. The test tools, methods and rating criteria have proved reliable and objective. The group pre-experimental tests found no significant EG/ RG differences (p1 > 0.05). The progress tests found insignificant (p2 < 0.05) progress in the RG and significant (p2 < 0.01) progress in the EG. The post-experimental tests found significant (p3 < 0.05) progress in the EG versus RG: see Table 1.

The motor skill / technical and tactical action accuracy showed little progress in the RG (p2 < 0.05), versus significant progress in the EG (p2 < 0.01). The post-experimental tests found significant (p3 < 0.05) progress in the EG versus RG. The yearly experimental model resulted in significant progress in the EG (p2 < 0.01) see Table 2.

The group progress in the visual function components and motor coordination showed high effective ness of the tests, with rtk = 0.3 > 0.6 that meets recommendations of well-known scientists. The tests made it possible for us to profile the age group progress. Figure 3 gives the visual function progress test data (p <0.05) and technical and tactical action accuracy test data for the EG (p <0.01). Note the direct high correlation (r=0.531>0.786) of the visual function and technical and tactical action accuracy test rates - indicative of the high visual function contribution to the technical and tactical action accuracy.

http://www.tpfk.ru

Table 1. Group visual function test data

Age subgroups, years

Tests Group 9- 10 11- 12 13 -14

М1±m1 М2±m2 М1±m1 М2±m2 М1±m1 М2±m2

Target shooting accuracy RG 41,4±1,6 45,7±1,6 53,2±1,6 59,4±1,6 57,4±1,6 60,7±1,6 <0,05

EG 42,2±1,6 51,3±1,6 53,6±1,6 67,2±1,6 58,3±1,6 68,3±1,6 <0,01

RMO RG 43,3±3,7 45,4±3,7 48,6±3,7 54,3±3,7 52,1±3,7 56,4±3,7 <0,05

EG 42,3±3,7 49,9±3,7 50,2±3,7 61,1±3,7 53,0±3,7 61,4±3,7 <0,01

Peripheral visual function RG 44,3±1,2 46,5±1,1 49,1±1,2 53,1±1,2 52,1±1,2 55,1±1,2 <0,05

EG 44,1±1,2 51,8±1,2 50,1±1,2 60,3±1,2 52,3±1,1 61,2±1,2 <0,01

Binocular visual function RG 46,3±1,3 48,4±1,3 49,1±1,2 54,9±1,3 51,2±1,2 55,8±1,3 <0,05

EG 46,6±1,2 52,4±1,3 49,2±1,2 60,7±1,3 52,3±1,3 61,8±1,2 <0,01

15 ■16 17- 18 19-20 P2

Target shooting accuracy RG 62,2±1,6 66,0±1,6 66,1±1,6 70,9±1,6 69,4±1,6 73,2±1,6 <0,05

EG 62,6±1,6 71,9±1,6 67,4±1,6 75,8±1,6 70,6±1,6 78,4±1,6 <0,01

RMO RG 54,2±3,7 58,3±3,7 57,3±3,7 61,2±3,7 60,6±3,7 66,4±3,7 <0,05

EG 55,4±3,7 64,0±3,7 58,2±3,7 63,8±3,7 62,3±3,7 71,4±3,7 <0,01

Peripheral visual function RG 54,9±1,2 58,3±1,3 57,6±1,2 64,2±1,2 60,5±1,3 64,6±1,3 <0,05

EG 54,9±1,2 63,5±1,3 58,1±1,3 65,2±1,3 60,7±1,3 70,5±1,3 <0,01

Binocular visual function RG 53,7±1,3 58,8±1,2 58,3±1,3 63,4±1,2 62,0±1,3 67,2±1,3 <0,05

EG 54,9±1,2 63,9±1,2 59,4±1,2 68,9±1,3 63,0±1,3 73,7±1,3 <0,01

Significance rate p1>0,05 p3<0,05 p1>0,05 p3<0,05 p1>0,05 p3<0,05

Table 2. Group technical and tactical action accuracy test data

Age subgroups, years

Tests Group 9- 10 11- 12 13 -14 P2

М1±m1 М2±m2 М1±m1 М2±m2 М1±m1 М2±m2

Attack RG 22,0±4,4 27,7±3,9 25,8±3,9 33,5±3,4 28,6±3,8 34,3±3,0 <0,05

EG 22,1±4,3 31,8±3,2 23,8±3,9 40,0±2,9 28,9±3,8 37,8±3,1 <0,01

Defense RG 18,4±3,7 22,7±5,4 20,8±3,2 27,6±3,8 23,2±3,3 29,1±3,8 <0,05

17,8±3,9 26,8±5,4 20,5±3,2 32,9±3,6 23,0±3,3 34,0±3,9 <0,01

15 ■16 17- 18 19-20 р2

Attack RG 31,2±3,5 37,3±3,8 34,3±3,1 40,6±2,9 38,2±3,1 43,9±2,9 <0,05

EG 31,7±3,5 42,2±3,2 35,2±3,1 47,3±2,9 38,5±3,1 50,2±2,9 <0,01

Defense RG 26,0±3,0 31,1±3,9 28,6±2,8 34,8±3,8 31,7±3,3 37,3±3,8 <0,05

25,6±3,2 34,4±3,9 28,1±2,8 39,9±3,9 31,0±3,1 41,5±3,6 <0,01

Significance rate p1>0,05 p3<0,05 p1>0,05 p3<0,05 p1>0,05 p3<0,05

60 50 40 30 20 10 0

Technical •and tactical action accuracy

Visual "function

Years old

9-10 11-12 13-14 15-16 17-18

19-20

Figure 3. Age-specific progresses in the visual function and technical and tactical action accuracy for the EG

Theory and Practice of Physical Culture I teoriya.ru I December I № 12 2021

* 3,

SPORTS TRAINING

Conclusion. The experimental visual function / motor coordination training system for volleyball players was tested highly beneficial for harmonized motor coordination / visual function progress in the EG versus the traditional training system. The new training technology effectively facilitated the visual function / technical and tactical action progress as verified by the individual progress profiles and databases. We recommend the new visual function / motor coordination training system and test data for application in volleyball training service.

References

1. Ashanin V.S., Golosov P.P., Gorbatenko YI. Computer technologies for diagnosing accuracy of athletes' motor actions. Kharkov, KSAPC publ.. 2010.

2. Botyaev V.L. Theoretical substantiation and selection of tests to assess athletes' abilities in complex coordination sports. Teoriya i praktika fiz. kultury. 2012. No. 4. pp. 86-89.

3. Zimkin N.V. Sensomotor and motor skills in sports. Leningrad, 1973. 21 p.

4. Ivoylov A.V. Precision movements in sports games. Collected works. Volgograd: VSIPC publ., 1986. 132 p.

5. Kekhayov A.N. Space, time, movement: vestibular, visual and auditory perceptions. Sofia: Meditsina i fizkultura publ., 1978. 43 p.

6. Komarov V.A. Correlation of spatial accuracy of movements and conditions of motor and visual afferentation in school-age children. PhD. dis. abstract. Moscow, 1973. 22 p.

7. Nazarenko L.D. Stimulated development of basic motor coordination in schoolchildren of different ages. Moscow, 2003. 401 p.

8. Platonov K.K. Psychological issues of simulator theory. Voprosy psikhologii. 1961. No. 4. pp. 77-87.

9. Ratov I.P. Study of sports movements and technical ways to manage changes in their characteristics. Doctoral diss. (Hab.). SCIPE publ.. Moscow, 1972. 909 p.

10. Farfel V.S. Motion control in sports. Moscow: Sovetskiy sport publ, 2011. 202 p.

11. Khaupshev M.Kh. Sensory-motor sensitivity in coordination of sports movements. Olymp-ism and Olympic Movement. World Congress. Kiev, 2010.

12. Shestakov M.P., Averkina A.N. Simulation of human movement control. Collected works. Moscow, SportAkademPress publ., 2003. 360 p.

http://www.tpfk.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.