Научная статья на тему 'MORPHOFUNCTIONAL CHARACTERISTICS OF CUTANEOUS CONNECTIVE TISSUE SCARS IN WOMEN WITH PAST HISTORY OF CHILDBIRTH AFTER CESARIAN DELIVERY'

MORPHOFUNCTIONAL CHARACTERISTICS OF CUTANEOUS CONNECTIVE TISSUE SCARS IN WOMEN WITH PAST HISTORY OF CHILDBIRTH AFTER CESARIAN DELIVERY Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
21
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биотехнологиям в медицине , автор научной работы — Mishina E.S., Zatolokina M.A., Kharchenko V.V., Mnikhovich M.V.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MORPHOFUNCTIONAL CHARACTERISTICS OF CUTANEOUS CONNECTIVE TISSUE SCARS IN WOMEN WITH PAST HISTORY OF CHILDBIRTH AFTER CESARIAN DELIVERY»

MORPHOFUNCTIONAL CHARACTERISTICS OF CUTANEOUS CONNECTIVE TISSUE SCARS IN WOMEN WITH PAST HISTORY OF CHILDBIRTH AFTER CESARIAN DELIVERY

Mishina ES1 H, Zatolokina MA1, Mnikhovich MV2, Kharchenko VV1

1 Kursk State Medical University, Kursk, Russia

2 Research Institute of Human Morphology, Moscow, Russia

The inevitable outcome of skin injuries caused by a variety of external factors is the formation of a connective tissue scar. A scar can deform when exposed to stretching, pressure or repeat surgeries and undergo structural changes leading to its dehiscence. Scar dehiscence is a common problem seen in women with a past history of cesarean delivery. There have been comprehensive studies of uterine scars formed after the C-section, but the morphology of cutaneous C-section scars has not yet been investigated. The aim of this study was to look into the morphology of connective tissue scars in multiparas with a past history of cesarean delivery. Specimens of cutaneous scars were collected from 30 women after the C-section. Within one age group, fiber thickness was directly proportional to the number of previous deliveries. Comparison of different age groups with the same number of previous deliveries revealed the thinning of collagen fibers and the increased density of type III collagen fibers. The most pronounced changes were observed in women with a history of 3 or more deliveries. We hypothesize that a connective tissue scar undergoes structural transformation, becomes thinner, and its fibers dissociate due to repeated skin stretching, which might indirectly suggest the dehiscence of the postoperative scar.

Keywords: connective tissue scar, skin, collagen fibers, regeneration, stretching, cesarean section

Author contribution: Mishina ES — study design; collection and processing of specimens; data analysis; manuscript preparation; Zatolokina MA, Mnikhovich MV Kharchenko VV — study concept; manuscript editing. The final version of the manuscript was approved by all the authors.

Compliance with ethical standards: the study was approved by the Regional Ethics Committee of Kursk State Medical University (Protocol № 4 dated June 10, 2019). The study complied with the ethical standards for medical research studies involving humans. Informed consent was obtained from all study participants.

Correspondence should be addressed: Ekaterina S. Mishina Karla Marxa, 3, Kursk, 305041; katusha100390@list.ru

Received: 11.12.2020 Accepted: 12.01.2021 Published online: 22.01.2021

DOI: 10.24075/brsmu.2021.002

МОРФОФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ СОЕДИНИТЕЛЬНОТКАННОГО РУБЦА НА КОЖЕ У ПОВТОРНОРОДЯЩИХ ЖЕНЩИН ПОСЛЕ ОПЕРАТИВНОГО РОДОРАЗРЕШЕНИЯ

Е. С. Мишина1 М. А. Затолокина1, М. В. Мнихович2, В. В. Харченко1

1 Курский государственный медицинский университет, Курск, Россия

2 Научно-исследовательский институт морфологии человека, Москва, Россия

Нарушение целостности кожного покрова под действием различных факторов неизбежно приводит к образованию соединительнотканного рубца. Под воздействием динамических факторов (растяжение, давление, повторно проведенные операции) рубец подвергается деформации, вследствие чего возможна дезорганизация его структурных компонентов и последующая его несостоятельность. Наиболее частой проблемой такого плана является несостоятельность рубцов у повторнородящих женщин, в анамнезе которых имеется хирургическое родоразрешение путем кесарева сечения. В литературе представлены результаты комплексного изучения рубцов на матке после операции кесарева сечения, в то время как морфологическое исследование кожного рубца у этих же беременных не проводилось. Целью работы было изучить морфофункциональные особенности соединительнотканного рубца на коже у повторнородящих женщин после оперативного родоразрешения. Исследовали фрагмент кожного рубца у 30 женщин после кесарева сечения. У женщин в одной возрастной группе утолщение волокон было прямопропорционально числу родов. При сравнении разных возрастных групп с одинаковым числом родов наблюдали истончение коллагеновых волокон, а также увеличение плотности волокон коллагена 3-го типа. Наиболее выраженные изменения выявлены у женщин с тремя и более родоразрешениями. Можно предположить, что под влиянием кратности растяжений кожи происходит структурная перестройка соединительнотканного рубца в виде истончения и дезорганизации волокнистых структур, что может косвенно говорить о несостоятельности послеоперационного рубца.

Ключевые слова: соединительнотканный рубец, кожа, коллагеновые волокна, регенерация, растяжение, кесарево сечение

Вклад авторов: Е. С. Мишина — дизайн исследования, сбор и обработка материалов, анализ полученных данных, написание текста; М. А. Затолокина, М. В. Мнихович, В. В. Харченко — концепция и редактирование текста; все авторы прочли и одобрили финальную версию статьи.

Соблюдение этических стандартов: исследование одобрено региональным этическим комитетом Курского государственного медицинского университета (протокол № 4 от 10 июня 2019 г.), выполнено с соблюдением этических принципов проведения научных медицинских исследований с участием человека; все участники подписали добровольное информированное согласие на участие в исследовании.

[23 Для корреспонденции: Екатерина Сергеевна Мишина

ул. Карла Маркса, д. 3, г. Курск, 305041; katusha100390@list.ru

Статья получена: 11.12.2020 Статья принята к печати: 12.01.2021 Опубликована онлайн: 22.01.2021 DOI: 10.24075/vrgmu.2021.002

The inevitable outcome of skin injuries caused by a variety of exposures is the formation of a connective tissue scar [1-3]. Some scars, including hypertrophic scars and keloids, can be esthetically displeasing; immature scars are prone to more serious complications. Differences in scar tissue organization and morphology are determined not only by the type of injury but also by the duration and frequency of injurious exposure

[4-10]. This might explain the phenomena of wound dehiscence, postoperative hernias and other negative outcomes [11, 12]. As indications for cesarean delivery are expanding, more women of childbearing age are acquiring uterine scars, which, in turn, necessitate cesarean delivery in future pregnancies [13]. In some cases, a C-section is combined with genitoplasty or abdominal wall reinforcement to avert scar dehiscence, the

most common complication of the C-section [14-17]. So, it would be clinically relevant to study cutaneous scar morphology and the reorganization of scar tissue in women with a past history of childbirth.

METHODS

Our study recruited 30 patients of Kursk Maternity Hospital. The following inclusion criteria were applied: the absence of obstetric or gynecologic pathology; delivery by cesarean section. Exclusion criteria: preterm labor; systemic connective tissue disorders. Fig. 1 illustrates the distribution of the participants by age.

The mean age of the participants was 33.1 ± 3.93 years; the mean height was 164.3 ± 6.47 cm; the mean weight, 74.57 ± 3.13 kg; the mean BMI, 0.28 ± 0.05 kg/m2. The total number of pregnancies specified in medical histories was 89. The total number of deliveries was 77. Twenty-three women (76.67%) had a past history of 2 cesarean deliveries; 6 women (20%) had undergone a total of 3 cesarian sections; 1 woman (3.33%) had a history of 4 cesarean deliveries. These figures include cesarean sections performed during the study.

The participants were grouped by age and the number of deliveries. A total of 5 groups with 1 to 12 women in each group)were formed (Table 1).

Specimens of scar tissue with the adjacent flaps of normal skin sized 3 x 6 cm were collected from all study participants after the C-section. For light microscopy, the specimens were fixed in 10% neutral buffered formalin. The specimens were embedded in paraffin and sliced on a microtome following the standard protocol. Sections of 5-7 pm were stained with hematoxylin-eosin and Mallory's trichrome stain. The presence of collagen fibers in the specimens was verified by means of immunohistochemical staining (IHC) with anti-collagen type I and III monoclonal rabbit antibodies (Novocastra; Germany). Staining was performed in an automated LEICA BOND MAX IHC stainer (Leica; Germany). Digital photos geometrically and optically calibrated in ImageJ 14,7a (National Institutes of Health; USA) were further used to measure fiber thickness, the areas of collagen fibers (for each collagen type) and interfiber space in 30 fields of view (x10). The scar density coefficient was calculated using the previously proposed formula:

K = (Sc.f, %)/(SLs, %), where K is the scar density coefficient;

Sc.f. is the area of collagen fibers;

Sis is the area of interfiber space.

Then, the cellular makeup of the sampled scar tissue was analyzed. Based on karyological features (x40), we identified fibroblast cell lineages and proinflammatory cells. Immunophenotyping tests were not performed. Cell count was done per 100 cells in several (at least 10) non-overlapping fields of view. Then, mean values were calculated. Statistical analysis was carried out in Statistika 10.0 (Stat Soft; Russia). The normality of data distribution was tested using the Kolmogorov-Smirnov and the Shapiro-Wilk tests. The significance of differences was assessed using the Mann-Whitney U test for independent samples. Differences were considered significant at p < 0.05.

RESULTS

Fiber analysis revealed that all the studied connective tissue structures were composed of mature granulation tissue. In groups I and III (see Table 1), the fibers lied closest to each other and were organized in one direction. In all groups, the fibers were

fairly thick, with dense intrafibrillar structures. However, the major fibers in groups II and V (see Table 1) were composed of multiple thin branching fibers. Cross-sectionally, all fibers were mostly round. The morphometric analysis revealed that collagen fibers in the studied fibrous tissue differed significantly in their thickness between the groups. The thickest fibers were observed in the specimens obtained from women of young reproductive age with a past history of 3 deliveries. The thickness of collagen fibers was 1.2 lower in women of the same age with a past history of 2 deliveries (7.8 ± 0.11 pm). In women of late reproductive age, the thickness of collagen fibers was directly proportional to the number of previous deliveries, decreasing from 6.1 ± 0.12 to 4.7 ± 0.1 pm for women with a history of fewer deliveries.

The analysis of the ratio of collagen fibers area to the area of interfiber space in postoperative scars revealed that connective tissue fibers were more densely arranged in women with a past history of 2 deliveries at young reproductive age. The lowest ratio was observed in women with a history of 3 to 4 deliveries. These morphometric characteristics are shown in Fig. 2.

The IHC study of scar fragments revealed a decrease in collagen content in patients with a history of 2 and 3 deliveries at late reproductive age. Type I collagen was the most prevalent in the scar tissue of younger women (Table 2).

The dynamics of inflammation and tissue repair was analyzed by means of cell count in the scar tissue. The analysis revealed that collagen synthesis was the dominant process in the scar tissue of all study participants at the end of gestation. However, the fact that immature fibroblast lineage cells dominated the cellular composition of scars in women of late reproductive age led us to hypothesize that collagen synthesis was still ongoing. The dynamics of scar tissue cellular composition is illustrated in Fig. 3.

DISCUSSION

With regard to the dynamics of cutaneous scar tissue structure, the roughness and thickness of collagen fibers were directly

■ 20-30 years ■ 30-45 years

43 %

57 %

Fig. 1. The distribution of the participants by age

Table 1. The distribution of the participants by age and the number of cesarean deliveries

Age Number of deliveries

2 3 4

20-30 years Group I Group III

31-40 years Group II Group IV Group V

70 -

60 -

50 -

40 -

30 -

20 -

10 -

Collagen fiber thickness

Collagen fiber area (%)

Interfiber space area (%)

Scar density coefficient

Group I Group II Group III Group IV Group V

Fig. 2. The dynamics of morphometry characteristics of fibrous tissue. * — differences are statistically significant relative to the previous group (p < 0.05) Table 2. The distribution of collagen types in the scar tissue between different groups of patients

0

Group Type I collagen density Type II collagen density Type 1 to 3 collagen ratio

I 23.4 ± 1.1* 20.7 ± 1.2 1.1 ± 0.32

II 19.6 ± 0.76 18.9 ± 1.3 1.03 ± 0.1

III 23.4 ± 1.1 25.9 ± 1.2* 0.9 ± 0.07

IV 14.9 ± 1.3* 10.7 ± 0.4* 1.4 ± 0.05

V 17.9 ± 1.3 16.6 ± 0.5 1.07 ± 0.05

Note: * — differences are statistically significant relative to the previous group (p < 0.05).

proportional to the number of previous deliveries (groups I and III). The densest scars with the narrowest interfiber space were observed in young women with a history of 3 deliveries. Comparison of different age groups with the same number of

past deliveries revealed collagen fiber thinning. These structural changes were the most pronounced in groups IV and V, i.e. in women with a past history of 3 or more deliveries. One of the main characteristics of a mature scar is its thickness and

60 -i

50 -

40 -

30 -

20 -

10 -

Group I Group II Group III Group IV Group V

0

Lymphocytes (%) Macrophages (%) Fibrocytes (%) Fibroblasts (%)

Fig. 3. The dynamics of scar tissue cellular composition. * — differences are statistically significant relative to the previous group p < 0.05)

structural heterogeneity [18]. The scar density coefficient calculated in the study reflects fiber thickness and the size of the interfiber space. The greater is the scar density coefficient, the thicker is the scar and the less pronounced is the interstitial edema, which can expand the interfiber space. The obtained data are indirectly suggestive of scar tissue dehiscence after the third delivery in young patients. The analysis of collagen types distribution demonstrated that the greatest number of fibrous structures made up of type III collagen was observed in young women; in older women, scar tissue was mainly composed of type I collagen. These data are consistent with the data on the mechanisms of collagen synthesis in uterine scars. Immunohistochemically, connective tissue is characterized by moderate expression of type III collagen [19]. Cellular mechanisms play a significant role in the formation of a mature scar. One of the most important criteria of a mature

scar is the completion of the inflammation phase, i.e. a decline in lymphocyte and granulocyte counts [20]. The analysis of scar tissue cellular composition demonstrated that the morphology of the examined scars was consistent with mature granulation tissue dominated by fibroblast lineage cells.

CONCLUSION

Low inflammation levels, the cessation of collagen synthesis and the prevalence of fibroblast lineage cells are prerequisites for a sound scar. Microscopically, a sound scar is characterized by dense bundles of collagen fibers separated by small interfiber spaces. Repeated stretching causes fibrous structures to become thinner and dissociate. This morphological picture can be an indirect indication for abdominal wall and suture reinforcement with synthetic materials.

References

1. Duhanin AS, Malkin PA, Shimanovskij NL. Vnutrikletochnyj ph kak rannij differencial'nyj marker gljukokortikoid-inducirovannogo apoptoza fibroblastov kozhi. Vestnik rossijskogo gosudarstvennogo medicinskogo universiteta. 2013; 1: 54-57. Russian.

2. Lyahoveckij BI, Glazkova LK, Peretolchina TF. Kozhnye priznaki nedifferencirovannoj displazii soedinitel'noj tkani. Sovremennye problemy dermatovenerologii, immunologii i vrachebnoj kosmetologii. 2012; 1 (20): 30-35. Russian.

3. Shishkina VV, Atjakshin DA. Tuchnye kletki i fibrillogenez kollagena v uslovijah nevesomosti. Zhurnal anatomii i gistopatologii. 2019; 8 (3): 79-88. Russian.

4. Mishina ES, Zatolokina MA, Sergeeva SYu. Izuchenie faktorov dinamicheskogo strukturirovanija kollagenovyh volokon v jeksperimente. Morfologija. 2019; 11 (2): 199. Russian.

5. Omelyanenko NP, Sluckij LI. Soedinitel'naja tkan' (gistofiziologija i biohimija). M.: Izvestija, 2009; 1: 380. Russian.

6. Fetisov SO, Alekseeva NT, Nikityuk DB, Serezhenko NP, Atyakshin DA. Modelirovanie kak metod ocenki specificheskih morfofunkcional'nyh patternov pri regeneracii. Zhurnal anatomii i gistopatologii. 2015; 4 (4): 49-55. Russian.

7. Rittie L, editor. Fibrosis: methods and protocols. Humana Press, 2017; 530 p.

8. Ghazanfari S, Khademhosseini A, Smit TH. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials. 2016; 97: 74-84.

9. Harris JR, Lewis RJ. The collagen type I segment long spacing (SLS) and fibrillar forms: Formation by ATP and sulphonated diazo dyes. Micron. 2016; 86: 36-47.

10. Lu Y, Zhou Q, Lu JW, Wang WS, Sun K. Involvement of STAT3 in the synergistic induction of 11 ß-HSD1 by SAA1 and cortisol in human amnion fibroblasts. Am J Reprod Immunol. 2019 Aug; 82 (2): e13150. DOI: 10.1111/aji.13150.

11. Grigoreva YuV, Suvorova GN, Bormotov AV, Chemidronov SN. K voprosu o roli kollagena III tipa v shejke matki krys pri

beremennosti i rodah. Zhurnal anatomii i gistopatologii. 2015; 4 (3): 29-39. Russian.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Mnihovich MV, Sokolov DA, Zagrebin VL. Ot anatomii i gistologii k klinicheskoj patologii. Zhurnal anatomii i gistopatologii. 2017; 3: 29-30. Russian.

13. Ji Won Kwon, Won-Jae Lee, Si-Bog Park. Generalized joint hypermobility in healthy female koreans: prevalence and age-related differences. Ann Rehabil Med. 2013; 37 (6): 832-8.

14. Vasin RV, Filimonov VB, Mnihovich MV Kaprin AD. Morfologicheskaja struktura i immunogistohimicheskij analiz stenok vlagalishha u zhenshhin s prolapsom genitalij. Urologija. 2019; 6: 12-20. Russian.

15. Gasparov AC, Dubinskaya ED, Babicheva IA, Lapteva NB. Rol' displazii soedinitel'noj tkani v akushersko-ginekologicheskoj praktike. Kazanskij medicinskij zhurnal. 2014; 95 (6): 897-904. Russian.

16. Shevlyuk NN, Gatiatullin IZ, Stadnikov AA. Osobennosti reparativnyh gistogenezov pri ispol'zovanii bioplasticheskih materialov. Zhurnal anatomii i gistopatologii. 2020; 9 (1): 86-93. Russian.

17. Moalli PA, Shand SH, Zyczynski HM. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol. 2005; 106: 953-63.

18. Ajlamazyan YeK, Kulakov VI, Radzinskij VE, Saveleva GM, redaktory. Akusherstvo, nacional'noe rukovodstvo. M., 2007; 1197 s. Russian.

19. Kazaryan RM, Apresyan SV, Orazmuradov AA, Knyazev SA. Geneticheskie i morfologicheskie osobennosti rubca na matke posle kesareva sechenija. Vestnik Rossijskogo universiteta druzhby narodov. Serija: Medicina. 2008; 1: 12-17. Russian.

20. Telegina IV, Pavlov RV, Selkov SA. Osobennosti formirovanija rubca na matke posle kesareva sechenija v zavisimosti ot haraktera rodorazreshenija. Zhurnal akusherstva i zhenskih boleznej. 2013; 4 (62): 61-66. Russian.

Литература

1. Духанин А. С., Малкин П. А., Шимановский Н. Л. Внутриклеточный рИ как ранний дифференциальный маркер глюкокортикоид-индуцированного апоптоза фибробластов кожи. Вестник российского государственного медицинского университета. 2013; 1: 54-57.

2. Ляховецкий Б. И., Глазкова Л. К., Перетолчина Т. Ф. Кожные признаки недифференцированной дисплазии соединительной ткани. Современные проблемы дерматовенерологии, иммунологии и врачебной косметологии. 2012; 1 (20): 30-35.

3. Шишкина В. В., Атякшин Д. А. Тучные клетки и фибриллогенез

коллагена в условиях невесомости. Журнал анатомии и гистопатологии. 2019; 8 (3): 79-88.

4. Мишина Е. С., Затолокина М. А., Сергеева С. Ю. Изучение факторов динамического структурирования коллагеновых волокон в эксперименте. Морфология. 2019; 11 (2): 199.

5. Омельяненко Н. П., Слуцкий Л. И. Соединительная ткань (гистофизиология и биохимия). М.: Известия, 2009; 1: 380.

6. Фетисов С. О., Алексеева Н. Т., Никитюк Д. Б., Сереженко Н. П., Атякшин Д. А. Моделирование как метод оценки специфических морфофункциональных паттернов при регенерации. Журнал

анатомии и гистопатологии. 2015; 4 (4): 49-55.

7. Rittie L, editor. Fibrosis: methods and protocols. Humana Press, 2017; 530 p.

8. Ghazanfari S, Khademhosseini A, Smit TH. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials. 2016; 97: 74-84.

9. Harris JR, Lewis RJ. The collagen type I segment long spacing (SLS) and fibrillar forms: Formation by ATP and sulphonated diazo dyes. Micron. 2016; 86: 36-47.

10. Lu Y, Zhou Q, Lu JW, Wang WS, Sun K. Involvement of STAT3 in the synergistic induction of 11 p-HSD1 by SAA1 and cortisol in human amnion fibroblasts. Am J Reprod Immunol. 2019 Aug; 82 (2): e13150. DOI: 10.1111/aji.13150.

11. Григорьева Ю. В., Суворова Г. Н., Бормотов А. В., Чемидронов С. Н. К вопросу о роли коллагена III типа в шейке матки крыс при беременности и родах. Журнал анатомии и гистопатологии. 2015; 4 (3): 29-39.

12. Мнихович М. В., Соколов Д. А., Загребин В. Л. От анатомии и гистологии к клинической патологии. Журнал анатомии и гистопатологии. 2017; 3: 29-30.

13. Ji Won Kwon, Won-Jae Lee, Si-Bog Park. Generalized joint hypermobility in healthy female koreans: prevalence and age-related differences. Ann Rehabil Med. 2013; 37 (6): 832-8.

14. Васин Р. В., Филимонов В. Б., Мнихович М. В., Каприн А. Д. Морфологическая структура и иммуногистохимический

анализ стенок влагалища у женщин с пролапсом гениталий. Урология. 2019; 6: 12-20.

15. Гаспаров А. C., Дубинская Е. Д., Бабичева И. A., Лаптева Н. B. Роль дисплазии соединительной ткани в акушерско-гинекологической практике. Казанский медицинский журнал. 2014; 95 (6): 897-904.

16. Шевлюк Н. Н., Гатиатуллин И. З., Стадников А. А. Особенности репаративных гистогенезов при использовании биопластических материалов. Журнал анатомии и гистопатологии. 2020; 9 (1): 86-93.

17. Moalli PA, Shand SH, Zyczynski HM. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol. 2005; 106: 953-63.

18. Айламазян Э. К., Кулаков В. И., Радзинский В. Е., Савельева Г. М., редакторы. Акушерство, национальное руководство. М., 2007; 1197 с.

19. Казарян Р. М., Апресян С. В., Оразмурадов А. А., Князев С. А. Генетические и морфологические особенности рубца на матке после кесарева сечения. Вестник Российского университета дружбы народов. Серия: Медицина. 2008; 1: 12-17.

20. Телегина И. В., Павлов Р. В., Сельков С. А. Особенности формирования рубца на матке после кесарева сечения в зависимости от характера родоразрешения. Журнал акушерства и женских болезней. 2013; 4 (62): 61-66.

i Надоели баннеры? Вы всегда можете отключить рекламу.