Научная статья на тему 'Мониторинг содержания ультрадисперсных аэрозолей в воздухе горнопромышленного региона'

Мониторинг содержания ультрадисперсных аэрозолей в воздухе горнопромышленного региона Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
103
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОНИТОРИНГ / MONITORING / МЕТОДИКА / METHODOLOGY / ГОРНОПРОМЫШЛЕННЫЙ РЕГИОН / MINING INDUSTRIAL REGION / ГЕОТЕХНОЛОГИЯ / GEOTECHNOLOGY / ДОБЫЧА ПОЛЕЗНЫХ ИСКОПАЕМЫХ / MINING / НАНОЧАСТИЦЫ / NANOPARTICLES / КОЛИЧЕСТВО / QUANTITY / СРЕДА ОБИТАНИЯ ЧЕЛОВЕКА / HUMAN HABITAT

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Радченко Дмитрий Николаевич, Гаджиева Луиза Абду-Самадовна, Гавриленко Вячеслав Витальевич

Разработана методика мониторинга и проведены исследования по определению содержания твердых частиц крупностью 1-10 нм в воздухе горнопромышленного региона. Дана сравнительная оценка загрязнения воздуха наночастицами в регионе КМА, Москве и Московской области.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по энергетике и рациональному природопользованию , автор научной работы — Радченко Дмитрий Николаевич, Гаджиева Луиза Абду-Самадовна, Гавриленко Вячеслав Витальевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Monitoring og the content of ultradispersed aerosols in the air of the mining inditrial region

A methodology for monitoring the determination of the content of solid particles with a particle size of 1-10 nm in the air of the mining region has been developed. Appropriate studies have been carried out. The air pollution by nanoparticles in the KMA and the Moscow regions is estimated.

Текст научной работы на тему «Мониторинг содержания ультрадисперсных аэрозолей в воздухе горнопромышленного региона»

RUDN Journal of Ecology and Life Safety 2017 Т0М 25 № 4 520-528

Вестник РУДН. Серия: Экология и безопасность жизнедеятельности http://journals.rudn.ru/ecology

DOI 10.22363/2313-2310-2017-25-4-520-528 УДК 574:004.9:622

МОНИТОРИНГ СОДЕРЖАНИЯ УЛЬТРАДИСПЕРСНЫХ АЭРОЗОЛЕЙ В ВОЗДУХЕ ГОРНОПРОМЫШЛЕННОГО РЕГИОНА

Д.Н. Радченко1, Л.А Гаджиева1'2, В.В. Гавриленко1

1 Институт проблем комплексного освоения недр им. академика Н.В. Мельникова Российской академии наук Крюковский тупик, 4, Москва, Россия, 111020 2 Российский университет дружбы народов ул. Орджоникидзе, 3, Москва, Россия, 115419

Разработана методика мониторинга и проведены исследования по определению содержания твердых частиц крупностью 1—10 нм в воздухе горнопромышленного региона. Дана сравнительная оценка загрязнения воздуха наночастицами в регионе КМА, Москве и Московской области.

Ключевые слова: мониторинг, методика, горнопромышленный регион, геотехнология, добыча полезных ископаемых, наночастицы, количество, среда обитания человека

Современные исследования показывают, что в условиях стремительного развития нанотехнологий наноструктурные материалы являются не только основным прорывом в области высоких технологий, но и одной из причин загрязнения окружающей среды [1]. Известно, что природные выбросы аэрозолей, например, в результате вулканической деятельности и лесных пожаров всегда влияли на среду обитания человека. Однако уравновешиваясь общим круговоротом веществ в природе, они не вызывали глубоких экологических изменений. Значительно больший вред окружающей среде наносят промышленные аэрозоли, образующиеся в результате человеческой деятельности.

Согласно классификации, выдвинутой автором работы [2], к наночастицам относятся ультрадисперсные аэрозоли, размер которых находится в диапазоне 0,001—0,01 мкм.

В настоящее время в России отсутствует стандарт, устанавливающий предельно допустимые концентрации таких наноаэрозолей в воздушной среде. Однако в связи с увеличивающимся вниманием мировой научной общественности к возможным рискам для здоровья, возникающим при воздействии аэрозолей с частицами, размеры которых лежат в нанодиапазоне, в 2012 году был разработан ГОСТ Р 54597—2011, целью его стало предоставление пользователям необходимой исходной информации о наноаэрозолях до того, как будут разработаны и внедрены предельно допускаемые уровни воздействия и эталоны [3].

До настоящего времени в нашей стране отсутствуют современные методические руководства и стандарты, применимые для оценки и снижения рисков для

здоровья населения в горнодобывающих и других промышленных регионах. Основная характеристика аэрозолей на данный момент — массовая концентрация частиц, связанная с характерным фракционным составом, соответствующим различным областям осаждения в респираторной системе. Причем, многие токсикологические исследования свидетельствуют, что некоторые ультрамелкие вдыхаемые нерастворимые частицы могут быть более токсичными, чем более крупные аналогичного состава [4—12]. Это дает основание полагать, что воздействие, связанное с вдыханием мелких твердых частиц, образующихся в результате деятельности промышленных предприятий, будет токсичным, в отличие от вдыхания крупных растворимых частиц, например, аэрозолей на берегу моря.

Таким образом, доля нерастворимых наночастиц, осажденных при вдыхании в альвеолярной и трахеобронхиальной областях дыхательных путей человека, больше по сравнению с вдыхаемыми частицами большего диаметра [3]. После осаждения наночастицы также могут оставаться в легких дольше, чем более крупные частицы, из-за сложности самоочищения организма от них и более сильного взаимодействия с тканями и органами. Например, результаты исследований легких у мелких грызунов показали уменьшение способности в фагоцитозе (поглощении) и очистке от наночастиц макрофагами по сравнению с тонкодисперсными частицами той же самой массы [13]. Исследованиями показано, что некоторые типы наночастиц (например, диоксида титана, углерода) легче проникают через барьерный слой эпителиальной клетки и входят в интерстициальную ткань легких или кровоток. Попав в кровь, наночастицы могут перемещаться с ней и осаждаться в других органах. Результаты исследований организма человека показали быстрое перемещение наночастиц по большому кругу кровообращения

[3].

В последние годы появились методики оценки нового показателя, характеризующего степень воздействия наночастиц на организм человека. (Lung-deposited surface area LDSA). Так, при оценке влияния деятельности международного аэропорта Лос-Анжелеса на качество воздуха, наряду с определением размера и концентрации наночастиц, авторы работы [14] установили закономерности изменения показателя, определяющего площадь осаждения наноаэрозолей в легких (LDSA) по мере удаления от аэропорта.

Ввиду важности определения наночастиц в воздухе, в ряде зарубежных стран проводятся мероприятия по мониторингу концентрации ультрадисперсных аэрозолей. Исследования [15], показали связь концентрации нанодисперсных частиц с плотностью размещения ресторанов быстрого питания в городе. Было установлено, что концентрации возле ресторанов были в 1,61 раза выше, чем на контрольном участке без таких источников, и в 1,22 раза выше по сравнению со всеми измерениями, проводимыми между ресторанами.

Одной из главных причин образования наноразмерных частиц является деятельность горнопромышленного производства [2]. Было установлено, что частицы, крупностью, находящейся в нанодиапозоне, образуются в составе общей массы пылевых выбросов данного производства [16].

Авторами работ [16; 17] определены основные источники техногенной пыли и наночастиц при освоении земных недр, к которым относятся: стволы шахт и

рудников, штольни и другие вентиляционные выработки подземных горных предприятий, карьеры, обогатительные и агломерационные фабрики, сортировочные и погрузочные пункты, породные и рудные отвалы, хвостохранилища, угольные и рудные склады, а также в процессе перевозки больших масс раздробленной горной и рудной массы до мест их складирования, использования или первичной переработки.

Ввиду отсутствия достоверных данных о предельно допустимой концентрации наночастиц в атмосфере горнопромышленных регионов и прилегающих зонах урбанизации, основные показатели, характеризующие степень загрязнения воздуха наноаэрозолями, могут быть выявлены путем сопоставимой оценки. Для этого разработана методика содержания ультрадисперсных аэрозолей в районах интенсивной разработки месторождений полезных ископаемых. При выборе объектов исследований было принято во внимание:

— наличие горно-перерабатывающего производства, функционирующего в регионе не менее 50 лет. Причем, недра в регионе осваиваются как открытым, так и подземным способами. Объем добычи руд составляет не менее 1 млн т/г. Добываемые руды перерабатываются на обогатительной фабрике, также расположенной в исследуемом регионе;

— наличие вблизи производства зоны урбанизации с населением не менее 10 тыс. человек;

— за «эталонные» регионы для сравнительной оценки выбраны урбанизированные территории, характеризующиеся отсутствием горнопромышленных предприятий описанного масштаба — г. Москва и г. Долгопрудный Московской области.

Методикой предусмотрено для проведения исследований использование оборудования Лаборатории экологически сбалансированного освоения недр ИПКОН РАН [18]:

1) миниатюрный диффузионный классификатор DISCmini, предназначенный для измерения количества и среднего размера наночастиц в воздухе, а также определения площади поверхности, занимаемой осажденными наночастицами в альвеолярной области дыхательных путей (рис. 1). Принцип действия прибора заключается в измерении значения токов в процессе отбора заряженных частиц на двух отдельных этапах: ступени диффузии (iD) и стадии фильтрации (iF). На базе преобразования этих значений определяется размер частиц (который пропорционален отношению iF/iD) и числовая концентрация (которая пропорциональна iF + iD);

2) анемометр цифровой ATT-1033 — для измерения скорости воздушного потока;

3) прибор экологического контроля DT-988^, которым измеряются температура и влажность окружающей среды и концентрация пылевых частиц в диапазоне 0,3—10 мкм.

Последние два прибора использованы для оценки корреляции данных о содержании наночастиц с характеристиками окружающей среды.

Согласно разработанной методике, проведение измерений выполнено в пяти условных точках (рис. 2). Точка № 1 расположена на расстоянии 150 м в юго-за-

падном направлении от скипового ствола шахты. Согласно исследованиям [16] подземные рудники служат источниками наночастиц, образующихся в ходе таких геотехнологических процессов, как бурение, отбойка, доставка, выпуск и транспортировка руд и пород.

Рис. 1. Переносной диффузионный классификатор DISCmini Лаборатории ЭКОН ИПКОН РАН [Fig. 1. Portable diffusion classifier DISCmini Laboratories ECON IPCON RAS]

Рис. 2. Карта района проведения измерений [Fig. 2. Map of the measuring area]

Оценка образования ультра дисперсных аэрозолей в ходе открытого способа разработки месторождения проведена в точке № 2 в 500 м к западу от внешней границы карьера.

Для выявления закономерностей распределения наночастиц по мере удаления от источника, проведены измерения на расстоянии 2 и 2,5 км от борта карьера по направлению к городу (точки № 3 и № 4).

Анализ возможного негативного влияния ультрадисперсных частиц на организм человека в прилегающей урбанизированной зоне выполнен путем измерения в центре города, где расположена точка № 5.

Для проведения исследований выбран теплый период 2017 года, характеризующийся стабильными условиями окружающей среды: температура 17—26 °С, средняя скорость ветра — не более 4 м/с, относительная влажность — до 80%.

Установлено, что наибольшая средняя концентрация наночастицв воздухе составляет 27590,51 см-3 на промплощадке подземного рудника (т. № 1, рис. 2) и территории между ней и карьером (таблица). Наименьшая концентрация установлена на территории промышленного города, которая составляет 15622,35 см-3. Соответственно распределяются показатели LDSA — максимальный в точке № 1, минимальный в точке № 5.

Таблица

Сравнительная оценка результатов мониторинга содержания ультрадисперсных аэрозолей в воздухе горнодобывающего и Московского регионов

Показатель, ед. измерения Исследуемые регионы

Зона промышленной урбанизации г. Москва г. Долгопрудный

Точки отбора

1 2 3 4 5 Средняя по городу Средняя по городу

Средняя концентрация наночастиц, см-3 27590,51 21201,79 24738,44 20439,71 15622,35 11993,13 12465,9

LDSA 62,38 48,991 50,037 49,58 44,801 30,3645 24,8055

Средняя концентрация пылевых частиц С = 0,3 мкм, мкг/м3 83668,68 103182,8 82763,43 294944,1 87494,79 27491,285 17497,45

Table

Comparative evaluation of the results of monitoring the content of ultradisperse aerosols in the air of the mining and the Moscow regions

Indicator, units of measure Investigated regions

Industrial urbanization area Moscow Dolgo-prudnyy

Sampling points

1 2 3 4 5 Urban average Urban average

Average concentrarion of nanoparticles, cm-3 27590,51 21201,79 24738,44 20439,71 15622,35 11993,13 12465,9

LDSA 62,38 48,991 50,037 49,58 44,801 30,3645 24,8055

Average concentrarion of dust particles d = 0,3 micrometers, microgram/m3 83668,68 103182,8 82763,43 294944,1 87494,79 27491,285 17497,45

По результатам измерений средняя концентрация ультрадисперсных частиц в Москве составила 11 993,13, что в 1,3 раза меньше, чем в городе, расположенном в горнопромышленном регионе и в 2,3 раза меньше, чем на промплощадке рудника. В Московской области средняя концентрация таких частиц в 1,25 раз меньше, чем в промышленном городе, в 2,2 меньше, чем в зоне непосредственного функционирования горного предприятия.

Полученные результаты мониторинга позволяют однозначно судить о негативном влиянии горнопромышленных регионов на состояние окружающей среды в части поступления ультрадисперсных аэрозолей в воздух. Вместе с тем, ареал распространения наночастиц носит локальный характер с формированием зон повышенных концентраций непосредственно в зонах ведения горных работ. В настоящее время проводятся аналогичные исследования в других горнопромышленных центрах России — на Южном Урале, Кузбассе.

Целью проводимого мониторинга является не просто констатация факта загрязнения окружающей среды. Деятельность лаборатории ЭКОН ИПКОН РАН [18] направлена на разработку инновационных технологий экологически сбалансированного освоения рудных месторождений. В ходе таких исследований создаются геотехнологии, позволяющие вывести человека из зон ведения горных работ, характеризующихся потенциальной промышленной и экологической опасностью. Это достигается роботизацией технологических процессов с одновременным сокращением операционных функций человека в технологических процессах горного производства. При этом повышаются интеллектуальные функции персонала, выполняемые в комфортных и благоприятных условиях.

СПИСОК ЛИТЕРАТУРЫ

[1] Gwinn M.R., Vallyathan V. Nanoparticles: Health effects — Pros and cons // Environmental Health Perspectives. 2006. 114(12). Рр. 1818—1825.

[2] ХмелевВ.Н. Ультразвуковая коагуляция аэрозолей: монография / В.Н. Хмелев, А.В. Шалунов, К.В. Шалунова, С.Н. Цыганок, Р.В. Барсуков, А.Н. Сливин. Бийск: Изд-во Алт. гос. техн. ун-та, 2010. 235 с.

[3] ГОСТ Р 54597—2011 Воздух рабочей зоны. Ультрадисперсные аэрозоли, аэрозоли наночастиц и наноструктурированных частиц. Определение характеристик и оценка воздействия при вдыхании. М.: ФГУП «Стандартинформ», 2012. 40 с.

[4] Gelein G, Ferin R.M., Weiss J. and B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal. Toxicol. 1995. No. 7. Pp. 111—124.

[5] G. Toxicology of ultrafine particles: in vivo studies // Phil. Trans. Roy. Soc. Lond. Series A 358, 1775, 2000. Pp. 2719—2740.

[6] Donaldson K, LiX.Y. andMacNee W. Ultrafine (nanometer) particle mediated lung injury // Journal of Aerosol Science. 1998; 29 (5-6). Pp. 553—560.

[7] Donaldson K., Stone V., Gilmore P.S., Brown D.M. and MacNee W. Ultrafine particles: mechanisms of lung injury. Phil. Trans. Roy. Soc. Lond., Series A 358, 2000. Pp. 2741—2749.

[8] Brown D.M., Wilson M.R., MacNee W., Stone V. and Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology. 2001; 175 (3). Pp. 191—199.

[9] Tran C.L., Buchanan D., Cullen R.T., Searl A., Jones A.D. and Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 2000; 12 (12). Pp. 1113—1126.

[10] Dick C.A.J., Brown D.M., Donaldson K. and Stone V. The role of free radicals in the toxic and inflammatory effects offour different ultrafine particle types. Inhal. Toxicol. 2003; 15 (1). Pp. 39— 52.

[11] MacNee W. and Donaldson K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur. Resp. J., 21, 2003. Pp. 47S—51S.

[12] Renwick L.C., Donaldson K. and Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology. 2001; 172 (2). Pp. 119—127.

[13] Renwick L.C., Brown D, Clouter A. and Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occup. Environ. Med., 61. 2004. Pp. 442—447.

[14] Hudda N, Fruin S.A. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations // Environ. Sci. Technol. 2016. No. 50. P. 3362—3370. DOI: 10.1021/acs.est.5b05313.

[15] Vert C., Meliefste K, Hoek G. Outdoor ultrafine particle concentrations in front of fast food restaurants // Journal of Exposure Science and Environmental Epidemiology. 2016. No. 26. P. 35—41. DOI: 10.1038/jes.2015.64.

[16] Чантурия В.А., Трубецкой К.Н., Викторов С.Д., Бунин И.Ж. Наночастицы в процессах разрушения и вскрытия геоматериалов. М.: Изд-во Института проблем комплексного освоения недр РАН, 2006. 216 с.

[17] Трубецкой К.Н., Галченко Ю.П. Геоэкология освоения недр и экогеотехнологии разработки месторождений. М.: Научтехлитиздат, 2015. 360 с.

[18] Рыльникова М.В., Радченко Д.Н. Создание в России научного центра по изучению экологически сбалансированного цикла комплексного освоения месторождений твердых полезных ископаемых // Горный журнал. 2014. № 12. С. 4—7.

© Радченко Д.Н., Гаджиева Л.А., Гавриленко В.В., 2017

Финансирование:

Исследования выполняются при поддержке РНФ (грант №14-37-00050). История статьи:

Дата поступления в редакцию: 09.10.2017 Дата принятия к печати: 20.12.2017

Для цитирования:

Радченко Д.Н, Гаджиева Л.А., Гавриленко В.В. Мониторинг содержания ультрадисперсных аэрозолей в воздухе горнопромышленного региона // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2017. Т. 25. № 4. С. 520—528. DOI: 10.22363/2313-2310-2017-25-4-520-528

Сведения об авторах:

Радченко Дмитрий Николаевич — кандидат технических наук, старший научный сотрудник ИПКОН РАН, доцент департамента геологии, горного и нафтегазового дела инженерной академии Российского университета дружбы народов. E-mail: mining_expert@mail.com

Гаджиева Луиза Абду-Самадовна — студентка департамента геологии, горного и нафтега-зового дела инженерной академии Российского университета дружбы народов, лаборант ИПКОН РАН. E-mail: gadzhilu@gmail.com

Гавриленко Вячеслав Витальевич — научный сотрудник ИПКОН РАН. E-mail: sla-77@ yandex.ru

MONITORING OF THE CONTENT OF ULTRADISPERSED AEROSOLS IN THE AIR OF THE MINING INDUSTRIAL REGION

D.N. Radchenko1, L.A. Gadzhieva12, V.V. Gavrilenko1

1 Institute of Complex Exploitation of Mineral Resources of the Russian Academy of Sciences Kryukovskytupik, 4, Moscow, Russia, 111020 2 Peoples' Friendship University of Russia Ordzhonikidze str., 3, Moscow, Russia, 115419

A methodology for monitoring the determination of the content of solid particles with a particle size of 1—10 nm in the air of the mining region has been developed. Appropriate studies have been carried out. The air pollution by nanoparticles in the KMA and the Moscow regions is estimated.

Key words: monitoring, methodology, mining industrial region, geotechnology, mining, nanoparticles, quantity, human habitat

REFERENCES

[1] Gwinn M.R., Vallyathan V Nanoparticles: Health effects — Pros and cons. Environmental Health Perspectives. 2006; 114(12). Pp. 1818—1825.

[2] Hmelev V.N. Ultrazvukivayakoagulyatsiyaaerozoley: monografiya. V.N. Hmelev, A.V. Shalunov, K.V Shalunova, S.N. Tsyganok, R.V. Barsukov, A.N. Slivin. Alt. gos. texn. un-t, BTI. Biysk: Izd-vo Alt. gos. texn. un-ta, 2010. P. 235.

[3] GOST R 54597—2011 Vozduh rabochey zony. Ultradispersniye aerozoli, aerosoli nanochastic i nanostrukturnykh chastits. Opredelenie kharakteristik I ocenka vozdeystviya pri vdykhanii. M., 2012. P. 40.

[4] Gelein G., Ferin R.M., Weiss J. and B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal. Toxicol. 1995. No. 7. Pp. 111—124.

[5] G. Toxicology of ultrafine particles: in vivo studies. Phil. Trans. Roy. Soc. Lond. Series A 358, 1775. 2000. Pp. 2719—2740.

[6] Donaldson K., Li X.Y and MacNee W Ultrafine (nanometer) particle mediated lung injury. Journal of Aerosol Science. 1998; 29 (5-6). Pp. 553—560.

[7] Donaldson K., Stone V., Gilmore P.S., Brown D.M. and MacNee W. Ultrafine particles: mechanisms of lung injury. Phil. Trans. Roy. Soc. Lond., Series A 358, 2000. Pp. 2741—2749.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[8] Brown D.M., Wilson M.R., MacNee W., Stone V. and Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity ofultrafines. Toxicology and Applied Pharmacology. 2001; 175 (3). Pp. 191—199.

[9] Tran C.L., Buchanan D., Cullen R.T., Searl A., Jones A.D. and Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 2000; 12 (12). Pp. 1113—1126.

[10] Dick C.A.J., Brown D.M., Donaldson K. and Stone V. The role of free radicals in the toxic and inflammatory effects offour different ultrafine particle types. Inhal. Toxicol. 2003; 15 (1). Pp. 39— 52.

[11] MacNee W and Donaldson K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur. Resp. J., 21, 2003. Pp. 47S—51S.

[12] Renwick L.C., Donaldson K. and Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology. 2001; 172 (2). Pp. 119—127.

[13] Renwick L.C., Brown D., Clouter A. and Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occup. Environ. Med., 61, 2004. Pp. 442—447.

[14] Hudda N., Fruin S.A. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations// Environ. Sci. Technol. 2016. No. 50. P. 3362—3370. DOI: 10.1021/acs.est.5b05313.

[15] Vert C., Meliefste K., Hoek G. Outdoor ultrafine particle concentrations in front of fast food restaurants. Journal of Exposure Science and Environmental Epidemiology. 2016. No. 26. P. 35— 41. DOI: 10.1038/jes.2015.64.

[16] Chanturiya V.A., Trubetskoy K.N., Viktorov S.D., Bunin I.Zn. Nanoparticles in geological materials destruction and extraction processes. М., 2006. 216 p.

[17] Trubetskoy K.N., Galchenko Yu. P. Geoecologiya osvoeniya nedr I ecotekhnologii razrabotki mestorozhdeniy. М.: ООО «Nauchtekhizdat», 2015. 360 p.

[18] Rylnikova M.V., Radchenko D.N. Creating research center for the environmentally sound and comprehensive utilization of hard minerals in Russia. Gornyi Zhurnal, 2014. No. 12. S. 4—7.

Article history:

Received: 09.10.2017 Revised: 20.12.2017

For citation:

Radchenko D.N., Gadzhieva L.A., Gavrilenko V.V. (2017) Monitoring og the content of ultradispersed aerosols in the air of the mining inditrial region. RUDN Journal of Ecology and Life Safety, 25 (4), 520—528. DOI: 10.22363/2313-2310-2017-25-4-520-528

Bio Note:

Radchenko Dmitry Nikolaevich — candidate of technical science., senior researcher of IPKON RAS, Associate Professor of the Department of Geology, Mining and Naphtha Engineering of the PFUR Engineering Academy. E-mail: mining_expert@mail.com

Gadzhieva Louisa Abdu-Samadovna — student of the Department of Geology, Mining and Naphtha Engineering of the Engineering Academy, Рeoples' Friendship University of Russia, a laboratory assistant of the IPCON RAS. E-mail: gadzhilu@gmail.com

Gavrilenko Vyacheslav Vitalievich — research assistant, IPKON RAS. E-mail: sla-77@yandex.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.