ОРИГИНАЛЬНЫЕ СТАТЬИ
оригинальные статьи
3
UDC: 616-073.576.8:616.711.6
Sevline Estethia (M.D.), Rully Hanafi Dahlan (M.D.), Farid Yudoyono (M.D.),
M.Z. Arifin (M.D., Ph.D.), Achmad Adam (M.D., Ph.D.), Ristaniah D. Soetikno (M.D., Ph.D.)
Padjadjaran University, Hasan Sadikin General Hospital, Bandung, Indonesia
MORPHOMETRIC ANALYSIS OF TYPICAL SUBAXIAL CERVICAL SPINE PEDICLE IN AXIAL PLANE AS A PREOPERATIVE EVALUATION FOR PEDICLE SCREW
INSERTION USING CT SCAN
Background. Any abnormalities in subaxial typical cervical vertebrae could cause functional disorder and/or instability. Instrumentation can be applied to overcome the instability, such as pedicle screw insertion. Pedicle screw insertion in typical subaxial cervical spine is technically demanding due to its pedicle dimension. This study is designed to measure the anatomical morphometric of typical subaxial cervical pedicle in Hasan Sadikin hospital as a preoperative evaluation to avoid the complication in that procedure.
Materials and methods. This study is a cross sectional study in patient who needs a CT scan examination in Neurosurgery Department Hasan Sadikin Hospital, and the image will be reconstructed using OsiriX software. Right and left pedicle length, pedicle width, projection line in pedicle screw insertion, interbifid line and pedicle transverse angle were measured in each level of C3 to C6.
Results. There were 31 patients' CT scan that included in the study, in which 19 were male and 12 were female with mean age was 39,12 years ± 9,73. The highest mean of pedicle length and pedicle width was in C6, with 5,31 mm and 5,41 mm respectively. The highest number of projection line in pedicle screw insertion in axial plane was in C6, 32,43 mm. Pedicle transverse angle in mediolateral angle for pedicle screw insertion showed variations range from 42,7° to 43,9° with the widest angle was in C4. Bivariate analysis showed that each segment of cervical vertebrae and gender determine the pedicle dimensions and pedicle screw insertion with p value < 0,05.
Conclusion. The pedicle dimension in typical subaxial cervical spine in our centre has a different measurement in each segment of subaxial typical cervical vertebrae and between male and female, so the knowledge of anatomical variations is needed for the operation technique and instrument size to avoid neurovascular injury in typical subaxial cervical pedicle screw operation.
Keywords: morphometric, cervical, subaxial, pedicle, pedicle screw
Introduction
The main indication for posterior approach in subaxial cervical spine instrumentation is instability. The techniques in posterior approach vary from the simple wiring technique to the bony fusion with screw insertion. Lateral mass screw and pedicle screw have been used extensively in subaxial cervical spine with their own advantages and limitations. Cervical pedicle screw insertion provides optimal stability in biomechanic aspects, but due to the small subaxial cervical pedicle dimension, the insertion becomes more challenging and difficult and associated with potential risk of neurovascular injury. [1, 2, 3] Nakashima (2012) reported complications due to cervical pedicle screw insertions such as screw malposition, vertebral artery injury, nerve root injury, and mechanical failure. [4] Another study was performed by Yukawa (2009) reported 28 screw malposition from 153 screw in subaxial cervical pedicle screw insertions. [5] Those complications can be reduced by using computer-guided navigation system
during surgery, but our centre has not been equipped with those technologies, so a preoperative plan and determination of the pedicle angles are mandatory for cervical pedicle screw placement. [3]
Materials and methods
This study is a prospective, cross-sectional, single-center study conducted in patients over 18 years of age, who filled the indication for cervical CT scan imaging with no history of trauma, cervical spine congenital anomaly, malignancy, previous cervical spine surgery and in pregnancy. There were 31 patients, in whom a cervical CT scans were performed and filled those criterias, were asked for their consent to be included in the study. Patient selection was obtained from the outpatient clinic of Neurosurgery Department, and the CT scan imaging was performed in Radiology Department, Padjadjaran University, Hasan Sadikin Hospital, Bandung. This study was reviewed and approved for its ethical clearance by the Health Research Ethics Commitee, Faculty of Medicine Padjadjaran University.
Achmad Adam, e-mail: achmadadam@yahoo.com
4 ^ HEMPOXMPyPma M HEBPOflOmfl KA3AXCTAHA №2 (43), 2016
Cervical CT scans were performed constantly by one operator to avoid the technical mistake during imaging with 0.5 mm slice thickness. The axial plane reconstructions were obtained using OsiriX® software for each level typical subaxial cervical pedicles, i.e. C3, C4, C5 and C6 and all the paired parameters were measured on the right and left side. The cervical pedicle parameters we measured in axial plane were following :
• Pedicle length (PL), distance between the anterior surface of the superior articular facet and the posterior limit of the body.
• Pedicle width (PW), distance between the medial and lateral borders of the pedicle.
• Interbifid line (IBL), distance at the midline of the most anterior surface vertebral body to the midline of the most posterior surface bifid spinous process.
• Projection line of pedicle screw (PPS), distance from the outer part of the lateral mass to the midline of the most anterior surface vertebral body through the middle part of pedicle.
• Pedicle transverse angle (PTA), angle between the projection line of pedicle screw (PPS) and interbifid line (IBL).
Figure 1 - Anatomical parameters measurements on axial plane using OsiriX® software
All the measurements have been calculated and tabulated for their mean, standard deviation, and range of variations. Statistical analysis comparing two groups in evaluating the right and left side or gender variations were using unpaired t-test on normal distribution data and Mann Whitney test for nonnormal distribution data. Meanwhile, in comparison of more than two groups, ANOVA test was used on normal distribution data and Kruskall Wallis test for non-normal distribution data. The level significance was chosen at p < 0,05. All the statistical analysis was done using SPSS ver. 21.0.
Results
There were 31 persons included in this study, 19 were male (61,3%) and 12 were female (38,7%)
with mean age is 39.1290 with standard deviation 9,73907. We measured the parameters in each segment of subaxial typical cervical vertebrae and the pedicle length from C3 until C6 in milimeters were 5.046677, 5.071935, 5.232435, 5.314065, respectively. Those values are larger from rostral to caudal and statistically significant with p value =0.0070 (p value <0.05). The same result was showed in pedicle width measurements from C3 to C6 were 4.619048, 4.668419, 4.978435, 5.418823, respectively and statistically significant with p value = 0.0001 (p value < 0.05). Interbifid lines in C3 to C6 were 30.39, 39.426129, 42.032581, 48.505806, respectively and statistically significant with p value = 0.0001 (p value < 0.05). Projection lines of pedicle screw in C3 to C6 were 30.39, 30.761713, 32.175161, 32.433226, respectively, and statistically significant with p value = 0.0001 (p value < 0.05). The pedicle transverse angle showed the different tendency which the largest was in C3 and the narrowest was in C6, but not statistically significant with p value = 0.2980 ( p value > 0.05). Those measurements are listed in Table 1.
We measured all the variables in each level of subaxial typical cervical vertebrae and we compared in each sides, right and left. This measurement is important for size determination and the technique in both sides. In C3 level, there was no statistically significance differences for pedicle length, pedicle width, projection line of pedicle screw, and pedicle transverse angle with p value > 0.05. The measurements are listed in table 2. In C4 level, there was no statistically significance differences for pedicle length, pedicle width, projection line of pedicle screw, and pedicle transverse angle with p value > 0.05. The measurements are listed in table 3. In C5 level, there was no statistically significance differences for pedicle length, pedicle width, projection line of pedicle screw, and pedicle transverse angle with p value > 0.05. The measurements are listed in table 4. In C6 level, there was no statistically significance differences for pedicle length, pedicle width, projection line of pedicle screw, and pedicle transverse angle with p value > 0.05. The measurements are listed in table 5.
We made a comparison in pedicle dimensions (pedicle length and width) from sex groups in each side, right and left, and we found that pedicle dimensions in male are larger than in female. This trend was not only the same in right side and left side, but also showed the significancy with p value < 0.05. The mean pedicle length in male group was 5.3395 mm on the right side and 5.3343 mm on the left side. The mean pedicle width in male group was 5.1159 mm on the right side and 5.1245 mm on the left side. Female group showed the smaller size, in which the mean pedicle length was 4.8833 mm on the right side and 4.9219 mm on the left side. The mean pedicle width was 4.6288 mm on the right side and 4.5834 mm on the left side. The results are listed in table 6.
ОРИГИНАЛЬНЫЕ СТАТЬИ ^ 5
Table 1
Morphometric data results of subaxial typical cervical vertebrae in each segment
Variables C3 C4 C5 C6 P-value
Mean SD Mean SD Mean SD Mean SD
Pedicle width 4.619048 ±0.6023345 4.668419 ±0.5090357 4.978435 ±0.4479440 5.418823 ±0.7021513 0.0001**
Projection line of pedicle screw 30.390000 ±1.4447735 30.761613 ±1.7136350 32.175161 ±2.2774992 32.433226 ±2.2681116 0.0001**
Interbifid line 30.390000 ±2.4189568 39.426129 ±2.7456920 42.032581 ±3.0105979 48.505806 ±4.0554390 0.0001**
Pedicle transverse angle 42.727790 ±3.2459851 43.960258 ±3.4864375 43.292258 ±4.0237947 43.170548 ±3.6552725 0.2980
Pedicle length 5.046677 ±0.5220500 5.071935 ±0.4831692 5.242435 ±0.4187067 5.314065 ±0.5715760 0.0070**
Note :We used ANOVA test to measure the p value in numerical data if it is within normal distribution and Kruskall Wallis test if it is not normal distribution. We used Chi-Square and alternatively Kolmogorov-Smirnof to measure p value in categorical data. Significancy is achieved for p value < 0.05. ** statistically significant
Table 2
Morphometric data results in C3 vertebrae with comparison in right and left side
Variables Mean Range SD P-value
Minimum Maximum
PEDICLE WIDTH (mm) 0.516
Right 4.669258 3.2560 5.9910 ±0.5.9910
Left 4.568839 3.3130 5.8330 ±0.5778253
PROJECTION LINE OF PEDICLE SCREW (mm) 0.495
Right 30.440968 27.1100 33.0500 ±1.4084799
Left 30.339032 26.9700 35.4200 ±1.5017109
PEDICLE TRANSVERSE ANGLE (degree) 0.342
Right 43.194387 32.1000 49.3030 ±3.2667840
Left 42.261194 33.1160 46.5340 ±3.2097095
PEDICLE LENGTH (mm) 0.871
Right 5.035806 3.8430 6.1100 ±0.5002250
Left 5.057548 3.8650 6.1850 ±0.5510786
Note: We used paired-t-test to determine the p-value in numerical data if it is in normal distribution and Mann-Whitney test if it is not in normal distribution. Significancy is achieved if p-value < 0.05.
Table 3
Morphometric data results in C4 vertebrae with comparison in right and left side
Variables Mean Range SD P-value
Minimum Maximum
PEDICLE WIDTH (mm) 0.883
Right 4.658806 3.3650 5.6130 ±0.5113278
Left 4.678032 3.7320 5.8950 ±0.5149997
PROJECTION LINE OF PEDICLE SCREW (mm) 0.142
Right 30.440968 27.1100 33.0500 1.4084799
Left 31.082258 26.9300 36.0900 1.9428531
PEDICLE TRANSVERSE ANGLE (degree) 0.359
Right 44.370000 36.7500 50.6180 3.5276026
Left 43.550516 35.5730 49.9930 3.4532185
PEDICLE LENGTH (mm) 0.825
Right 5.085677 4.0580 5.9190 ±0.4919221
Left 5.058194 4.0140 5.8180 ±0.4819846
Note: We used paired-t-test to determine the p-value in numerical data if it is in normal distribution and Mann-Whitney test if it is not in normal distribution. Significancy is achieved if p-value < 0.05.
НЕЙРОХИРУРГИЯ И НЕВРОЛОГИЯ КАЗАХСТАНА №2 (43), 2016
Table 4
Morphometric data results in C5 vertebrae with comparison in right and left side
6
Variables Mean Range SD P-value
Minimum Maximum
PEDICLE WIDTH (mm) 0.816
Right 4.965000 4.0770 5.8450 ±0.4390981
Left 4.991871 4.2040 5.9290 ±.4634824
PROJECTION LINE OF PEDICLE SCREW (mm) 0.560
Right 32.345484 26.4300 36.8300 2.4165166
Left 32.004839 26.6100 35.5900 2.1557827
PEDICLE TRANSVERSE ANGLE (degree) 0.405
Right 43.722226 34.6600 53.4400 4.4553314
Left 42.862290 34.9600 47.9010 3.5622322
PEDICLE LENGTH (mm) 0.821
Right 5.230258 4.2010 6.0170 ±0.4282519
Left 5.254613 4.4680 6.1570 ±0.4156542
Note: We used paired-t-test to determine the p-value in numerical data if it is in normal distribution and Mann-Whitney test if it is not in normal distribution. Significancy is achieved if p-value < 0.05.
Table 5
Morphometric data results in C6 vertebrae with comparison in right and left side
Variables Mean Range SD P-value
Minimum Maximum
PEDICLE WIDTH (mm) 0.977
Right 5.416226 4.3890 7.5230 ±0.7108253
Left 5.421419 4.3020 7.6980 ±0.7051102
PROJECTION LINE OF PEDICLE SCREW (mm) 0.609
Right 32.582258 27.3400 37.1600 2.2068042
Left 32.284194 26.7600 38.0100 2.3546235
PEDICLE TRANSVERSE ANGLE (mm) 0.462
Right 43.515290 35.5080 54.6850 4.0489812
Left 42.825806 35.9130 49.8980 3.2446164
PEDICLE LENGTH (mm) 0.847
Right 5.299903 4.0000 6.5100 ±0.5778506
Left 5.328226 4.0610 6.5400 ±0.5744235
Note: We used paired-t-test to determine the p-value in numerical data if it is in normal distribution and Mann-Whitney test if it is not in normal distribution. Significancy is achieved if p-value < 0.05.
Table 6
Morphometric data results in pedicle dimension on right and left side with comparison in male and female groups
Variable Sex Groups Mean SD P-value
RIGHT PEDICLE LENGTH Male 5.3395 ±0.30693 0.001**
Female 4.8833 ±0.40677
RIGHT PEDICLE WIDTH Male 5.1159 ±0.38833 0.001**
Female 4.6288 ±0.26577
LEFT PEDICLE LENGTH Male 5.3343 ±0.34124 0.004**
Female 4.9219 ±0.36143
LEFT PEDICLE WIDTH Male 5.1245 ±0.39329 0.0001**
Female 4.5834 ±0.26643
Note: We used paired-t-test to determine the p-value in numerical data if it is in normal distribution and Mann-Whitney test if it is not in normal distribution. Significancy is achieved if p-value < 0.05.
DISCUSSION
The cervical pedicle screw insertion provides the more superior biomechanical stability compared to lateral mass screw fixation and wiring techniques but remains a demanding technique due to the small pedicle in subaxial cervical spine and the potential risks of iatrogenic damage to the neuerovascular
structures.[1, 2, 3, 6, 7] The knowledge of the anatomy of cervical pedicles and its morphometric variations can reduce the risks and helpful for the pedicle screw entry, trajectory, and screw size.[8,9] Morphometric measurements based on CT scans are more efficient in determining pedicle dimensions than manual calliper measurements, because CT scan could avoid
ОРИГИНАЛЬНЫЕ СТАТЬИ
the possible deviations by post-mortem changes such as dehydration and altered tonus of the soft tissue. [8] Fluoroscopic imaging intraoperatively may assess the screw precision in sagittal view but not that much for evaluating screw trajectory and angle in axial plane. The combination of sagittal view assessment intraoperatively by fluoroscopic with the axial view measurements preoperatively by imaging will provide the higher succeed rate in non-computer guided or freehand technique of cervical pedicle screw insertion. [10, 11]
Pedicle dimensions were measured in two dimentional images from CT scan in this study with pedicle lengths were 5,04 mm, 5,07 mm, 5,24 mm,
and 5,3 mm from C3 to C6, respectively. The pedicle widths were 4,6 mm, 4,6, mm, 4,9 mm, 5,4 mm from C3 to C6, respectively. Those results are similar with the literatures and previous studies, which are the pedicles dimension increase from rostral to caudal, due to the overall anatomical size of cervical spine is larger from rostral to caudal. [3, 7, 8, 9, 10, 11, 12, 13, 14, 15] We listed the previous morphometric measurements with our findings. The pedicle dimensions in our population (Indonesian) tends to be smaller in size than the population from Northeastern Mexico, China, And Mexican population. [8, 9, 12] We describe our findings and the previous studies in table 7 and table 8 for pedicle dimensions morphometric data.
Table 7
Previous studies and this study in pedicle length morphometric measurements
Studies (year) Pedicle Length ( Mean ± SD)
C3 C4 C5 C6
Right Left Right Left Right Left Right Left
Bazaldua (2011) 5,27 ± 1,39 5,25 ± 0,81 4,71 ± 1,24 3,80 ± 1,00
Banerjee (2012) 5,03±0,83 4,51±1,02 5,01±0,91 4,62±0,92 5,37±0,91 4,91±1 5,54±0,92 5,04±0,96
This study (2015) 5,03±0,5 5,05±0,5 5,08±4,05 5,05±4,01 5,23±0,42 5,25±0,41 5,29±0,57 5,32±0,57
Table 8
Previous studies and this study in pedicle length morphometric measurements
Studies (year) Pedicle Width ( Mean ± SD)
C3 C4 C5 C6
Right Left Right Left Right Left Right Left
Bazaldua (2011) 5,14 ± 2,22 6,07 ± 1,08 5,77± 0,98 6,53 ± 1,17
Banerjee (2012) 4,71 ±0,81 4,89 ±0,88 4,76 ±0,83 4,87 ±0,78 4,98 ±0,78 5,09 ±0,72 5,34 ±0,82 5,42 ±0,82
Chen (2013) 6,14±0,84 6,02±0,74 6,19±0,82 6,08±0,69 6,60±0,83 6,43±0,88 6,99±0,71 6,91±0,76
This study (2015) 4,66 ±0,5 4,56 ±0,57 4,65 ±0,51 4,67±0,51 4,96±0,43 4,99±0,46 5,41±0,71 5,42±0,70
The projection line of pedicle screw insertion in typical subaxial cervical spine in this study tend to be larger from rostral to caudal both on the right and left side, due to the increasing of cervical spine size from rostral to caudal. This projection line plays important role in screw length selection to obtain the optimal fixation without excessive penetrates the anterior part of vertebral body. The difference length of this line on the right and left side did not statistically significant in our study. In general, the safety range of screw length which is used in typical subaxial cervical pedicle is 20 mm - 22 mm to minimize the vertebral body penetration. [8] Biomechanic study shows screw length selection should be two-third from the length of screw insertion distance on the axial plane. [17] Based on that measurements, we found that the safe screw length for our patients is 20,26 mm - 21,62 mm which is on the safe margin based on the literature.
Pedicle transverse angle is useful to determine the trajectory of screw insertion on axial view. We found the largest transverse angle on C4 (43,9°) and the smallest on C3 (42,7°). The angle did not show the same pattern like the pedicle dimension that was larger from rostral to caudal. Previous studies showed variations about this angle. Chen (2013) said that the narrowest axial angle was in C7, 32,36° and the largest was in C3, 47,79°. Some studies said the tendency of
this angle is decreased from the C3 to C7, with the consistent value from the C3 to C5, but the noticeable differences are in C6 and C7, possibly due to pedicle cohesion. [8] Those results are not similar with our findings, that the largest angle was in C4 and the value was not consistent. The exact determination of the entry point and angle of direction for the pedicle screw instrumentation has not been assigned. Anatomical landmark has been used widely to define the entry point and screw trajectory. Albumi (1999) said the screw entry point should be slightly lateral from the centre of articular mass and just about the inferior articularis process of the upper level from the level which is aimed to be instrumented. [18] Tomasino et al. found the entry point of vertebral artery was generally at transverse foramen C6 and the lateral pedicle angle was narrow at this level. [6] Chanplakorn (2014) performed cervical CT scan evaluation and revealed that no significance variety in pedicle screw angle insertion in axial plane, though the pedicle dimensions are statistically significant. [7] The great variety of pedicle transverse angle should be considered carefully due to the operation technique that might put the neurovascular structures in the highly risk of injury. The success rate of cervical pedicle screw will be achieved if the angle in axial plane and sagittal plane can be combined. Preoperative evaluation
using two dimensions imaging in measurements of mediolateral angle in axial plane is a mandatory if the instrumentation will be performed with no computer-based technique. [5, 10, 11] Based on the previous studies and our findings, it is suggested that this angle in axial plane for pedicle screw insertion should be adressed individually using the imaging studies.
The morphometric data of subaxial typical cervical vertebrae in this study showed no significant differences in this study on the right and left sides in each segments. Our findings are similar with the previous studies, so there is no spesific differences in operation technique on the right or left sides when applying pedicle screw instrumentation in typical subaxial cervical vertebrae. [7, 8, 13, 17, 19]
We compared the parameters both in males in females group and the result is similar with the previous studies which is males' pedicles are found to be larger than females' pedicles. The differences in pedicle dimensions for both sex groups are statistically significant, in which male groups are larger than female groups. Those findings are similar with the previous studies. [7, 9, 12, 13, 19] Those results are important in instrument size selection for our patients, in which the mean pedicle length is 5,3 mm and the mean pedicle width is 5,1 mm for the male group both on the right and left side. The pedicle
dimensions in female group tend to be smaller with the mean pedicle length is 4,8 mm on the right side and 4,9 mm on the left side, the mean pedicle width is 4,6 mm both on the right and left side. Those pedicle dimension, especially pedicle width size is very important to determine screw diameter. Some literatures suggest the safe range of screw diameter to avoid the pedicle breakage is between 3,5 mm to 4,5 mm. [11, 17] Chen suggested the risk of pedicle wall perforation will increase if the pedicle width less than 4,5 mm. Biomechanic test showed the minimal pedicle width size for the suitable rigid fixation is 3,5 mm.[8]
Our study limitation is we did not evaluate the sagittal and coronal plane, so that the data analysis will be practically useful for the operation technique accuracy and the data will reflects the better analysis in multiplanar sections.
Conclusion
The morphometric analysis of pedicle dimensions in typical subaxial cervical vertebrae are larger from rostral to caudal but the angles of pedicle screw insertion in mediolateral or axial plane are adressed individually. The morphometric data is useful to determine the screw size selection and to increase the accuracy of operation technique especially in the centre which the computer-based intraoperative imaging has not been used.
REFERENCES
1. Wolfa C. Miller M. L. 2011. Posterior Subaxial and Cervicothoracic Instrumentation. Dalam : Winn, R. H. (penyunting). "Youmans Neurological Surgery 6th edition". hlm 3045-3050. USA; Elsevier.
2. Yoshihara H. Passias P.G. Errico T.J. 2013. Screw-related Complications in the Subaxial Cervical Spine with the Use of Lateral Mass Versus Cervical Pedicle Screws. J Neurosurg Spine 19 : 614-623.
3. Richte M. Cakir B. Schmidt R. 2005. Cervical Pedicle Screws : Conventional versus ComputerAssisted Placement of Cannulated Screws. SPINE 2005 30 (2); 2280-2287.
4. Nakashima H. Yukawa Y. , dkk. 2012. Complications od Cervical Pedicle Screw Fixation for nontraumatic lesions : a multicenter study of 84 patients. J Neurosurg Spine 16:238-247.
5. Yukawa Y. Kato F., dkk. 2009. Placement and Complications of Cervical Pedicle Screws in 144 Cervical Trauma Patients Using Pedicle Axis View Techniques by Fluoroscope. Eur Spine J. 18 (9); 1293-1299.
6. Tomasino A. Parikh K. Koller H. Zink W. Tsiouris J. Steinberger J. Harti R. The Vertebral Artery and the Cervical Pedicle : Morphometric Analysis of a Critical Neighborhood. J Neurosurg Spine 13 (2010) : 52-60.
7. Chanpalakom P. Kraiwattanapong C. Aroonjarattham K. Leelapattana P. Keorochana
G. Jaovisidha S. Wajanavisit W. Morphometric Evaluation of Subaxial Cervical Spine Using Multi-Detector Computerized Tomography (MD-CT) scan : the consideration for cervical pedicle screws fixation. BMS Musculoskeletal Disorders 15 (2014) : 125-135
8. Chen C. Ruan D. Wu C. Sun P. Zhang Y. Wu J. Lu S. Ouyang J. CT Morphometric Analysis to Determine the Anatomical Basis for the Use of Transpedicular Screws during Reconstruction and Fixations of Anterior Cervical Vertebrae. PLOSONE Vol 8 Issue 12(2013) : 1-10.
9. Vargas-Mena. Lopez G. Lopez P. Trejo A. Toledo C. Morphometric Analysis of Cervical Pedicles in a Mexican Population. Acta Orthopedica Mexicana 25 (6) 2011 : 366-370.
10. Jost G. F. Bisson E.F. Schmidt M.H. 2012. Computed tomography-based Determination of a Safe Trajectory for Placement of Transarticular Facet Screws in the Subaxial Cervical Spine. J Neurosurg Spine 16 : 334-339.
11. Ludwig S.C. Kramer D. L. Balderston R.A. Vaccaro A. R. Foley K. F. Albert T. J. Placement of Pedicle Screws in the Human Cadaveric Cervical Spine : Comparative Accuracy of Three Techniques. SPINE Vol 25 No 13 (2000) : 1655-1667.
12. Bazaldua C. J. J. Gonzalez L.A. Gomez S. A., dkk. 2011. Morphometric study of Cervical Vertebrae C3-C7 in a Population from Northeastern Mexico. Int J. Morphol. 29 (2) : 325 - 330.
ОРИГИНАЛЬНЫЕ СТАТЬИ
13. Banerjee P. S. Roychoudhury A. Karmakar S. K. 2012. Morphometric Analysis of the Cervical Spine of Indian Population by using Computerized Tomography. J Med Allied Sci 2012 2 (2) ; 66-76.
14. German, J.W. Ghayanem, A.J. Benzel, E.C. Alexander, J.T. 2005. The Cervical Spine and Cervicothoracic Junction. Dalam : Benzel E.C (penyunting). "Spine Surgery : Techniques, Complication, Avoidance, and Management 2nd edition" hlm 269-280. USA; Elsevier.
15. Reinsel, T. Krag, M. 1994. Cervical spine biomechanics. Dalam : An, H. Simpson, J.M. (penyunting). "Surgery of the Cervical Spine", hlm 74-93. USA; William and Wilkins
16. Moulton M. J. R. Vaccaro A. R. 2003. Cervical Pedicle Screw Placement. Dalam : Vaccaro A. R.
Albert T. J. (penyunting). "Spine Surgery Tricks of the Trade". Hlm 28-29. New York; Thieme.
17. Steinmetz M. Kager C. Benzel E.C. 2005. Spondylotic Myelopathy with Cervical Kyphotic Deformity. Dalam : Benzel E.C (penyunting). "Spine Surgery : Techniques, Complication, Avoidance, and Management 2nd edition" hlm 2126-2135. USA; Elsevier.
18. Albumi K. Takada T. Shono Y. Keneda K. Fujiya M. 1999. Posterior Occipitalcervical Using Cervical Pedicle Screws and Plate-Rod System. Spine 24 : 1425-1434.
19. Karaikovic E.E. Daubs M. D. Madsen R.W. Gaines R.W Jr. 1997. Morphologic Characteristics of Human Cervical Pedicles. Spine (Phila Pa 1976) 22 (5) : 493-500.
Т/ЙНДЕМЕ
Sevline Estethia (M.D.), Rully Hanafi Dahlan (M.D.), Farid Yudoyono (M.D.),
M.Z. Arifin (M.D., Ph.D.), Achmad Adam (M.D., Ph.D.), Ristaniah D. Soetikno (M.D., Ph.D.)
Padjadjaran University, Hasan Sadikin General Hospital, Bandung, Indonesia
ОМЫРТКАНЫЦ МОЙЫН БЭЛ1ПНЩ СУБАКСИАЛДЫ ТРАНСПЕДИКУЛЯРЛЫ ФИКСАЦИЯСЫН ОПЕРАЦИЯ АЛДЫ ЖОСПАРЛАУ УРД1С1НДЕ АКСИАЛДЫ ПРОЕКЦИЯДАГЫ ОМЫРТК.А ТАРМАК.ТАРЫНЫЦ КОМПЬЮТЕРЛ1К ТОМОГРАФИЯСЫНЫЦ МОРФОМЕТРЛ1К ТАЛДАУЫ
Юркпе. Омыртканыц мойын белтнщ субаксиалды турл патологиялары сегменттщ тураксызды^ы жэне/немесе функционалды бузылыстарыныц туындауына экелуi mymkíh. Тураксыздыкты ецсеру Yшiн омыртканыц арткы фиксациясы, соныц шЫде транспедикулярлык фиксация колданылуы mymkíh. Омыртканыц мойын белтнщ субаксиалды тYрiнiк транспедикулярлык фиксациясы тармактардыц мелшерлерЫщ эртYрлiлiгiне байланысты техникалык кYрделi болып табылады. АталFан зерттеудщ максаты аталFан процедурамен байланысты аскынуларды болдырмау Yшiн операция алдындаFы субаксиалды омыртканыц мойын белИнщ омыртка тармактарыныц стандартты анатомиялык морфо-метрлк сипаттамаларын шыFару болып табылады.
Материалдар мен эдктер. АталFан зерттеу Hasan Sadikin ауруханасыныц нейрохирургиялык белiмшесiндегi КТ бакылауына муктаж пациенттщ кросс-секциялык зерттеут усынады. КТ суретi OsiriX баFдарламалык камтамасыз ету кемегiмен кайта курылатын болады. Тармактыц оц жак жэне сол жак узындыFы, оныц еы, транспедикулярлык винтке енп-зудегi проекция сызь^ы, iшкi жарыкшактану сызыFы жэне тармактыц келденец кесiндiсi С3-тен С6^а дейiнгi барлык децгейлерде елшендi.
Нэтижелерк 31 пациенттiц КТ сканер-лерi зерттеуге енгiзiлдi, олардыц орташа жасы
39,12 ± 9,73 жыл. Олардыц арасында 19 ер адам жэне 12 эйел адам. С6-да сэйкес тармактыц орташа узынды^ы жэне ен 5,31 мм жэне 5,41 мм к,урады. Транспедикулярлык винттщ осьтк кесiк жалпакты^ына енгiзудегi проекция сызыктарыныц кeптiк саны С6, 32,43 мм болды. Транспедикулярлык винт Yшiн медиалатералдык б¥рыштаFы тармактыц келденец бурышы 42,7° ден 43,9° дейт С4 кец бурышын диапазонындаFы eзгерiстердi кeрсеттi. Ею eлшемдi талдау омыртканыц мойын белтнщ эрбiр сегментi жэне жынысына карай тармактыц мелшерт жэне транспедикулярлык винтпц р <0,05 маFынасына карай косылатындь^ын анык-тайтындыFын кeрсеттi.
Корытындысы. Омыртканыц эдеттеп су-босьтiк мойын бeлiгiндегi тармаFыныц мeлшерi бiздiц орталыFымызда эртYрлi мeлшерде, эйел мен еркектiц арасындаFы омыртканыц эдеттегi субосьтiк мойын бeлiгiндегi эрбiр сегментте мeлшерi эртYрлi, сол себепт анатомиялык айырмашылыктарды бiлу транспедикулярлык винтпен омыртканыц эдеттеп субосыж мойын бeлiгiне операция жасау кезiнде нерв-тамырлы закымданулар болмас Yшiн операция техникасын жэне аспап мeлшерiн тацдау Yшiн кажет.
Негiзгi сездер: Морфометрлiк, омыртканыц мойын бeлiгi, субосьтiк, тармак, транспедикулярлык винт.
РЕЗЮМЕ
Sevline Estethia (M.D.), Rully Hanafi Dahlan (M.D.), Farid Yudoyono (M.D.),
M.Z. Arifin (M.D., Ph.D.), Achmad Adam (M.D., Ph.D.), Ristaniah D. Soetikno (M.D., Ph.D.)
Padjadjaran University, Hasan Sadikin General Hospital, Bandung, Indonesia
МОРФОМЕТРИЧЕСКИЙ АНАЛИЗ КОМПьЮТЕРНОЙ ТОМОГРАФИИ
ножек позвонков, в аксиальной проекции, в процессе
ПРЕДОПЕРАЦИОННОГО ПЛАНИРОВАНИЯ ТРАНСПЕДИКУЛЯРНОЙ ФИКСАЦИИ СУБАКСИАЛьНОГО ШЕЙНОГО ОТДЕЛА ПОЗВОНОЧНИКА
Введение. Различные патологии субаксиального шейного отдела позвоночника могут вызвать функциональные нарушения и/или нестабильность сегмента. Для преодоления нестабильности может быть использована задняя фиксация позвоночника, в частности транспедикулярная фиксация. Транспе-дикулярная фиксация в субаксиальном шейном отделе позвоночника является технически сложной из-за размеров ножки. Целью данного исследования является, выявление стандартных анатомических морфометрических характеристик ножек позвонков в субаксиальном шейном отделе позвоночника в предоперационном обследовании, для избежания осложнений связанных с данной процедурой.
Материалы и методы. Данное исследование представляет собой кросс-секционное исследование пациента, который нуждается в обследовании КТ в отделении нейрохирургии больницы Hasan Sadikin. Изображение КТ будет реконструировано при помощи программного обеспечения OsiriX. Длина правой и левой ножки, ее ширина, линия проекции во внедрении транспедикулярного винта, линия внутреннего расщепления и поперечный разрез ножки измерялись на всех уровнях от С3 до С6.
Результаты. Сканы КТ 31 пациента, были включены в исследование, средний возраст которых со-
ставил 39,12 ± 9,73 лет. Среди них было 19 мужчин и 12 женщин. Соответственно в С6 средняя длинна и ширина ножки составила 5,31 мм и 5,41 мм. Наибольшее число линий проекции во внедрении транспедикулярного винта в плоскость осевого сечения была в С6, 32,43 мм. Поперечный угол ножки в медиолатеральном углу для транспедикулярного винта показали изменения в диапазоне от 42,7° до 43,9° с широким углом в С4. Двумерный анализ показал, что каждый сегмент шейных отделов позвонков и половая принадлежность определяют размер ножки и вставки транпедикулярного винта со значением р <0,05.
Выводы. Размер ножки в типичном субосевом шейном отделе позвоночника в нашем центре имеет разные размеры в каждом сегменте субосевого типичного шейного отдела позвонков между мужчиной и женщиной, так что знание анатомических различий необходимо для выбора техники операции и размера инструмента, чтобы избежать нервно-сосудистых повреждений во время операции на типичный субосевой шейный отдел позвоночника с транс-педикулярным винтом.
Ключевые слова: Морфометрический, шейный отдел позвоночника, субосевой, ножка, транс-педикулярный винт.